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Background. Idiopathic Pulmonary Fibrosis (IPF) is one of the most common idiopathic interstitial pneumonia, which can occur
all over the world. The median survival time of patients is about 3-5 years, and the mortality is relatively high. Objective. To reveal
the potential molecular characteristics of IPF and deepen the understanding of the molecular mechanism of IPF. In order to
provide some guidance for the clinical treatment, new drug development, and prognosis judgment of IPF. Although the
preliminary conclusion of this study has certain guiding significance for the treatment of IPF and so on, it needs more accurate
analytical approaches and large sample clinical trials to verify. Methods. 220 patients with IPF were divided into different
subgroups according to the gene expression profiles, which were obtained from the Gene Expression Omnibus (GEO)
database. In addition, these subgroups present different expression forms and clinical features. Therefore, weighted gene
coexpression analysis (WGCNA) was used to seek the differences between subtypes. And six subgroup-specific WGCNA
modules were identified. Results. Combined with the characteristics of WGCNA and KEGG enrichment modules, the
autophagic pathway was only upregulated in subgroup I and enriched significantly. The differentiation pathways of Th1 and
Th2 cells were only upregulated and enriched in subgroup II. At the same time, combined with clinical information, IPF
patients in subgroup II were older and more serious, which may be closely related to the differentiation of Th1 and Th2 cells.
In contrast, the neuroactive ligand-receptor interaction pathway and Ca+ signaling pathway were significantly upregulated and
enriched in subgroup III. Although there was no significant difference in prognosis between subgroup I and subgroup III, their
intrinsic biological characteristics were very different. These results suggest that the subtypes may represent risk factors of age
and intrinsic biological characteristics and may also partly reflect the severity of the disease. Conclusion. In conclusion, current
studies have improved our understanding of IPF-related molecular mechanisms. At the same time, because the results show
that patients from different subgroups may have their own unique gene expression patterns, it reminds us that patients in each
subgroup should receive more personalized treatment.

1. Introduction

Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progres-
sive, irreversible, and usually fatal interstitial lung disease
with unknown etiology and histopathological manifestations
of usual interstitial pneumonia (UIP) [1]. The prevalence and
incidence rate of IPF are not yet clear, but the trend is
increasing year by year, and the mortality rate is also on the
rise [2]. The possible risk factors for IPF include smoking,
environmental exposure, microbial factors, genetic factors,
and gastrointestinal diseases [3]. The main clinical symptoms

of IPF are cough, progressive dyspnea, fatigue, and so on [4,
5]. The clubbing fingers could be found in the clinical physi-
cal examination, and crackles could be heard in auscultation.

With the development of high-throughput sequencing
technology and microarrays, it provides a good opportunity
to further understand IPF. Wang et al. [6] analyzed IPF-
related genes based on microarray data through gene set
enrichment analysis (GSEA) and differentially expressed
genes (DEGs) analysis and integrated 3 public microarray
data sets, including 54 IPF samples and 34 normal samples.
The results showed that there are 350 genes in DEGs related
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to IPF. Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses indicated
that inflammatory response, smooth muscle cell prolifera-
tion, and chemokine-mediated signaling pathways may be
potential targets for IPF therapy. These results may be ben-
eficial to the development of IPF diagnosis and treatment
strategies. Fan et al. [7] used microarray data which were
downloaded from the GEO database to comprehensively
analyze the relationship between bioinformatics and IPF.
The results show that there are 67 differentially expressed
genes in the three IPF gene expression profile data sets
involved and that may participate in the progression of IPF
disease by participating in cell adhesion, bioadhesion, extra-
cellular matrix-receptor interaction, and focal adhesion.
Wang et al. [8] downloaded GSE49072 gene expression pro-
file from the GEO database and performed a series of bioin-
formatics analysis (including GO and KEGG enrichment
analysis, functional annotation, and protein interaction
(PPI) network construction on the String website). The final
results showed that 551 DEGs were detected, including 205
downregulated and 346 upregulated. Among the upregu-
lated genes, the expression of secretory phosphoprotein 1
and platelet basic protein is the most significant. At the same
time, DEGs in the mitogen-activated protein kinase (MAPK)
signaling pathway and chemokine signaling pathway play an
important role in the occurrence and development of IPF.
Microarray technology is a new high-throughput technol-
ogy, which is changing the way we study biology. It can be
seen that microarray data is the result of high-throughput
sequencing. Through the analysis of microarray data, we
can screen out the differentially expressed genes of diseases
and even obtain the differentially expressed core genes,
which is conducive to the diagnosis and treatment of dis-
eases [9, 10]. For example, by analyzing the relevant micro-
array database, Udhaya Kumar et al. [11] identified seven
core genes associated with familial hypercholesterolemia,
and these genes may increase the risk of atherosclerosis.
Thus, it is beneficial to the development of new drugs and
the treatment of diseases. After analyzing the microarray
database of lung squamous cell carcinoma, Fu et al. [12]
extracted differentially expressed genes related to immunity
and constructed the immune signal based on IRG, which
has certain guiding significance in judging the progress and
prognosis of the disease. Microarray data analysis can screen
out the DEGs of diseases and link the differentially expressed
genes with specific biological functions, which is conducive
to understanding diseases from the molecular level and plays
an important role in clinical treatment and new drug devel-
opment [13].

