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The application of face detection and recognition technology in security monitoring systems has made a huge contribution to
public security. Face detection is an essential first step in many face analysis systems. In complex scenes, the accuracy of face
detection would be limited because of the missing and false detection of small faces, due to image quality, face scale, light, and
other factors. In this paper, a two-level face detection model called SR-YOLOv5 is proposed to address some problems of
dense small faces in actual scenarios. The research first optimized the backbone and loss function of YOLOv5, which is aimed
at achieving better performance in terms of mean average precision (mAP) and speed. Then, to improve face detection in
blurred scenes or low-resolution situations, we integrated image superresolution technology on the detection head. In addition,
some representative deep-learning algorithm based on face detection is discussed by grouping them into a few major
categories, and the popular face detection benchmarks are enumerated in detail. Finally, the wider face dataset is used to train
and test the SR-YOLOv5 model. Compared with multitask convolutional neural network (MTCNN), Contextual Multi-Scale
Region-based CNN (CMS-RCNN), Finding Tiny Faces (HR), Single Shot Scale-invariant Face Detector (S3FD), and TinaFace
algorithms, it is verified that the proposed model has higher detection precision, which is 0.7%, 0.6%, and 2.9% higher than the
top one. SR-YOLOv5 can effectively use face information to accurately detect hard-to-detect face targets in complex scenes.

1. Introduction

Face detection is indispensable for many visual tasks and has
been widely used in various practical applications, such as
intelligent surveillance for smart cities, face unlocking in
smartphones, and beauty filters. However, face detection still
has many challenges due to the interference of shooting
angle, background noise, image quality, face scale, and other
factors. In practical scenarios, the missing detection problem
of small-scale faces results in poor performance of former
face detectors. Thus, many scholars have launched researches
on blurring small-size human faces.

Over the past decades, convolutional neural networks
(CNNs) have been certified to be useful models for process-
ing a wide range of visual tasks, and we have witnessed the
rapid development of general object detectors. The com-
monly used target detection framework is divided into two
branches [1], two-stage detectors and one-stage detectors.
Typical algorithms of two-stage detectors include faster R-

CNN [2], PANet [3], SPPNet [4], and Mask R-CNN [5].
The second is one-stage detectors, derived from SSD [6],
YOLOv1 to YOLOv5 [7–11], and RetinaNet [12]. The for-
mer has higher detection accuracy, but its detection speed
is slower, while the latter improves the detection speed and
maintains performance. At the same time, the design of face
detector gain has achieved the state-of-the-art (SOTA)
architecture of general object detectors.

We consider face detector as a special task of general
objector detection. General target detection is aimed at
multiple categories, while face detection is a dichotomous
problem that only detects the face category. In this paper,
we design a face detector based on YOLOv5 [11] which
has been verified for its superior performance in general
target detection tasks. To resolve the challenge of multiscale,
small faces, low-light, and dense scenes, we optimized the
model with some practical tricks. We also use superresolu-
tion reconstruction technology [13] for processing false
detection of fuzzy small-scale faces, contributing to richer
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texture information and improves the authenticity of visual
perception. The algorithm proposed in the paper is called
SR-YOLOv5, which guarantees the detection speed while
improving the detection accuracy of small targets.

2. Related Work

In this section, we introduce the related work from three
following parts. First, we review recent progress on face
detection in low-resolution conditions. Second, we give an
overall description of the YOLO series. Third, we describe
the principle of the SR network.

2.1. Face Detection. Face detection has received much atten-
tion due to its wide practical applications [14]. Before deep
convolutional neural network (deep CNN) was widely used,
hand-made features were a very important part of face
detectors. Researchers proposed many robust hand-made
features [15], such as HAAR [16], HOG [17], LBP [18], SIFT
[19], DPM [20], and ACF [21]. However, the performance of
these feature extractors has been far surpassed by deep CNN.
In recent years, numerous models have emerged, and deep
CNN has shown excellent performance in general target
detection tasks. The target detection task is modeled as two
problems of classification and regression of target candidate
regions. There are many object detection networks including
RCNN family [2, 5, 15, 22], SSD [6], YOLO series [7–11],
FPN [23], MMDetection [24], EfficientDet [25], transformer
(DETR) [26], and Centernet [22].

