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Background. Tuberculosis (TB) is a serious chronic bacterial infection caused by Mycobacterium tuberculosis (MTB). It is one of
the deadliest diseases in the world and a heavy burden for people all over the world. However, the hub genes involved in the host
response remain largely unclear. Methods. The data set GSE11199 was studied to clarify the potential gene network and signal
transduction pathway in TB. The subjects were divided into latent tuberculosis and pulmonary tuberculosis, and the
distribution of differentially expressed genes (DEGs) was analyzed between them using GEO2R. We verified the enriched
process and pathway of DEGs by making use of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology
(GO). The construction of protein-protein interaction (PPI) network of DEGs was achieved through making use of the Search
Tool for the Retrieval of Interacting Genes (STRING), aiming at identifying hub genes. Then, the hub gene expression level in
latent and pulmonary tuberculosis was verified by a boxplot. Finally, through making use of Gene Set Enrichment Analysis
(GSEA), we further analyzed the pathways related to DEGs in the data set GSE11199 to show the changing pattern between
latent and pulmonary tuberculosis. Results. We identified 98 DEGs in total in the data set GSE11199, 91 genes upregulated and
7 genes downregulated included. The enrichment of GO and KEGG pathways demonstrated that upregulated DEGs were
mainly abundant in cytokine-mediated signaling pathway, response to interferon-gamma, endoplasmic reticulum lumen, beta-
galactosidase activity, measles, JAK-STAT signaling pathway, cytokine-cytokine receptor interaction, etc. Based on the PPI
network, we obtained 4 hub genes with a higher degree, namely, CTLA4, GZMB, GZMA, and PRFI1. The box plot showed that
these 4 hub gene expression levels in the pulmonary tuberculosis group were higher than those in the latent group. Finally,
through Gene Set Enrichment Analysis (GSEA), it was concluded that DEGs were largely associated with proteasome and
primary immunodeficiency. Conclusions. This study reveals the coordination of pathogenic genes during TB infection and
offers the diagnosis of TB a promising genome. These hub genes also provide new directions for the development of latent
molecular targets for TB treatment.

1. Background

Tuberculosis (TB) is a serious chronic bacterial infection
caused by Mycobacterium tuberculosis (MTB), which is
mainly spread by droplets [1]. It is one of the deadliest dis-
eases in the world and a heavy burden for people all over
the world. Its existence not only divides the microorganisms
but also causes lung tissue infection [2, 3]. In addition, most
patients will have typical symptoms like a low-grade fever,

night sweats, and fatigue [4]. TB is difficult to diagnose
through clinical, radiology, bacteriology, and histology [5].
Drug treatment is the most important means to treat TB
[6], but there are too many patients with drug resistance,
especially multiple and extensive drug resistance [7]. So,
finding a new way to treat TB is still important.

Currently, the advents of high-throughput sequencing,
genomics, and transcriptomics have offered many new rem-
edies for TB treatment [8]. For example, the report by
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Mboowa et al. mentions that high-throughput sequencing
has a wide range of applications in the research of infectious
diseases [9]. This technology has generated a large amount
of unprecedented information in the history of biology and
changed the management of infectious diseases. Chiner-
Oms et al. reveal the evolution of the Mycobacterium tuber-
culosis complex through a large amount of genomics data
and find more subtle differences in different human tubercu-
losis isolates, contributing to the understanding of pathogens
and determining the relevant biomedical goals [10]. In addi-
tion, van Rensburg and Loxton’s research shows that the
combined application of transcription pathways and gene
expression technologies can help clarify more effective diag-
nosis and treatment of TB, as well as the development of
more effective drug therapies and new vaccines [11]. The
identification of biomarkers through transcription profiles
can help improve the diagnosis and treatment of TB [12].
The above methods occupy an important position in the
research of TB and have been practiced and confirmed by
a large number of researchers, which has promoted the diag-
nosis, cognition, and treatment of TB.

In this research, we analyzed 8 latent tuberculosis and 8
pulmonary tuberculosis samples in the GSE11199 database
and then identified differentially expressed genes (DEGs)
through GEO2R. Afterward, DEGs were enriched by the
Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Gene Ontology (GO), and we constructed a protein-
protein interaction (PPI) network to identify the hub gene.
Finally, we got the key pathways through Gene Set Enrich-
ment Analysis (GSEA). Through the above research, the
diagnostic characteristics of TB are explored and the clinical
treatment biomarker is found.

2. Material and Methods

2.1. Gene Expression Microarray Data Acquisition. As a
common functional genomics database, the NCBI Gene
Expression Omnibus database (GEO, http://www.ncbinlm
.nih.gov/geo) has high-throughput gene expression sequenc-
ing data and microarray data. The gene expression data set
GSE11199 [13] was downloaded from GEO. In this data
set, 8 pairs of latent tuberculosis and pulmonary tuberculosis
samples were analyzed.