With the cost reduction of high-throughput sequencing
technology and the development of bioinformatics, increas-
ing researchers will use high-throughput technology and
bioinformatics to reveal the pathogenesis of IPF. However,
most studies only focus on the differences between patients
with IPF and normal controls, but little attention is paid
to the differences between patients with IPF. In cancer
research, to reveal the heterogeneity between tumors, guide
treatment, and judge prognosis, tumor samples are usually
divided into several subtypes according to gene expression

patterns [14]. Peng et al. [15] conducted subcomponent anal-
ysis of 352 patients with coronary heart disease according to
gene expression spectra, revealed the potential molecular
characteristics of different types of coronary artery disease
(CAD), enhanced the understanding of CAD molecular
mechanisms, and had certain guiding significance for the
clinical treatment of CAD. To enhance our understanding
of the molecular mechanism of IPF, we also classified the
cases of IPF into subgroups according to the relevant gene
expression profiles and analyzed them through a series of
bioinformatics methods, annotating the corresponding coex-
pression function modules to reveal the characteristics of
each subgroup. Specifically, each subtype showed different
expression patterns and disease severity.

2. Materials and Methods

2.1. Data Collection

2.1.1. Download Data. The Gene Expression Omnibus
(GEO) website (https://www.ncbi.nlm.nih.gov/geo/)
archives and distributes free microarray, next-generation
sequencing (NGS), and other forms of high-throughput
functional genomic data [16]. The GEO website was entered,
“idiopathic pulmonary fibrosis” was input in the web page,
and the GEO data set database was selected. After entering
the search results page, the series option was checked, and
the expression profiling by array was selected. This study is
Homo sapiens. Then, gene chips with more than 40 samples
were included in this study, and their platform files and
sequence probe matrix files were downloaded, respectively.

2.1.2. Annotation of GEO Data. Programming language Perl
(http://www.perl.org/) is known as “Swiss chainsaw of pro-
gramming language”; it is an excellent choice for developing
microarray data processing solutions [17]. In this study, Perl
software will be used to extract and sort out the downloaded
gene chip-related content, including gene expression matrix,
clinical characteristics, and probe set. The platform file
downloaded from the GEO website is processed with Perl
software to obtain a text with the row name of the gene
name and the column name of the sample name. And the
new file is the corresponding gene chip name as the data
for subsequent research. The information about clinical fea-
tures in the probe matrix file was extracted into the newly
created Excel as the clinical data file for the research.

2.2. Elimination of Batch Effect. Firstly, “limma” package and
“sva” package of the R/bioconductor package are used to
merge the expression data [18]. When the data are com-
bined, the mean value is taken for the data with multiple
lines of one gene, and only one line is reserved. For the data
with a large value, log2 is taken for conversion. Because the
integrated microarray data come from different gene chips,
it is necessary to eliminate the “batch effect” to eliminate
the cumulative error caused by time, location-related exper-
imental changes, and so on [19]. Based on the systematic
review, combat was able to identify more true and false pos-
itives. Meanwhile, the combat method could be used to nor-
malize the expression values from different batches or
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platforms [20]. Therefore, we choose the combat method to
eliminate the batch effect between the two platforms. Finally,
the R/ggplot2 package was used to analyze the main compo-
nent to evaluate whether the batch effect was removed [21].

