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The deep neural network has achieved good results in medical image superresolution. However, due to the medical equipment
limitations and the complexity of the human body structure, it is difficult to reconstruct clear cardiac magnetic resonance
(CMR) superresolution images. To reconstruct clearer CMR images, we propose a CMR image superresolution (SR) algorithm
based on multichannel residual attention networks (MCRN), which uses the idea of residual learning to alleviate the difficulty of
training and fully explore the feature information of the image and uses the back-projection learning mechanism to learn the
interdependence between high-resolution images and low-resolution images. Furthermore, the MCRN model introduces an
attention mechanism to dynamically allocate each feature map with different attention resources to discover more high-
frequency information and learn the dependency between each channel of the feature map. Extensive benchmark evaluation
shows that compared with state-of-the-art image SR methods, our MCRN algorithm not only improves the objective index
significantly but also provides richer texture information for the reconstructed CMR images, and our MCRN algorithm is better
than the Bicubic algorithm in evaluating the information entropy and average gradient of the reconstructed image quality.

1. Introduction

The heart is the core organ that ensures the continuation of
human life and metabolism. Its main function is to provide
power for blood flow in the body through the contraction
pressure of the heart muscle. Cardiac magnetic resonance
(CMR) imaging [1] is an important technique for the func-
tional analysis of the heart. It is suitable for the accurate
assessment and analysis of the local and global function of
cardiac tissue structures, and it plays an important role in
assisting physicians in diagnosis and treatment and improv-
ing diagnostic accuracy. The CMR imaging can perform
multiphase imaging in the time domain to form a dynamic
image sequence of the cardiac cycle. Based on the imaging
results, cardiac function evaluation indicators, such as ejec-
tion fraction, myocardial mass, and myocardial thickness,
can be obtained, which is convenient for medical experts to
analyze the systolic function of the heart and diagnose dis-
eases [2–4]. However, the CMR images are very different

from conventional images. Due to the performance limita-
tions of medical equipment and the complexity of human
body structure, the CMR images often have very low resolu-
tion and have a lot of noise, which directly affects expert
judgment of heart disease [5]. Therefore, there are an urgent
need and practical significance for the study of image SR
reconstruction algorithms for CMR images.

With the deepening of research on SR tasks, many SR
algorithms have emerged. These algorithms can be roughly
divided into three categories: interpolation-based methods
[6], reconstruction-based methods [7], and learning-based
methods [8]. Since deep learning has achieved outstanding
performance in various fields of computer vision in recent
years, learning-based SR methods have also become a hot
spot in superresolution technology research, whose purpose
to recover high-resolution (HR) images from low-
resolution (LR) images. Dong et al. [9] proposed the SR con-
volutional neural network (SRCNN) and achieved excellent
performance. On this basis, Dong et al. [10] improved the
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SRCNN algorithm and proposed the fast SR convolutional
neural networks (FSRCNN) to accelerate the training speed
of the network. Kim et al. [11] proposed the superresolution
using very deep convolutional network (VDSR), which uses
the idea of residual error to alleviate the problem of gradient
disappearance or gradient explosion. Since only the high fre-
quency of the image is learned information, the convergence
speed is significantly improved; at the same time, a larger
receptive field is used in VDSR to improve the effect and mul-
tiscale issues considered in the single model.

After that, Kim et al. [12] considered the problem of
parameter scale and proposed the deep recursive convolu-
tional network (DRCN), which uses a recursive network
structure to share parameters between network structures,
which effectively reduces the difficulty of training; in addi-
tion, the authors also use skip connection and integration
strategies to further improve performance. Subsequently,
Shi et al. [13] proposed the efficient subpixel convolutional
neural network (ESPCN), which uses LR images as input
and uses subpixel convolutional layers at the back end of
the network structure to implicitly map LR images to HR
images, effectively reducing computational complexity and
improving reconstruction efficiency. Lai et al. [14] proposed
the Laplacian pyramid networks (LapSRN), the idea of
Laplace pyramid is introduced into deep learning, and the
experimental results prove the superiority of step-by-step
sampling operation. In addition, the residual results pre-
dicted at each level are monitored during the training pro-
cess, which further improves the performance. Lim et al.
[15] proposed the enhanced deep residual networks for single
image superresolution (EDSR) by removing the redundant
modules in the literature [16] and using the L1 norm as
the loss function. Zhang et al. [17] proposed the residual
channel attention network (RCAN), by using the channel
attention mechanism, a feature channel with rich informa-
tion can be selected. The above network structures are
mostly feed-forward structures, ignoring the interdepen-
dence of HR images and LR images and the error when
upsampling LR images. In addition, Haris et al. [18] pro-
posed the deep back-projection networks (DBPN), which
uses the upsampling interconnection strategy and error
feedback mechanism to learn the mutual mapping rela-
tionship between HR and LR and uses the deep cascade
structure to cascade different stages of HR and LR features
to reconstruct HR images. However, it is neglected that
when the HR image is reconstructed, the contribution of
the HR features generated at different stages may be differ-
ent, and the reconstructed HR is too smooth due to the
increase of the network depth, and some high-frequency
information is lost.