2.2. Identification of Differentially Expressed Genes (DEGs).
We used GEO2R [14] (http://www.ncbi.nlm.nih.gov/geo/
geo2r), a GEO database interactive analysis tool based on
the R language, to perform identification of DEG analysis.
The genes with log,|fold change (FC)| > 1 were defined as
differentially expressed. At the same time, with the
adjustedPvalue < 0.05, the difference had statistical signifi-
cance. In addition, we used the volcano to display the latent
and pulmonary samples to show the visual hierarchical clus-
tering using ImageGP (http://www.ehbio.com/ImageGP/
index.php/Home/Index/index.html).

2.3. KEGG and GO Enrichment Analysis of DEGs. Aiming at
understanding the function of DEGs, we performed the
enrichment analysis by GO and KEGG. The GO and KEGG
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F1GURE 1: The volcano map shows the distribution of DEGs. Based
on the GSE11199 database, 98 DEGs were screened out, including
91 upregulated DEGs and 7 downregulated DEGs. Red stands for
upregulated genes; blue stands for downregulated genes.

enrichment in the Database for Annotation, Visualization
and Integrated Discovery website (DAVID, https://david
.anciferf.gov/) was used. GO pathway includes three parts:
molecular function (MF), cellular component (CC), and bio-
logical process (BP). As a database integrating chemical,
genomic, and system function information, KEGG has pow-
erful graphics functions. It shows the metabolic pathways
associated with the gene list, which facilitates a comprehen-
sive understanding of the disease.

2.4. PPI Network Construction. In order to identify the hub
gene of TB patients, we constructed a PPI network by mak-
ing use of the online database Search Tool for the Retrieval
of Interacting Genes (STRING, http://string-db.org). On this
basis, the interaction between genes was visualized and the
hub genes were predicted according to the strength of the
association.

2.5. GSEA. According to the GSE11199 data set, TB patients
were divided into 8 groups of latent tuberculosis and 8
groups of pulmonary tuberculosis. Aiming at determining
the potential functions of DEGs, GSEA on GSE11199 was
performed using GSEA 3.0 (http://www.broad.mit.edu/
gsea/), and P < 0.05 was regarded as statistically significant.

3. Results

3.1. Identification of DEGs. We downloaded the gene expres-
sion profile of GSE11199 from the GEO database, including
2 groups (8 latent tuberculosis subjects and 8 pulmonary
tuberculosis subjects). Afterward, we identified 98 DEGs
from the GSE11199 data set, including 91 genes upregulated
and 7 genes downregulated. We showed the distribution of
all DEGs through the volcano graph (Figure 1). The top 7
upregulated genes included MMP12, TACSTD2, IDOI,
CCL23, LIMK2, CYP27B1, and CD1B. The top 7 downregu-
lated genes included KITLG, SRPX, HS3ST2, EDNRB,
HNRNPU-AS1, HAMP, and CDC42EP3.
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FiGure 2: GO functional and KEGG pathway analysis of upregulated DEGs. (a) GO term enrichment analysis. The x-axis represents
enriched GO term description, and the y-axis stands for the —log,, (P value). (b) KEGG pathway enrichment analysis. The colors of the
dots represent the P values of enrichment, and the size of the dots represents the number of enriched genes.

3.2. GO and KEGG Pathway Enrichment Analysis. GO anal-
ysis results demonstrated that in BP, upregulated DEGs were
abundant in cytokine-mediated signaling pathway, response
to interferon-gamma, peptidyl-tyrosine autophosphoryla-
tion, enzyme-linked receptor protein signaling pathway,
and other processes. In CC, upregulated DEGs were abun-
dant in endoplasmic reticulum lumen, spindle pole, spindle
pole centrosome, and so on. In MF, upregulated DEGs were
abundant in beta-galactosidase activity, histone threonine
kinase activity, galactosidase activity, etc. (Figure 2(a)). In
addition, in the results of KEGG analysis, upregulated DEGs
were significantly enriched in the JAK-STAT signaling path-
way, cytokine-cytokine receptor interaction, measles, apo-
ptosis, Epstein-Barr virus infection, cell cycle, and other
pathways (Figure 2(b)).

3.3. PPI Network Construction. Data from the STRING
database showed the interaction of given genes. The PPI
network of upregulated DEGs consisted of 89 nodes and

96 edges (Figure 3). Among these nodes, with degree >9
as the screening criterion, the 4 most significant pivot
node genes were screened out. These genes were CTLA4,
GZMB, GZMA, and PRF1. Among these 4 genes, CTLA4
had the highest node degree (degree =16), and PRF1 had
the lowest node degree (degree=9). Besides, the expres-
sion of these 4 genes was analyzed (Figures 4(a)-4(d)),
demonstrating that the expression levels of CTLA4,
GZMB, GZMA, and PRF1 in the pulmonary tuberculosis
samples were significantly higher than those in the latent
control group.