2.3. Consensus Clustering. The “limma” package and “con-
sensus cluster plus” package of the R/bioconductor package
were used for consensus clustering, which classified IPF
cases into different subgroups [22]. The K-means algorithm
with Spearman distance was used for clustering [23]. The
maximum cluster number was set to 10, and the final cluster
number was determined by the consistency matrix and clus-
ter consistency score (>0.7).

2.4. Comparing the Clinical Characteristics of the Three
Subgroups. To obtain the clinical characteristics among the
three subgroups, guide the clinical treatment, and judge the
prognosis, the clinical characteristics of the three subgroups
were compared. Pairwise proportion tests were used to com-
pare the proportion of men in the three subgroups. In addi-
tion, pairwise Wilcoxonʼs rank-sum test was used to test
whether there were differences in age and GAP models
between subgroups. GAP models included gender (G), age
(A), and two pulmonary physiological variables (P) (FVC
and DLco) [24].

2.5. Extraction of Specific Upregulated Genes in Subtypes. To
better understand the disease from the aspects of molecular
mechanism, screen specific expression genes for follow-up
basic research, and guide the clinical treatment and the
development of new drugs, the specific upregulated genes
of each subgroup were extracted. By comparing the specific
subgroup with other subgroups, the specific upregulated
genes were identified. It should be noted that Wilcoxonʼs
rank-sum test was used to test the differential expression,
the corrected threshold was p < 0:05, and the absolute differ-
ence of means > 0:2. For a given gene, the difference in the
mean is calculated by subtracting the average expression of
the normal control group from the case of a particular
subgroup.

2.6. Gene Set Enrichment Analysis. Gene set enrichment
analysis (GSEA) was used to observe whether the specific
differential genes in each subgroup were also different from
normal samples [25]. To better understand the disease from
the molecular level, GSEA was implemented in GSEA desk-
top version 4.1.0 in the GSEA prerank mode. The genome
database consisted of subgroup-specific genes. And the gene
list of each subgroup was ranked by p values using paired
Student’s t-test, which was calculated by comparing the
IPF cases of each subgroup with the normal control group.

2.7. Weighted Gene Coexpression Network Analysis.
Weighted gene coexpression analysis (WGCNA) was used
to analyze the specific genes in each subgroup to determine
the modules that can represent the biological functions of
each subgroup and which could be used to identify candi-
date biomarkers or therapeutic targets [26]. WGCNA has
been proved to be an effective method to detect multiple
coexpression modules, which can be used to find clustering

(modules) of highly related genes [27]. The optimal power
value was found through the power value scatter plot, and
the distance between genes was calculated. In addition, the
average method and the dynamic method were used for
hierarchical clustering analysis; the clustering diagram and
the module classification of genes are, respectively, estab-
lished; and similar modules are merged. We finally deter-
mined 6 functional modules. Spearmanʼs correlation
coefficients and the corresponding p values between clinical
features and functional modules were calculated by using the
cor function of Spearmanʼs method in the WGCNA pack-
age. At the same time, the function option of the labeled
head map in “limma” and “pheatmap” package was applied
to draw the heat map.

2.8. KEGG Enrichment Analysis. The upregulated genes in
each subgroup of WGCNA were analyzed by KEGG enrich-
ment analysis, to understand the characteristics of each sub-
group on a deeper level from the molecular mechanism level,
and provide certain guiding significance for clinical treat-
ment and prognosis judgment. The gene group of the KEGG
pathway was downloaded from MSigDB, and the gene spe-
cies was human [28]. In KEGG enrichment analysis, the p
value filter condition was set to <0.05, and the corrected p
value filter condition was 1.

3. Results

3.1. Characteristics of IPF Subjects. Five independent micro-
array information were included in this study, involving four
independent clinical trials. The gene expression data were
fetched from the GEO database with accession GSE33566
(David Schwartz et al., 2012; n = 123), GSE49072 (Eric Bil-
lings et al., 2014; n = 84), GSE53845 (Alex Abbas et al.,
2014; n = 48), GSE70866 (Antje Prasse et al., 2018; n =
196), and GSE70867 (Antje Prasse et al., 2018; n = 321).
GSE33566 and GSE70866 provide clinical information of
age. GSE33566, GSE53845, and GSE70866 provide gender
clinical information. In addition, GSE33566 and GSE70866
also provide clinical information about DLco and GAP
models, respectively, reflecting the severity of the disease to
a certain extent.

