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Membrane protein is an important kind of proteins. It plays essential roles in several cellular processes. Based on the
intramolecular arrangements and positions in a cell, membrane proteins can be divided into several types. It is reported that
the types of a membrane protein are highly related to its functions. Determination of membrane protein types is a hot topic in
recent years. A plenty of computational methods have been proposed so far. Some of them used functional domain
information to encode proteins. However, this procedure was still crude. In this study, we designed a novel feature extraction
scheme to obtain informative features of proteins from their functional domain information. Such scheme termed domains as
words and proteins, represented by its domains, as sentences. The natural language processing approach, word2vector, was
applied to access the features of domains, which were further refined to protein features. Based on these features, RAndom k-
labELsets with random forest as the base classifier was employed to build the multilabel classifier, namely, iMPT-FDNPL. The
tenfold cross-validation results indicated the good performance of such classifier. Furthermore, such classifier was superior to
other classifiers based on features derived from functional domains via one-hot scheme or derived from other properties of
proteins, suggesting the effectiveness of protein features generated by the proposed scheme.

1. Introduction

Membrane protein refers to the protein that can bind to the
cell membrane and is an important part of the cell mem-
brane. It exposes a surface that is very suitable for merging
to the membrane [1]. There are lots of membrane proteins
in human. They perform various functions related to cell
survival. About 30% of genes can encode membrane
proteins [2], 60% of membrane proteins can be used as drug
targets, and some membrane proteins can act as enzyme
mediators in the immune system [3]. It is reported that the
function of membrane protein is highly associated with its
type. Identification of the types of membrane proteins is an
important step to uncover their functions. Traditional exper-
imental methods can provide solid results. However, they
have some evident defects, such as low efficiency and high
cost. The large-scale tests for identification of membrane

protein types via these methods are almost impossible. Thus,
it is urgent to design quick and cheap methods.

In recent years, lots of new computational methods have
proposed, providing strong technical support for designing
classifiers for identification of membrane protein types. On
the other hand, several online databases have been set up for
collecting various information of proteins, giving strong data
support. To date, several classifiers have been proposed to
identify membrane protein types. Most classifiers are based
on machine learning algorithms. These classifiers always
learn patterns based on the information of membrane pro-
teins, whose types have been determined. These patterns can
be used to determine the types of given proteins. Several exist-
ing classifiers used features extracted from protein sequences
[4–9]. Amino acid composition (AAC) and pseudo amino
acid composition (PseAAC) are two classic schemes to access
features from protein sequences. Functional domains are also
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used to build classifiers for identification of membrane
protein types [10–12]. The classifiers incorporating such
information always provided good performance. However,
the usage of functional domain information is still at a low
level. One-hot scheme was used to encode proteins based
their functional domain information. Through this scheme,
each protein was encoded into a binary vector, where each
component represented one domain. If the domain was anno-
tated on a given protein, its corresponding component was set
to one; otherwise, it was set to zero. However, such scheme
had some evident defects. For example, the performance of
the classifiers was quite sensitive to some domains. This study
gave an investigation on the usage of functional domain infor-
mation of proteins.

In this study, we set up a novel classifier to identify
membrane protein types. This classifier adopted the novel
features obtained from functional domain information of
proteins via a natural language processing approach, word2-
vector. These features were fed into a multilabel classifica-
tion scheme, RAndom k-labELsets (RAKEL) [13], to set up
the classifier. Classic classification algorithm, random forest
(RF) [14], was selected as the base classifier in RAKEL.
The proposed classifier was called iMPT-FDNPL. The ten-
fold cross-validation indicated the good performance of such
classifier. It was also superior to other classifiers that were
constructed with other widely used feature extraction
schemes, including the classifier using features derived from
functional domain information via one-hot scheme.