In order to reconstruct a clearer SR image of CMR
images, we propose the multichannel residual attention net-
work (MCRN); our contributions are three-fold:

(1) We propose the multichannel residual dilated convo-
lution structure by combining the idea of dilated con-
volution and residual learning, which can efficiently
extract the multichannel contextual information of
CMR image

(2) We design the residual framework of long and short
skip connections to improve the accuracy of image
feature information acquisition

(3) We introduce the attention mechanism to automati-
cally allocate attention resources to the feature maps
generated at each stage of the residual back-
projection block and each channel of the feature map

2. Related Work

2.1. Residual Learning. When training a very deep network
structure, since the initialization parameters are very close
to zero, it is easy to cause gradient dispersion when the net-
work reversely broadcasts the update parameters. This makes
deepening the network structure not only unable to improve
network performance but also even worse. In response to this
problem, He et al. [19] proposed the residual net (ResNet),
using the idea of residual learning to alleviate the problem
of gradient dispersion. The main idea is to add a direct con-
nection channel to the network, allowing a certain percentage
of the previous network output to be retained. However,
there are certain difficulties in learning identity mapping.
To avoid learning the parameters of identity mapping, the
ResNet uses the network structure shown in Figure 1, namely,
HðxÞ = FðxÞ + x. It can be converted to FðxÞ =HðxÞ − x,
where FðxÞ is the residual term. When the residual term is F
ðxÞ = 0, the identity mapping HðxÞ = x can be easily con-
structed. Compared to learning the identity mapping HðxÞ
= x, learning FðxÞ = 0 is easier.

2.2. Deep Back-Projection Network.Haris et al. [18] proposed
the deep back-projection networks (DBPN), which use an
iterative back-projection method to learn the mapping rela-
tionship between LR and HR images and use an error feed-
back mechanism to correct the reconstruction between LR
and HR images error. According to Figure 2, the DBPN algo-
rithm contains several serial upsampling layers, and the spa-
tial detail information in the picture is extracted through
continuous degradation and SR reconstruction of the picture.
For the input LR image, first perform initial feature extrac-
tion to obtain shallow features, and then use several iterative
up-block and down-block to learn the reconstruction error
between HR and LR features, and finally the HR feature maps
generated in the previous stages are cascaded and the pre-
dicted image is reconstructed. In addition, each back-
projection includes up-block and down-block operations,
where up-block and down-block are implemented using a
deconvolution layer and a convolution layer, respectively.
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Figure 1: Structure of residual learning.
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3. Methodology

Aiming at the problem of loss of feature information and gra-
dient dispersion in the learning process caused by the deeper
network structure, as can be seen from Figure 3, we propose
the multichannel residual attention network structure, which
mainly includes initial layer, multichannel up-block and
down-block residual attention module (MCUD), residual
attention module (RA), and reconstruction layer.

3.1. Multichannel Up-Block and Down-Block Residual
Attention Modules. To solve the problem of high-frequency
information loss the longitudinal deepening network, a mul-
tichannel residual cavity convolutional network was pro-
posed, as shown in Figure 4. Combining the idea of dilated

convolution and residual error, it can obtain the multichan-
nel background information of CMR images more effectively.
Furthermore, to increase the receptive field without pooling
loss information, so that each convolution output contains
a larger range of information, we have introduced dilated
convolution in the multichannel up-block and down-block
residual modules, the difference is that the dilated convolu-
tion uses expansion rates of 1, 3, and 5 to add different recep-
tive fields, and the parameters are shown in Table 1.

Regarding the up-block module, the input of the up-
block is the output of the down-block in the previous projec-
tion unit cascaded with this projection unit, that is, the input
of n up-blocks is ½L1,⋯,Ln−1�, and then the input of the pro-
jection block is cascaded together using the cascade layer. At
the same time, to reduce the amount of calculation, a convo-
lutional layer with a convolution kernel size of 1 ∗ 1 is used to
reduce the dimensionality of the feature map to obtain fea-
ture Ln−1, and then perform upsampling and downsampling
operations on Ln−1 to obtainHn

0 and L
n
0 , respectively, and cal-

culate Ln−1 and Ln0 , and use e1n to correct the mapping rela-
tionship between HR features and LR features.