3.2. Removal of Batch Effect by Cross-Platform
Normalization. To remove the batch effect from different
platforms and batches, we used the combat method to elim-
inate the batch effect between data sets. A total of 7959 genes
were detected by the two microarray platforms. Before elim-
inating the batch effect, samples were clustered in batch
according to the top two principal components (PCs) of
the unnormalized expression values (Figure 1(a)). In con-
trast, the scatter plot was standardized based on principal
component analysis, and the results showed that the batch
effect caused by different platforms was clearly removed
(Figure 1(b)). The results showed that the batch effect was
successfully eliminated by cross-platform normalization.

3.3. Consensus Clustering of IPF Cases. Cluster analysis (an
unsupervised clustering method) was carried out by using
the batch effect corrected expression file and the sample
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information of the disease (diagnosed as IPF) group. 220
patients with IPF were divided into subgroups (see Section
2.3). According to the consistency score of data statistics,
the gene expression profile was divided into three subgroups
by cluster analysis. The number of cases in subgroups I, II,
and III was 43, 111, and 66, respectively, which had signifi-
cantly different expression patterns. On the contrary, based
on the consistency matrix, a high degree of similarity in gene
expression patterns was observed in each subgroup
(Figure 2(a)).

Generally speaking, the higher the consistency score, and
the more the group classification, the more robust the sub-
type. In the results of this study, although the consistency
score of the 2 groups was the highest, there were fewer
groups. And whether divided into 2 or 3 groups, the consis-
tency score between groups was greater than 0.7. According
to the above results, 220 patients with IPF were divided into
3 subgroups (Figure 2(b)).

To describe the clinical features of the three subgroups,
the age of GSE33566 and GSE70866 data sets was analyzed;
the gender of GSE33566, GSE53845, and GSE70866 data sets
was statistically analyzed; and the GAP models in the
GSE70866 data set were also statistically analyzed. Due to
the lack of DLco data in the GSE33566 data set, no original
data was found, so no statistical analysis was made.

The results of age statistics showed that patients in sub-
group II were older than those in other subgroups, and there
was a significant difference between subgroup I and sub-
group II (p < 0:001), but there was no significant difference
between subgroup II and subgroup III or between subgroup
I and subgroup III (p > 0:05) (Figure 3(a)).

The results of gender statistics showed that although the
proportion of males in subgroup II was higher than that in
the other two groups, there was no significant difference in
the proportion of males among the three subgroups
(p > 0:5) (Figure 3(b)).

The GAP model statistical results showed that overall,
the gap score of subgroup II was higher than that of the

other two groups. In addition, subgroup II was significantly
higher than subgroup I (p < 0:05) (Figure 3(c)).

In addition, we also analyzed the variance between age
and subgroup and found that the subgroup was an indepen-
dent IPF-related index, which could predict the severity of
the disease to a certain extent (Table 1, p < 0:05); at the same
time, the age of the patient could also predict the severity of
the disease to a certain extent, which is consistent with the
previous research results (Table 1).

3.4. Identification of Gene Coexpression Modules for Each
Subgroup. To reveal the gene differences among IPF sub-
groups, WGCNA was performed at the expression level of
specific upregulated genes in each subgroup (see Section
2.7). Pairwise differential expression analysis between every
two subgroups identified 2434, 141, and 1329 genes specifi-
cally upregulated in subgroups I, II, and III (Benjamin-
Hochberg adjusted p < 0:05, absolute difference of mean >
0:2). In addition, we compared the gene expression profile
of each subgroup with that of the normal control group to
analyze the differential expression. GSEA revealed that
subgroup-specific upregulated genes were also significantly
upregulated in case-control comparison (Figures 4(a)–4(c),
FDR < 0:05).

It is worth noting that compared with other subgroups,
although subgroup II has the least number of subgroup-
specific upregulated genes, its GAP models and age were
higher than those of the other two groups, indicating that
this group of patients may be more serious. Compared with
subgroup III, subgroup I had more upregulated genes, but
the GAP models and age were lower. These results suggest
that subgroup I may be relatively mild.