2. Materials and Methods

2.1. Database. The data of human membrane proteins was
sourced from Huang et al.’s study (dataset S1) [15]. 2883
membrane proteins, encoded by UniProt IDs, were
obtained. In fact, these proteins were extracted from a larger
dataset retrieved from the UniProt database (release 2012_
09) [16] by using CD-HIT [17]. The sequence similarity of
any two proteins was smaller than 0.7. These 2883 proteins
were classified into six types: (1) GPI- (glycosyl phosphatidyl
isohydrin-) anchored, (2) lipid-anchor, (3) multipass, (4)
peripheral, (5) single-channel type I, and (6) single-pass II
type [18]. Because we adopted functional domain informa-
tion to encode proteins, those without such information
were excluded. 2729 membrane proteins remained. These
proteins were still classified into six abovementioned types.
The distribution of 2729 membrane proteins on six types is
shown in Table 1. The sum of protein numbers in all six
types was 2810 (last row of Table 1), which was bigger than
the number of different proteins. It was suggested that some
proteins belonged to more than one types. As shown in
Figure 1, 73 proteins belonged to two types, 4 proteins
belonged to three types, whereas rest proteins belonged to
one type. Thus, it is a multilabel classification problem to
assign types to membrane proteins.

2.2. Feature Engineering. Feature engineering is an important
step in designing efficient classifiers. In this study, we should
extract features from each membrane protein, which can
retain essential properties of proteins. Functional domain is

widely used to investigate various protein-related problems,
including membrane protein type prediction. The classic
way to employ such information is one-hot scheme. Several
classifiers have been built with such scheme, and they
provided good performance [10–12]. As mentioned above,
such scheme also had some defects. Here, we proposed a
new scheme to adopt functional domain information,
thereby encoding membrane proteins in a new way.

2.2.1. Domain Representation. The functional domain infor-
mation of all human proteins was retrieved from the Inter-
Pro database (http://ftp.ebi.ac.uk/pub/databases/interpro/,
accessed in February 2021) [19]. 17,410 IPR terms were
annotated on 171,472 human proteins. In this study, we
adopted a natural language processing approach to analyze
this information. To this end, IPR terms were deemed as
words and proteins, represented by one or more IPR terms,
were termed as sentences. Accordingly, the well-known
word2vector method was applied on them to learn a feature
vector for each IPR term. This study used the word2vector
program obtained from https://github.com/RaRe-
Technologies/gensim. Default parameters were adopted.

2.2.2. Protein Representation. As mentioned above, the fea-
ture vector of each IPR term was learnt by word2vector.
Based on them, we can further access the feature vectors
of proteins. Here, a simple way was adopted. The feature
vector of a given protein was defined as the average vector of
feature vectors of IPR terms that was annotated on such pro-
tein. For example, for a certain protein A4D1S5, there are
three IPR terms, say IPR001806, IPR005225, IPR027417,
and the average vector of three vectors, representing above
three IPR terms, respectively, was used to represent A4D1S5.

2.3. Multilabel Classifier. This study adopted a problem
transformation method, RAKEL [13], to build the multilabel
classifier, which has wide applications in dealing with several
biological and medicine problems [20–27]. From the origi-
nal multilabel classification problem, several single-label
classification problems are derived as follows. Given a prob-
lem with l labels, denoted by L1, L2,⋯, Ll, it first randomly
constructs m label subsets, each of which contains k labels,
where 1 ≤ k ≤ l. For each label subset, members in its power
set are deemed as new labels. Samples are assigned new
labels according to their original labels. For example, for
the label subset fL1, L2, L3g, the labels of each sample are

Table 1: Distribution of membrane proteins on six types.

Membrane protein type Number of proteins

GPI-anchor 69

Lipid-anchor 211

Multipass 1306

Peripheral 530

Single-pass type I 539

Single-pass type II 155

Total 2810
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first restricted to this subset, i.e., labels in this subset are
picked up and the rest are discarded. Then, the remaining
labels are put together as a new label. If the labels for one
sample are L1, L2 and L4, L1 and L2 are first selected
and fL1, L2g, a member of the power set of fL1, L2, L3g,
is assigned to such sample as its new label. Accordingly,
each sample has exactly one new label. Then, a classifier
can be built with a given base single-label classifier. The
m label subsets induce m single-label classifiers. The final
multilabel classifier integrates these single-label classifiers.
In detail, given a query sample, each single-label classifier
provides its prediction. Such prediction can be refined to
the binary predictions for labels involved in this classifier.
For each label, the binary predictions yielded by classifiers
involving this label are selected and count the proportion
of classifiers that predict this label. If this proportion is
higher than a predefined threshold, which is always set
to 0.5, the label is assigned to the query sample.