From the multiscale, small face, low light, dense scene,
and other challenges encountered in face detection, face
detection is the same as general target detection. Thus, face
detection networks can learn from general object detection
networks. There are also some specific problems containing
scale, pose, occlusion, expression, and makeup. Many
researchers developed methods to deal with the above prob-
lems, such as Cascade CNN, MTCNN, HR, and SSH. They
also test their algorithm on public datasets [27].

2.2. SR. In the actual application scene, some images will be
fuzzy and of low quality because of the limitation of environ-
ment and shooting technology. Such images have poor
performance in the region of interest (RoI). Therefore, the
researchers proposed the image superresolution reconstruc-
tion technology to enrich the detailed information of low-
resolution images and improve the expression ability of
images. Currently, superresolution reconstruction technol-
ogy [13] based on deep learning is widely used. Among
them, the superresolution image generated by the Generative
Adversarial Networks (GAN) [12] has a better visual effect,
which is called SRGAN. By training a generation function,
SRGAN converts the input low-resolution image into the
corresponding superresolution image [28]. Based on SRRes-
Net, SRGAN uses perceptual loss and adversarial loss to
make the generated images closer to the target images.

The SRGAN network is composed of a generator and a
discriminator, and its network model is shown as in
Figure 1 [13] below. The core of the generator network is
multiple residual blocks, each residual block containing

two 3 × 3 convolutional layers. After the convolutional layer
is a batch normalization layer, PReLU is used as the activa-
tion function [29]. The discriminant network uses a network
structure similar to VGG-19, but without maximum pool-
ing. The discriminant network contains eight convolutional
layers. As the number of network layers increases, the num-
ber of features increases, and the size of features decreases.
Leaky ReLU acts as an activation function. Finally, the
network uses two full convolution layers and a sigmoid acti-
vation function to capture the potentiality of the learned real
sample, which is used to determine whether the image
comes from the high-resolution image of the real sample
or the superresolution image of the fake sample.

2.3. YOLO. In the past five years, the YOLO algorithm has
been transformed into the fifth version with many innova-
tive ideas from the object detection community. The first
three versions including YOLOv1 [7], YOLOv2 [8], and
YOLOv3 [9] were all proposed by the author of the original
YOLO algorithm, and YOLOv3 [9] is recognized as a mile-
stone with big improvements in performance and speed.
We can find multiscale features (FPN) [23], a better back-
bone network (Darknet53), and replacing the soft-max loss
with the binary cross-entropy loss in this algorithm.

YOLOv4 [10] was released by a different research team
in early 2020. The team explored a lot of options in almost
all aspects of the YOLOv3 [9] algorithm, including the back-
bone, and what they call bags of freebies and bags of specials.
One month later, the YOLOv5 [11] was released by another
different research team which significantly reduced size,
increased in speed [10], and had a full implementation in
Python (PyTorch). It is welcome by the object detection
community until now.

YOLOv5 using CSPDarknet as a network of feature
extraction, target information is extracted from the input
image. The combination of CSP and Darknet formed the
CSPDarknet. Figure 2 shows the structure of CSPDarknet.
For the input tensor, CSP divides it into two parts in the chan-
nel, one part is convoluted once, the other part is convolution-
residuals multiple times. The tensor is obtained by multiple
convolution-residual operations, and the tensor obtained by
one convolution of the previous part is spliced in channel
dimensions. CSP makes the output graph retain more net-
work gradient information and maintains the performance
of the network while reducing the computational effort.

In the operation, the features of the previous stage can be
used as the input of the next stage for up-sampling or down-
sampling, and at the same time, the CONCAT with the fea-
ture map of the same size in the main part. This pyramid
structure makes the high-level feature map integrate the
accurate position information of the low level [30] and
improves the accuracy of regression.