3.4. GSEA. The GO and KEGG pathway enrichment analysis
was only used to detect DEGs, while the GSEA was used to
detect all genes in the data set, which is convenient to sup-
plement other related enrichment pathways. According to
Figure 5(a), it could be seen that these genes are significantly
enriched in the proteasome pathway, and the normalized
enrichment score was 2.353477. The other enrichment
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FiGureg 3: The PPI network of upregulated DEGs. The PPI network is constructed based on the STRING database, and 4 hub genes are

screened out.

pathway was primary immunodeficiency (Figure 5(b)), and
its normalized enrichment score was 2.187469.

4. Discussion

TB is one of the infectious diseases leading to an increase in
morbidity and mortality worldwide [15]. Despite joint
efforts to develop new diagnostic methods, drugs, and vac-
cines and expand pipelines over the past 20 years [16], TB
remains a global emergency [17]. In this research, we ana-

lyzed the data set GSE11199 in the GEO database to identify
the key pathways and hub genes associated with TB.
Through the GSE11199 data set, 98 DEGs were identified
between latent and pulmonary tuberculosis samples. Among
them, the volcano map visually displayed 91 upregulated
genes and 7 downregulated genes. Then, according to the
GO and KEGG analysis, we obtained the biological processes
and pathways associated with upregulated DEGs. The top
significantly enriched terms were cytokine-mediated signal-
ing pathway [18], response to interferon-gamma [19],
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FIGURE 4: The expression level of the hub gene in the data set GSE11199. The expression level of CTLA4 (a), GZMB (b), GZMA (c), and

PRFI (d) in the latent and pulmonary tuberculosis subjects.

peptidyl-tyrosine autophosphorylation, measles, JAK-STAT
signaling pathway [20], cytokine-cytokine receptor interac-
tion [21], Th17 cell differentiation [22], etc. Pai and Rodri-
gues explain the indirect signs of MTB exposure by
interferon-gamma release assay, indicating that there is a
cellular immune response to MTB [23]. Studies have shown
that Th17 cell differentiation induces neutrophil inflamma-
tion, mediates tissue damage, and participates in the pathol-
ogy of TB [24]. It plays a protective role in the early stage of
TB but induces the development of the disease in the late
stage of TB.

A PPI network was established using the STRING data-
base, and four hub genes, namely, CTLA4, GZMB, GZMA,
and PRF1, were identified through degree value. Therefore,
we concluded that these four genes might be related to the

onset and treatment of tuberculosis. And these four genes
were reported to participate in the development of other dis-
eases. For instance, Froelich J et al. conduct a special study
on GZMA in the report, pointing out that GZMA is the
most abundant serine protease in killing cytotoxic particles,
which activates a new cell death pathway and generates reac-
tive oxygen species in the process [25]. This leads to damage
to activated single-stranded DNA, activates monocytes, and
produces inflammatory cytokines. Turner et al. confirm that
the level of GZMB in chronic diseases and inflammatory
skin diseases is significantly higher than the expression level
in normal healthy humans and related to skin damage,
inflammation, and repair [26]. For CTLA4, Buchbinder
and Desai propose in the article that CTLA4 is a negative
regulator of T cell immune function and participates in all
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FiGURE 5: GSEA for the KEGG pathway related with tuberculosis based on data set GSE11199. The gene sets of (a) proteasome and (b)
primary immunodeficiency were significantly enriched in pulmonary tuberculosis subjects.
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aspects of immunotherapy for melanoma, non-small-cell
lung cancer, and other cancers [27]. In addition, there are
few research reports on PRF1, but studies have shown that
this gene is involved in expression in diseases such as famil-
ial hemophagocytic lymphohistiocytosis type 2 [28], aplastic
anemia [29], diabetes, multiple sclerosis [30], and lym-
phoma [31].

According to the results of GSEA, we found that TB was
significantly associated with proteasome and primary immu-
nodeficiency. The study by Samanovic et al. mentions that
proteasomes mainly exist in archaea and eukaryotes and
are closely related to the pathogenesis of MTB [32]. The
occurrence of TB depends on the function of the protea-
some, and the biochemistry of the MTB proteasome and
its role in virulence are described. Not only that, but
Cerda-Maira and Darwin also show in their studies that
the proteasome takes responsibility for the degradation of
targeted proteins in eukaryotes, and a series of data have also
confirmed that the proteasome is related to the pathogenesis
of MTB [33]. Glanzmann et al. explain the relationship
between individual primary immunodeficiency and TB
and, based on survey data in Africa, find that individual loss
of primary immune function is more likely to cause TB and
other major diseases [34]. This study has some limitations.
First of all, the expression level of DEGs needs to be verified
by qRT-PCR. Secondly, the specific mechanism of the hub
gene in TB needs to be further explored.

In short, we have screed out 98 DEGs, including 91
upregulated and 7 downregulated ones between latent tuber-
culosis and pulmonary tuberculosis subjects. Then, we get
the pathway such as response to interferon-gamma, Th17
cell differentiation, proteasome, and primary immunodefi-
ciency which is largely associated with TB through KEGG,
GO, and GSEA. Finally, we identify 4 hub genes through
the PPI network; these hub genes could act as biomarkers
for the diagnosis or prognosis of TB, providing new direc-
tions and technologies for the treatment of TB.
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