To quickly implement the RAKEL algorithm, we used
the tool “RAKEL” in Meka [28], retrieved from http://
waikato.github.io/meka/. Several values of m and k, the main
parameters of RAKEL, were tried in this study. For conve-
nience, the classifiers built by RAKEL were termed as
RAKEL classifiers.

2.4. Base Classifier. The multilabel classifier built by RAKEL
needs a base single-label classifier as mentioned above. One
of the most classic algorithms, RF [14], was selected in this
study. It is an ensemble classifier, consisting of several deci-
sion trees. Each decision tree is constructed by randomly
selecting samples and features. Given a sample, each deci-
sion tree provides its prediction. RF counts these predictions
and determines the final prediction using majority voting.
Although decision tree is quite weak, RF is much more
robust. Thus, it is always an important candidate to build
classifiers for tackling different problems [29–39].

In this study, we adopted the tool “RandomForest” inte-
grated in Meka [28], which implements RF.

2.5. Performance Measurement. All classifiers were assessed
by tenfold cross-validation [40–44]. This method randomly
and equally divides samples into ten subsets. Each subset is
singled out to constitute the test set one by one, and rest
subsets are put together to constitute the training set.
Accordingly, each sample is predicted only once.

After obtaining the outcomes of tenfold cross-validation,
we calculated three measurements to assess the quality of
results, including exact matching, accuracy, and hamming
loss [25–27], which can be computed by
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where n denotes the overall number of samples, m stands for
the number of labels (m = 6 in this study), Li and Li′ repre-
sent the set of true labels and predicted labels of the ith sam-
ple, respectively,Δ stands for the set symmetric difference
operation, and ∇ is defined as follows:

∇ Li, Li′
� �

=
1 If Li is identifical to Li′,
0 Otherwise:

(
ð2Þ

Obviously, the higher exact matching and the accuracy,
the better the performance of the classifier. For hamming
loss, the lower the hamming loss, the better the performance.
For easy comparisons, an integrated measurement, called
integrated score, was defined as below
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Figure 1: An illustration to show the distribution on the number of types a membrane belongs to. Four membrane proteins belong to three
types, 73 proteins belong to two types, and rest 2652 proteins belong to one type.
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Integrated score = exactmatch ∗ accuracy ∗ 1 − hamming lossð Þ:
ð3Þ

The higher the score, the better the classifier.

3. Results and Discussion

In this study, we set up a multilabel classifier, iMPT-FDNPL,
for prediction of membrane protein types. Such classifier
employed the features derived from functional domain
information of proteins. The entire procedures are shown
in Figure 2. In this section, we would give the evaluation
results and comparisons with other classifiers.

3.1. Performance of iMPT-FDNPL. iMPT-FDNPL adopted
the features derived from functional domain information
via word2vector. Because the optimum dimension of fea-
tures was unknown, several dimensions were tried, including
dimensions from 50 to 500 with interval 50. Furthermore,
the main parameter m in RAKEL was set to 10, and another
main parameter k was set to all integers between 2 and 6. As
for the parameter of RF, number of decision trees, it was set
to integers from 100 to 500 with interval 100. RAKEL classi-
fiers with all possible parameter settings were set up and
assessed by tenfold cross-validation. The outcomes showed
that when the dimension was set to 350, k = 6, m = 10, and
the number of decision trees was 500, the RAKEL classifiers
provided the highest integrated score of 0.6874. Thus, this
classifier was the proposed multilabel classifier, iMPT-
FDNPL. The exact match, accuracy, and hamming loss were
0.851, 0.853, and 0.053, respectively, which are listed in
Table 2. The exact match and accuracy both exceed 0.850,
suggesting the good performance of iMPT-FDNPL.

To fully assess the performance of iMPT-FDNPL under
tenfold cross-validation, 20 additional tenfold cross-
validations on this classifier were conducted. The obtained
values of exact matching, accuracy, hamming loss, and inte-
grated score are illustrated in Figure 3. We can see that exact
match varied from 0.853 to 0.860, accuracy from 0.856 to
0.863, hamming loss from 0.049 to 0.052, and integrated score
from 0.6921 to 0.7058. Above four measurements varied in a
small interval, implying that the performance of iMPT-
FDNPLwas quite stable nomatter how samples were divided.