During detection, the input tensor is divided into S × S
grids, and any one of the grids will be responsible for detect-
ing the target if the center point of the target is located in it.
For each grid, there will be B anchors. Specifically, for each
anchor frame, (5 + C) values are predicted, with the first 5
values used to regress anchor’s center point position, the size
of the anchor frame, then to determine whether there is a
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target. C is the total number of target categories. If the
center of the target is in this grid, then the target will be
acquired and judge whether it is a human face. The posi-
tion of the regression box of the target can be obtained by
the following formula:

Cj
i = Pi,j ∗ IOUtruth

pred : ð1Þ

In the above parameters, i and j represent the jth
regression box of the ith grid, Cj

i represents the confidence
score of the jth bounding box of the ith grid. Pi,j repre-
sents whether there is a target, if the target is in the jth
box, the value of Pi,j = 1; otherwise, Pi,j = 0. The IOUtruth

pred
is a widely used parameter that represents the intersection
over union between the predicted box and ground truth
box [31]. The higher the IOU score, the more accurate
the position of the predicted box.

2.4. Loss Function of YOLOv5s. The loss function can be
expressed as follows:

loss = lbox + lcls + lobj, ð2Þ

where lbox, lcls, and lobj are bounding box regression loss
function, classification loss function, and confidence loss
function, respectively.

The bounding box regression loss function is defined as

lbox = λcoord 〠
S2
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Figure 1: SRGAN network model.
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The classification loss function is defined as

lcls = λclass 〠
S2

i=0
〠
B

j=0
Iobji,j 〠

C∈classes
pi cð Þ log p̂l cð Þð Þ: ð4Þ

The confidence loss function is defined as

lobj = λnoobj 〠
S2

i=0
〠
B

j=0
Inoobji,j ci − c∧lð Þ2 + λobj 〠

s2

i=0
〠
B

j=0
Iobji,j ci − c∧lð Þ2,

ð5Þ

where λcoord is the position loss coefficient, λclass is the cate-
gory loss coefficient, x̂, ŷis the true central coordinate of the
target, and ŵ, ĥ is the width and height of the target.

If the anchor box at ði, jÞ contains targets, then the value

Iobji,j is 1; otherwise, the value is 0. piðcÞ represents the cate-
gory probability of the target, and p̂lðcÞ is the true value of
the category. The length of the two is equal to the total num-
ber of categories C.

3. Method

This paper focuses on improving the detection accuracy of
small faces in surveillance images. Because of the compari-
son of the four versions of YOLOv5 including YOLOv5m,
YOLOv5l, YOLOv5x, and YOLOv5s, the YOLOv5s model
is smaller and easier to deploy quickly. Therefore, our
research is based on the YOLOv5s model. We optimize the
backbone, then integrate image superresolution technology
on the head and improve the loss function to ensure efficient
detection speed.

3.1. SR-YOLOv5

3.1.1. Adaptive Anchor. The calculation of adaptive anchor is
added in YOLOv5s. Before each training, the K-means algo-
rithm is used to cluster the ground truth of all samples in the
training set and to find out the optimal group of anchor
point frames in the high complexity and high recall rate.
The results of anchor boxes clustered by the algorithm are
shown in Table 1.

3.1.2. Network Architecture

(1) Backbone. The overall architecture of improved
YOLOv5s is depicted in Figure 3 which consists of the back-
bone, detection neck, and detection head. Firstly, a newly
designed backbone named CSPNet is used. We change it
with a new block called CBS consists of Conv layer, BN
layer, and a SILU [32]. Secondly, a stem block is used to
replace the focus layer in YOLOv5s. Thirdly, a C3 block is

used to replace the original CSP block with two halves.
One is passed through a CBS block, some bottleneck blocks,
and a Conv layer, while another consists of a Conv layer.
After the two paths with a CONCAT and a CBS block
followed, we also change the SPP block [4] to improve the
face detection performance. In this block, the size of the
three kernels is modified to smaller kernels.

(2) Detection Neck. The structure of the detection neck is
also shown in Figure 3 which consists of a normal feature
pyramid network (FPN) [23] and path aggregation network
(PAN) [3]. However, we modify the details of some mod-
ules, such as the CS block and the CBS block we proposed.