Based on the expression levels of 3906 upregulated genes
in the subgroup, a gene expression network was constructed,
and six WGCNA modules were identified. The relationship
between WGCNA modules and corresponding subgroups
is shown in Table 2. The gene enrichment analysis of each
WGCNA module by the KEGG pathway showed that the
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Figure 1: Principal component analysis of gene expression data set. The dots in the scatter plot are based on the first two main components
of the gene expression profile (PC1 and PC2) visualization samples: (a) no elimination of batch effect; (b) elimination of batch effect. The
colors represent samples from five different data sets.
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Figure 2: Consensus clustering analysis of gene expression profiles for Idiopathic Pulmonary Fibrosis (IPF) cases. (a) The heat map
represents the consensus matrix with a cluster count of 3, which was determined by the minimal consensus scores for subgroups (>0.7).
(b) The bar charts represent the consistent score of subgroups with cluster numbers between 2 and 10.
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Figure 3: The pairwise comparison of clinical characteristics between the subgroups. Box-chart (a, c) showed the age and GAP models of
each subgroup, respectively. (b) The proportion of males in each subgroup is represented by the bar-plot.
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autophagy pathway was only significantly enriched in the
blue module, and the oxidative phosphorylation pathway
was only significantly enriched in the green-yellow module.
The grey module was enriched in the ECM-receptor interac-
tion pathway. The magenta module was enriched in the
ribosomal pathway. The pink module was significantly
enriched in the neuroactive ligand-receptor (NLR) interac-
tion pathway, and this pathway was only significantly
enriched in the pink module. The differentiation pathways
of Th1 and Th2 cells were significantly enriched in the tan
module. In subgroup I, genes were significantly upregulated
in the blue, green-yellow, and magenta modules, and the
most upregulated genes were in the blue module. The
autophagy pathway was only significantly enriched in the
blue modules, including Akt3, PIK3CA, and PIK3R1. In sub-
group II, genes were upregulated in the tan module, while
Th1 and Th2 cell differentiation pathways were only
enriched in this module, including CD247, JAK3, and
STAT4. In addition, the genes in subgroup III were signifi-
cantly upregulated in the pink module, in which the NLR
pathway was enriched most significantly, and the NLR path-
way was only enriched in the pink module. Combined with
the results of Section 3.3, it showed that the subgroup-
specific genes could serve as biomarkers independent of
these confounding factors and were related to IPF (Table 2,
Figures 5(a) and 5(b), and Supplementary Tables 1–3).

3.5. Association of Clinical Characteristics and WGCNA
Modules. To study the relationship between clinical features
and WGCNA modules, the correlation coefficients and cor-
responding p values between GAP models or age and eigen-
genes of each module were calculated (see Section 2). It
should be noted that the characteristic genes are represented
by the eigenvectors of the gene expression matrix of each
module. The results showed that the grey, blue, and pink
modules had nothing to do with the GAP models. In con-
trast, the purplish-red module and green-yellow module
were negatively correlated with age and GAP models, and
these two modules were significantly enriched in the ribo-
somal pathway. The tan module was positively correlated
with GAP models, while Th1 and Th2 cell differentiation
pathways were significantly enriched in the tan module,
indicating that immune dysfunction was correlated with
GAP models. The grey module was positively correlated
with age. The results further showed that the WGCNA mod-
ule was associated with some clinical features, such as GAP
models and age (see Figure 6).

4. Discussion

In this study, we analyzed gene expression profiles of IPF
cases and normal controls from five independent GEO data
sets. The batch effect of different platforms or batches is
eliminated. In addition, we successfully divided 220 patients
with IPF into three subgroups according to the gene expres-
sion profile for the first time. In further analysis, subgroup-
specific functional modules or pathways were revealed. Sig-
nificant associations were observed between clinical features
and subtypes. Compared with the other two subgroups, the
gap score of subgroup II was higher and the age was older,
which indicated that the IPF patients in subgroup II might
be the most serious. The consistency clustering based on
large sample size and high cluster consistency score (>0.7)
showed that our subtype was robust. In summary, the sub-
types of IPF are closely related to clinical features and spe-
cific functional modules or pathways.