3.2. Comparison of RAKEL Classifiers with Other Base
Classifiers. The proposed classifier, iMPT-FDNPL, adopted
RF as the base classifier. In fact, we also attempted another
classic classification algorithm, support vector machine
(SVM) [45]. Similar to RF, the tool “SMO” integrated in
Meka was directly employed in this study, which imple-
ments one type of SVM, whose training procedures are opti-
mized by the sequential minimal optimization algorithm
[46, 47]. The kernel was polynomial kernel or RBF kernel.
Various values of regularization parameter C were tried,
including 1, 2, 3, and 4. The exponent of polynomial kernel
was set to 1, 2, 3, and 4. As for parameter γ of RBF kernel, it
was set to various values between 0.01 and 0.05. The feature
dimensions and m, k in RAKEL were the same as those in
Section 3.1. All RAKEL classifiers with possible parameter

settings were built and evaluated by tenfold cross-
validation. The best performance (highest integrated score)
of RAKEL classifiers with SVM using two different kernels
is listed in Table 2. If the basic classifier was SVM (polynomial
kernel), the integrated score was 0.6515, exact match was
0.831, accuracy was 0.834, and hamming loss was 0.060. If
SVM (RBF kernel) was the base classifier, the integrated score
was 0.6787, exact match was 0.846, accuracy was 0.848, and
hamming loss was 0.054. The comparisons of those yielded
by iMPT-FDNPL indicated that the proposed classifier was
superior to these RAKEL classifiers. It was proper to select
RF as the base classifier to construct the classifier.

3.3. Comparison of BR Classifiers. In this study, we adopted
RAKEL to build the multilabel classifier. Here, another mul-
tilabel classifier construction method, Binary Relevance (BR)
[48], was employed to build the classifiers. Similar to
RAKEL, it also needs one base classifier. We still used three
base classifiers mentioned above: RF, SVM with polynomial
kernel, and SVM with RBF kernel. We tried the same
parameter settings as those in above sections. With all possi-
ble parameter settings, several classifiers were set up and
assessed by tenfold cross-validation. For convenience, these
classifiers were called BR classifiers.

The best performance of BR classifiers with different
base classifiers is listed in Table 2. The integrated scores
of these BR classifiers were 0.5778, 0.6152, and 0.6544,
respectively, which were all lower than that of the iMPT-
FDNPL. Furthermore, the exact match and accuracy of
iMPT-FDNPL were also higher than the corresponding
measurements of three BR classifiers. As for hamming loss,
iMPT-FDNPL provided lower performance than BR classi-
fier with SVM (RBF kernel) as the base classifier. However,
the hamming loss of iMPT-FDNPL was lower than those of
other two BR classifiers. All these results indicated the supe-
riority of the iMPT-FDNPL. In addition, given a base classi-
fier, RAKEL classifiers always provided higher performance
than BR classifiers, implying RAKEL was more powerful to
construct multilabel classifiers for identifying membrane
protein types than BR.

3.4. Comparison of Classifiers with Other Embedding
Features. In this study, the multilabel classifier, iMPT-
FDNPL, adopted features derived from functional domains
via a natural language processing approach to encode mem-
brane proteins. As mentioned above, one-hot scheme is a
more widely used way to encode proteins. Here, each protein
was encoded by such scheme. Then, the RAKEL and BR
were employed to construct classifiers, and the base classifier
was SVM or RF. With all possible parameter settings used
above, several classifiers were built, each of which was
assessed by tenfold cross-validation. The best performance
for RAKEL and BR with one of the base classifiers is listed
in Table 3, from which we can see that with such features,
the RAKEL with SVM (polynomial kernel) provided the best
performance. In detail, the integrated score was 0.6794, and
three measurements (exact match, accuracy, and hamming
loss) were 0.847, 0.848, and 0.054. Such performance was
lower than that of the iMPT-FDNPL. Thus, features derived

4 Computational and Mathematical Methods in Medicine



from functional domains via word2vector were more effi-
cient than the features derived from functional domains
via one-hot scheme for identifying membrane protein types.