(3) Detection Head. Through feature pyramid structure and
path aggregation [33] network, the front segment of the
network realizes the full fusion of low-level features and
high-level features to obtain rich feature maps, which can
detect the most high-resolution face samples. However, for
low-resolution images, feature fusion cannot enhance the
original information of the image, and through layers of iter-
ation, the prior information of small faces is still lacking. To
enhance the detection rate of small faces in low-resolution
images, SR is fused in the detection head part of the network.
For the grid to be determined, the region information is
input into SRGAN to carry out superresolution reconstruc-
tion and face detection again through its coordinate infor-
mation. Finally, the output of the two-stage face detector is
integrated and output.

3.2. Loss Function. IOU is a frequently used index in target
detection. In most anchor-based [34] methods, it is used
not only to judge the positive and negative sample but also
to assess the distance between the location of the predicted
box and the ground truth. The paper proposes that a regres-
sion positioning loss [35] should be considered: overlapping
area, center point distance, and aspect ratio, which have
aroused wide concern. At present, more and more
researchers propose better performance algorithms, such as
IOU, GIOU, DIOU, and CIOU. In this paper, we propose
to replace GIOU in YOLOv5s with CIOU and nonmaximal
suppression (NMS).

Our bounding box regression loss function is defined as

Table 1: Results of anchor boxes of the training set.

Feature map Size Anchor

Predict one 13 × 13 (43, 59) (76, 89) (178, 234)

Predict two 26 × 26 (30, 36) (22, 26) (15, 18)

Predict three 52 × 52 (10, 12) (7, 9) (5, 6)

lbox′ = 1 − IOU +
ρ2 b, b̂
� �

c2
+
16
π4

arctan w∧/h∧ð Þ − arctan w/hð Þð Þ4
1 − IOU + 4/π2ð Þ arctan w∧/h∧ð Þ − arctan w/hð Þð Þ2

, ð6Þ
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where b, b′ represents the center point of the box, ρ repre-
sents the Euclidean distance, c represents the diagonal dis-
tance of the minimum enclosing rectangle, and ŵ, ĥ is the
width and height of the target.

In surveillance video images [36], face targets are not
only numerous but also stacked, which leads to more than
one target in each grid. However, judging by a single thresh-
old often leads to a low recall rate [37]. Therefore, through
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the combination of CIOU and NMS, the candidate box in
the same grid can be judged and screened several times
through the cyclic structure, which can effectively avoid the
problem of missed detection.

4. Experiments

4.1. Dataset and Experimental Environment Configuration.
This experiment uses a face detection benchmark called
wider face [27], which is recognized as the largest one among
public available datasets. The details of publicly available
datasets are shown in Table 2. These faces in the wider face
dataset have great changes in scale, posture, and occlusion
with an average of 12.2 faces per image, and there are many
dense small faces. The dataset contains three parts: training
set, validation set, and test set, accounting for 40%, 10%,
and 50% of the sample number, respectively. This paper
focuses on the detection of small faces, which will be more
difficult to detect. Therefore, the verification set and test
set are divided into three difficulty levels: easy, medium,
and hard. There are many small-scale faces in the hard
subset, most of which are 10 pixels~50 pixels. Thus, this
benchmark is suitable to verify the effectiveness and perfor-
mance in realistic scenes. The experimental environment
configuration is shown in Table 3.

4.2. Training and Testing of SR-YOLOv5 Models

4.2.1. Training Model. The YOLOv5s code [11] is used as
our basic framework, and we implement all the modifica-
tions as described above in PyTorch. We set the initial
learning rate at 1E-2, and then we go down to 1E-5 with
the decay rate of 5E-3. We set momentum at 0.8 in the first
20 epochs. After that, the momentum is 0.937. The
precision-recall (PR) curves of our SR-YOLOv5 detector
are shown in Figure 4.

4.2.2. Testing Model. The detection effect of our improved
algorithm on the wider face dataset is shown in Figure 5. It
can be seen that this method has good robustness and high
accuracy for small faces in various complex scenes. (a) The
figure can detect faces with slight occlusion. (b) The figure
itself has a low resolution, but the detection result shows that
the detection effect is still good. (c) The figure fully shows
that numerous small faces can be well detected even in a
high-density crowd.