The motivation of this study is the subtype of cancer,
which can be identified by gene expression profile or other
omics data. In addition, the relationship between subgroup
differences and internal or external factors has been widely
studied. For example, Kim et al. [29] conducted a subgroup
analysis on different types of cancer patients, and the results
showed that the low pain/high fatigue subgroup only
appeared in the first chemotherapy cycle, and there were sig-
nificant subgroup differences in pain and fatigue levels at
each time point (p < 0:05). Seiler et al. [30] explored the abil-
ity of molecular subtypes to predict the pathological stage
and survival after neoadjuvant chemotherapy (NAC). The
results showed that molecular subtypes may affect the bene-
fit of NAC to patients, especially in patients with basal
tumors. Jang et al. [31] reported that the molecular stratifica-
tion of NSCLC transcriptome sequencing data identified dif-
ferent immune molecular subtypes, which predicted the
response to programmed cell death 1 blockade. In addition
to cancer research, noncancer diseases include Alzheimer’s
disease, myelodysplastic syndrome, and chronic obstructive
pulmonary disease [32–34]. Although these studies have
some limitations and confounding factors, they do improve
our understanding of the relationship between molecular
mechanisms and disease development.

Similar to cancer, rare and complex diseases such as IPF
show clinical heterogeneity. Unlike previous studies [7, 35],
which only studied the gene expression profiles of patients
with IPF or compared with the gene expression profiles of
normal controls, we further divided IPF cases into sub-
groups and revealed that the subjects in different subgroups

Table 1: Analysis of variance for classification of subgroups, age, and their interactions.

Df Sum square Mean square F value Pr (>F)
Subgroup 2 10.42 5.212 3.636 0.032∗

Age 1 28.30 28.927 19.851 3.88e-05∗∗∗

Subgroup : age 2 6.35 3.176 2.228 0.117

Residuals 58 82.68 1.425

Note. Df: degree of freedom. Significant codes: “∗∗∗” 0.001, “∗∗” 0.01, “∗” 0.05, “.” 0.1, “ ” 1.
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showed different clinical characteristics. For example, sub-
jects in subgroup II tend to be older and more severe.
Although subgroups I and III showed younger age and ligh-
ter IPF, subgroup I was probably the least severe. In addi-
tion, the proportion of males in subgroup II was
significantly higher (about 75%) than that in the previous
male IPF epidemiology. Therefore, IPF cases with different
clinical features can be clearly distinguished by subtypes.
According to the molecular mechanism of action of different
subgroups, it has a certain guiding significance for the devel-
opment of new drugs and treatment of IPF.

Compared with previous studies [36, 37], subgroup-
specific functional modules not only confirmed IPF-related
regulatory pathways but also linked specific pathways to
IPF subjects in specific subgroups or clinical features. For
example, it is well known that Th1 and Th2 cell differentia-
tion plays an important role in IPF. The inflammatory
response of IPF is considered very similar to the Th2
immune response in T-helper cells, and the polarized T-
cell response is thought to play an important role in the
development of tissue fibrosis. Th1 cells are involved in
phagocyte-dependent inflammation and cell-mediated
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Figure 4: The expression patterns of subgroup-specific upregulated genes. The enrichment plots of (a–c) illustrate that the subgroup-
specific upregulated genes are also expressed higher in the corresponding subgroup than the normal controls.

Table 2: The number of differentially expressed genes by case-control and case-case comparisons and weighted gene coexpression analysis
modules in each subgroup.

Subtypes
The specific genes were compared with

the normal group
The specific genes were compared

with each subgroup
Specific upregulated genes

in subgroup
Modular

I 3549 4142 2434
Blue, green-yellow,

magenta

II 178 311 141 Tan

III 2567 3786 1329 Pink
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immunity [38]. And Th1 cells producing interferon and
interleukin-12 have been shown to limit the development
of tissue fibrosis, while Th2 cells producing interleukin-4
and interleukin-13 have been shown to promote the devel-
opment of tissue fibrosis [39–41]. The evaluation of lung tis-
sue in IPF patients showed that the expression of Th2
cytokines was higher than that of Th1 cytokines [42]. In
our study, in subgroup II, we found that the differentiation
pathways of Th1 and Th2 cells were most significantly
enriched in this subgroup, indicating that the differentiation
of Th1 and Th2 cells is closely related to the age and severity
of IPF. The balance of Th1 and Th2 cells plays an important
role in autoimmune diseases. It can be speculated that the
pathogenesis of subgroup II may be related to autoimmune
dysfunction.