Gene ontology (GO) [49] and KEGG pathway [50]
information was also widely used to investigate protein- or
gene-related problems. With the similar procedures that

were done for functional domains, GO terms and pathways
were termed as words, whereas proteins, annotated by GO
terms and pathways, were considered as sentences. We can
obtain feature vectors of GO terms and pathways via word2-
vector. Then, a membrane protein was represented by an
average vector of vectors of GO terms and pathways that
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Figure 2: Entire procedures to construct and evaluate the multilabel classifier, iMPT-FDNPL. Membrane proteins and types are retrieved
from the UniProt database. The types are termed as labels. Function domain information is obtained from the InterPro database. This
information is processed by a natural language processing approach (word2vector), and the outcomes are used to encode proteins. Labels
and vectors are fed into RAKEL with random forest as the base classifier to construct the multilabel classifier. This classifier is evaluated
by tenfold cross-validation.
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were annotated on such protein. Likewise, several dimen-
sions from 50 to 500 with interval 50 were generated.
RAKEL or BR with SVM or RF as the base classifier was
employed. Several classifiers were constructed with all possi-
ble parameter settings. All classifiers were evaluated by
tenfold cross-validation. Similarly, the best performance

using RAKEL or BR with one base classifier is listed in
Table 4. Evidently, in this case, RAKEL with SVM (polyno-
mial kernel) generated the highest performance with
integrated score of 0.6106. The exact match was 0.808, accu-
racy was 0.810, and hamming loss was 0.067. The exact
match, accuracy, and integrated score were all lower than

Table 2: Performance of different multilabel classifiers with features derived from functional domain information via a natural language
processing approach.

Scheme (base classifier) Exact match Accuracy Hamming loss Integrated score

RAKEL (RF) (iMPT-FDNPL) 0.851 0.853 0.053 0.6874

RAKEL (SVM-polynomial kernel) 0.831 0.834 0.060 0.6515

RAKEL (SVM-RBF kernel) 0.846 0.848 0.054 0.6787

BR (RF) 0.781 0.782 0.054 0.5778

BR (SVM-polynomial kernel) 0.804 0.815 0.061 0.6152

BR (SVM-RBF kernel) 0.829 0.831 0.050 0.6544
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(a)
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Figure 3: Boxplot to show the performance of iMPT-FDNPL using tenfold cross-validation for 20 times. (a) Accuracy; (b) exact match; (c)
hamming loss; (d) integrated score. Each measurement varies in a same range.

Table 3: Performance of different multilabel classifiers with features derived from functional domain information via one-hot scheme.

Scheme (base classifier) Exact match Accuracy Hamming loss Integrated score

RAKEL (RF) 0.825 0.827 0.061 0.6406

RAKEL (SVM-polynomial kernel) 0.847 0.848 0.054 0.6794

RAKEL (SVM-RBF kernel) 0.846 0.847 0.054 0.6778

BR (RF) 0.785 0.788 0.049 0.5882

BR (SVM-polynomial kernel) 0.774 0.778 0.049 0.5726

BR (SVM-RBF kernel) 0.836 0.840 0.048 0.6685

Table 4: Performance of different multilabel classifiers with features derived from gene ontology and pathway information via a natural
language processing approach.

Scheme (base classifier) Exact match Accuracy Hamming loss Integrated score

RAKEL (RF) 0.761 0.762 0.083 0.5324

RAKEL (SVM-polynomial kernel) 0.808 0.810 0.067 0.6106

RAKEL (SVM-RBF kernel) 0.808 0.810 0.068 0.6099

BR (RF) 0.584 0.584 0.087 0.3113

BR (SVM-polynomial kernel) 0.717 0.738 0.068 0.4931

BR (SVM-RBF kernel) 0.747 0.755 0.063 0.5284
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those of iMPT-FDNPL, and the hamming loss was larger
than that of iMPT-FDNPL. These results indicated that
features derived from functional domains via word2vector
were more powerful to identify membrane protein types
than those derived from GO and pathways via the same
natural language processing approach. It was also implied
that functional domain information was more related to
membrane protein types than GO and pathway information.

Network embedding algorithm is a type of recently
proposed computational methods, which can abstract asso-

ciations of nodes in one or more networks and extract a
feature vector for each node. It has also been applied to pro-
cess some protein-related problems [25, 26, 34, 51–55].
Here, we used such method to extract protein features. To
this end, eight protein networks were first built according
to protein-protein interaction information reported in
STRING (https://www.string-db.org/, version 10.0) [56].
The network embedding algorithm, Mashup [53], was
applied on these networks to access the feature vectors of
proteins. The dimensions included integers from 50 to 500

Table 5: Performance of different multilabel classifiers with features derived from protein networks via a network embedding algorithm.