4.3. Evaluation Index. In the evaluation of the effect of face
detection, there are some relevant parameters: TP (true pos-
itives) means that the face is detected, and there are faces in
the actual picture; TN (true negatives) means that no face is
detected, and no face exists in the actual picture; FP (false
positives) means that faces are detected when there is no face
in the actual image. FN (false negatives) means that no face
is detected, but there are faces in the actual image. The eval-
uation indexes of the model in this paper include recall rate
R, accuracy rate P, and F1 score. The recall rate is used to
evaluate the proportion of faces detected to the total face
price in the sample. The accuracy rate is used to evaluate
the proportion of the correct face detected in the total face

detected, When the two are close, refer to F1 score, and
the higher the score of F1, the better the algorithm will be.

P =
TP

TP + FP
, ð7Þ

R =
TP

TP + FN
, ð8Þ

F1 =
2 × P × R
P + R

: ð9Þ

The trained model is verified on the validation set, and
the recall rate R = 0:96, accuracy rate P = 0:975, and F1 =
96:75 were obtained from Equations (6), (8), and (9). From
the point of view of the score, the proposed algorithm has
better performance.

4.4. Model Performance Analysis. After the fusion of SRGAN
in the YOLOv5 network, the rationality and effectiveness of
the fused network should be verified first. We select 1000
pictures from the test set for network model test and com-
parison. As shown in Table 4, compared with YOLOv3,
the speed of the network after the fusion of superpartition
reconstruction technology is reduced, because the network
depth is increased when the new network is integrated.
Compared with the HR using Resnet101 as the backbone
network, the average detection accuracy of the improved
network has been significantly improved, which is 2.3%
higher than HR.

4.5. Comparison of Accuracy of Relevant Algorithms. To
demonstrate the effectiveness of the algorithm, some excel-
lent face detection algorithms are selected to test on the
wider face dataset, and the results are analyzed. As shown
in Table 5, all existing methods achieve mAP in a range of
85.1-95.6% on the easy subset, 82.0-94.3% on the medium
subset, and 62.9-85.3% on the hard subset. The mean aver-
age precision of the proposed algorithm on the easy,
medium, and hard validation subsets are 96.3%, 94.9%,

Table 2: Available datasets.

Datasets Pictures Faces

Wider face 32203 393703

AFW 205 473

FDDB 2845 5171

Pascal face 851 1341

IJB-A 24327 49759

MALF 5250 11931

Table 3: Experimental environment configuration.

Experimental environment Configuration

Operating system Linux 64

GPU TITAN Xp

CPU Intel(R)Core i7-3770CPU@

Deep learning framework PyTorch
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and 88.2%, respectively, which is 0.7%, 0.6%, and 2.9%
higher than the top one.

The SR-YOLOv5 proposed in this paper is improved on
the YOLOv5s network, and the image superresolution
reconstruction technology is introduced for the secondary
detection of small-scale fuzzy faces, deepening the network
to make facial features easier to be detected, capturing small
target information, and making the network more accurate
when processing complex face and nonface classification

Precision Recall mAP
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Figure 4: Precision-recall (PR) curves of our SR-YOLOv5 detector.
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Figure 5: Part of the test results.

Table 4: Performance comparison using different models.

Model Backbone AP50 Time/ms

HR Resnet101 57.5% 198

YOLOv3 Darknet53 57.9% 51

Ours YOLOv5s-SRGAN 59.8% 75
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and detection. Through the comparative experiment on the
wider face dataset, it is verified that the method used in this
paper has higher detection accuracy and better robustness,
especially in the hard subset, it has more outstanding
performance.

5. Conclusion

To improve the face detection rate of security surveillance
scenes with diverse scales in dense face images, this paper
proposes a small face detection algorithm suitable for com-
plex scenes. We integrate the image superresolution recon-
struction technology into the network structure of the
target detection algorithm YOLOv5s. YOLOv5s has a fast
detection speed, but its detection accuracy is reduced com-
pared with other SOTA detection algorithms. SRGAN is
used to improve the performance of the detection head
and then improve the detection accuracy of small-scale fuzzy
faces in complex scenes. In the same environment with other
face detection algorithms, using the same dataset to carry
out comparative experiments, the results confirm the feasi-
bility and superiority of the proposed method.
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