However, according to the enrichment results of the
KEGG pathway, the main targets involved in Th1 and Th2
cell differentiation include CD247, CD3D, IL2RB, JAK3,

and STAT4. CD247 (also known as CD3 chain) is involved
in the activation and function of T cells and is one of the sus-
ceptibility genes of systemic sclerosis with pulmonary fibro-
sis [43]. However, whether CD247 is involved in the
pathogenesis of IPF and becomes a potential therapeutic tar-
get of IPF, we need to carry out relevant basic experiments
and prospective clinical trials to verify. JAK and STAT play
an important role in IPF. Shi et al. [44] showed that TGF
is involved in the pathogenesis of BLM-induced mouse
JAKs/STATs pathway. A novel pyrimidine multitarget pro-
tein tyrosine kinase inhibitor may be a promising drug for
IPF, and one of its mechanisms of action is to inhibit JAK3
kinase [45]. Therefore, JAK-related inhibitors may be one
of the main effective drugs for IPF in the future. Because
the age and gap score of the patients in subgroup II are
higher, and their condition is more serious, we can consider
using JAK-related inhibitors and immunomodulators to reg-
ulate Th1 and Th2 cells, to improve the patient’s condition
and improve the quality of life. However, these are prelimi-
nary conclusions based on previous research results, which
need to be verified by relevant basic experiments and large
sample clinical trials.

In contrast, although there were no significant differ-
ences in age and GAP models between subgroup I and sub-
group III, their intrinsic biological characteristics showed
significant differences. In subgroup I, most genes were
upregulated in the blue module, while the autophagy path-
way was only enriched in this module. Relevant studies have
shown that autophagy reduces the pathological process of
IPF by regulating fibroblast apoptosis and alveolar epithelial
cell aging, and its defects may be involved in the pathogene-
sis of IPF [46, 47]. According to the enrichment results of
the KEGG pathway, autophagy-related pathway targets
mainly include Akt3, PIK3CA, and PIK3R1. Recent studies
have shown that the PI3K/Akt signaling pathway can regu-
late mTOR, a target of autophagy [48–51]. Therefore,
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PI3K-related inhibitors may be more effective in subgroup I
patients. However, a large sample of clinical data is needed
to verify.

In subgroup III, significant enrichment in neuroactive
ligand-receptor interaction and Ca+ signaling pathway was
observed. Relevant studies have shown that Ca+ signal
transduction plays an important role in promoting the pro-
liferation, transformation, and collagen synthesis and inhi-
biting the apoptosis of lung fibroblasts [52]. Activation of
the Ca+ signaling pathway can increase the sensitivity of
cough, so it can be speculated that cough symptoms may
be more prominent in subgroup III. According to KEGG
pathway enrichment results, calcium signaling pathway-
related pathway targets mainly include NTRK2 and
P2RX3. In recent years, there is evidence that NTRK2 (also
known as TrkB) plays an important role in the neurotrophin
receptor tyrosine kinase family [53]. At the same time, TrkB
is closely related to the pathogenesis of neurogenic cough
[54]. Relevant studies also show that the BDNF/TrkB axis
plays a role in EMT promoting the acquisition of IPF
(myo) fibroblast phenotype. Targeting BDNF/TrkB is a fea-
sible method to prevent EMT-dependent pulmonary fibrosis
[55]. Therefore, for subgroup III patients, the application of
TrkB targeted drugs might have better effect. However, it
also needs a large number of basic experiments and prospec-
tive clinical trials to verify.

In summary, these results further prove that the subtypes
represent the development stage and intrinsic biological
characteristics of IPF. Similar to the subtypes in cancer,
future IPF research should also introduce multiomics data
to reveal more accurate molecular subgroups of IPF. How-
ever, the analysis of IPF in omics is relatively less. Inspired
by the study of cancer subtypes and the subgroup analysis
of CAD by Peng et al. [15], we applied a similar strategy to
reveal the molecular subgroup of IPF. Current studies have
improved our understanding of IPF-related molecular
mechanisms. At the same time, because the results show that
patients from different subgroups may have their own
unique gene expression patterns, it reminds us that patients
in each subgroup should receive more personalized treat-
ment. There are limitations to this study. Firstly, although
our findings suggest that IPF cases from different subgroups
may have different expression patterns, they are based on
previous studies. Secondly, although the molecular subtypes
of IPF obtained in the preliminary screening of this study
have certain guiding significance for development of new
drugs, clinical treatment, and prognosis judgment, more rig-
orous analysis methods and a larger population are needed
for prospective verification.
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