Scheme (base classifier) Exact match Accuracy Hamming loss Integrated score

RAKEL (RF) 0.758 0.759 0.085 0.5264

RAKEL (SVM-polynomial kernel) 0.805 0.807 0.068 0.6054

RAKEL (SVM-RBF kernel) 0.801 0.803 0.070 0.5981

BR (RF) 0.584 0.584 0.088 0.3110

BR (SVM-polynomial kernel) 0.712 0.730 0.068 0.4844

BR (SVM-RBF kernel) 0.746 0.756 0.063 0.5284

0.880

0.820

0.780

0.800

0.840

0.860

Accuracy

Protein network (mashup)
GO and pathway (word2vector)

Functional domain (word2vector)
Functional domain (one-hot)

(a)

0.880

0.820

0.780

0.800

0.840

0.860

Exact match
Protein network (mashup)
GO and pathway (word2vector)

Functional domain (word2vector)
Functional domain (one-hot)

(b)

0.060

0.055

0.050

0.045

0.065

0.070

0.075

Hamming loss

Protein network (mashup)
GO and pathway (word2vector)

Functional domain (word2vector)
Functional domain (one-hot)

(c)

0.500

0.800

0.700

0.600

Integrated score
Protein network (mashup)
GO and pathway (word2vector)

Functional domain (word2vector)
Functional domain (one-hot)

(d)

Figure 4: Boxplot to show the performance of classifiers with different feature types using tenfold cross-validation for 20 times. (a)
Accuracy; (b) exact match; (c) hamming loss; (d) integrated score. Features derived from functional domain via word2vector are most
efficient to identify membrane protein types.
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with interval 50. Obtained feature vectors of membrane
proteins were fed into RAKEL or BR with SVM or RF as
the base classifier to build the classifiers. All possible param-
eter settings used above were tried, and all constructed
classifiers were assessed by tenfold cross-validation. Table 5
lists the best performance of RAKEL or BR classifiers with
different base classifiers. Interestingly, the RAKEL with
SVM (polynomial kernel) also provided the best perfor-
mance. The integrated score of such classifier was 0.6054.
Other three measurements were 0.805, 0.807, and 0.068,
respectively. However, compared with the performance of
iMPT-FDNPL (see Table 2), such performance was still
lower. These results also suggested the effectiveness of fea-
tures derived from functional domain via word2vector for
prediction of membrane protein types.

With above arguments, we can conclude that features
derived from functional domain via word2vector are quite
effective to identify membrane protein types because classi-
fiers based such features were more powerful than those
based on other three types of features, which were derived
from functional domain via one-hot scheme, from GO and
pathway via word2vector, and from protein network via
Mashup, respectively. To further confirm the superiority of
features derived from functional domain via word2vector,
the best classifiers using above three types of features were
further evaluated by tenfold cross-validation for 20 times.
Obtained values of exact match, accuracy, hamming loss,
and integrated score are shown in Figure 4. For easy com-
parisons, those of the classifier (iMPT-FDNPL) using
features derived from functional domain via word2vector
are also shown in this figure. It is easy to observe that
iMPT-FDNPL always generated highest exact match, accu-
racy, and integrated score and lowest hamming loss. All
these further confirmed the superiority of the used features,
which was the main reason why iMPT-FDNPL can provide
such good performance.

4. Conclusions

This study sets up a multilabel classifier, iMPT-FDNPL, to
identify membrane protein types. A novel feature extraction
scheme was integrated in this classifier, which can extract
efficient protein features by applying a natural language pro-
cessing approach, word2vector, to functional domain infor-
mation of proteins. The cross-validation results showed
that such classifier was quite powerful and superior to classi-
fiers using other types of protein features. Such results also
indicated the superiority of features extracted by the
proposed scheme. It is hopeful that such classifier can be a
useful tool to identify membrane protein types, and the
novel feature extraction scheme can be used to tackle other
protein-related problems. All codes and data are available
athttps://github.com/mufei111/iMPT-FDNPL.
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