The up-block module is defined as follows:

Scale up : Hn
0 = Ln−1 ∗ pn

� �
↑s, ð1Þ

Scale down : Ln0 = Hn
0 ∗ gnð Þ↓s, ð2Þ

Residual : eln = Ln0 − Ln−1, ð3Þ
Scake residual up : Hn

1 = e1n ∗ qn
� �

↑s, ð4Þ
Output featuremap : Hn =Hn

0 +Hn
1 : ð5Þ

Regarding the down-block module, the input of the
down-block is also the result of cascading the residual learn-
ing of the previous projection blocks of this projection unit,
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Figure 2: The architect of deep back-projection network.
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Figure 3: The architect of multichannel residual attention network.
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Figure 4: The architect of multichannel up-block and down-block
residual modules.
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and the input feature information is sequentially cascaded
and linearly mapped to obtain the feature map Hn. Subse-
quently, the down- and upsampling operations are sequen-
tially performed, and the reconstruction error enh is
calculated, and the secondary reconstruction error is used
to guide the reconstruction of the LR feature map.

The down-block module is defined as follows:

Scale down : Ln1 = Hn
2 ∗ gnð Þ↓s, ð6Þ

Scale up : Hn
3 = Ln1 ∗ pnð Þ↑s, ð7Þ

Residual : enh =Hn
3 − Hn

2 ∗ knð Þ, ð8Þ
Scale residual up : Ln2 = enh ∗ gnð Þ↓s, ð9Þ
Output featuremap : Ln = Ln0 + Ln1 , ð10Þ

where ∗ is the convolution operator, ↑s and ↓s are the upsam-
pling and downsampling operations with scale factor s,
respectively, pn is the upsampling deconvolutional layer of

Table 1: The feature size of the MCRN for CMR images SR.

Network components Kernel size Stride Padding Input size Output size

Initial layer 3∗3 1 1 H∗W∗1 H∗W∗64

RAB

Conv 1 3∗3 1 1 H∗W∗64 H∗W∗64
Conv 2 1∗1 1 0 H∗W∗64 H∗W∗4
Conv 3 1∗1 1 0 H∗W∗4 H∗W∗64

Up-block

DeConv 4∗4 2 1 H∗W∗64 H∗W∗128
Conv 4∗4 2 1 H∗W∗128 H∗W∗64
DeConv 4∗4 2 1 H∗W∗64 H∗W∗128

Down-block

Conv 4∗4 2 1 H∗W∗128 H∗W∗64
DeConv 4∗4 2 1 H∗W∗64 H∗W∗128
Conv 4∗4 2 1 H∗W∗128 H∗W∗64

Middle layer 3∗3 1 1 H∗W∗64 H∗W∗64

Upsample 3∗3 1 1 H∗W∗64 2H∗2W∗64

Reconstruction layer 3∗3 1 1 2H∗2W∗64 2H∗2W∗1
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the n-th up-block and down-block (UD), gn is the downsam-
pling convolutional layer of the n-th UD, qn is 128-
dimensional feature fusion layer of the n-th UD, and kn
denotes the n-th UD of 64-dimensional feature fusion layer
[20] as shown in Figure 5.

3.2. Residual Attention Module. To better extract the feature
information of the CMR image, the MCRN model deepens
the number of network layers. Further, the residual attention
module (RA) contains 3 residual attention block modules
(RAB), and the network structure is shown in Figure 6. As
the number of network layers deepens, the residual structure
is introduced. There are two reasons for introducing the
residual structure here: one is that the network deepening
has network degradation problems, and learning residuals
can reduce the impact of such problems in deep network
training. Furthermore, since there are a lot of similar low-
frequency information between HR images, using the resid-
ual structure can reduce repeated learning of similar low-
frequency information, speed up the network convergence
speed, and save computing time. Secondly, the attention
mechanism is introduced to allocate different attention
resources to the feature maps in different stages of intercon-
nection and different channels of different feature maps, to
learn deeper feature information.

3.3. Reconstruction Layer. In the high-power reconstruction
part, first use 3 ∗ 3 convolution to sort and filter redundant
information to reconstruct the optimal sparse network struc-
ture, and then use subpixel convolution to upsample T to the
target multiple γ. Finally, the mapping from ILR to ISR is
completed through a layer of 3 ∗ 3 convolution to generate
a clear SR image; the specific formula is as follows:

ISR = σωl
3×3 × SFσωl−2

3×3 × T + bl−2 + bl, ð11Þ

where ISR represents the predicted HR image, the symbol ×
represents the convolution operator, the symbol + represents
the pixel-by-pixel addition operator, SF x represents the sub-
pixel convolution operation of rearranging the combined
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Figure 6: Structure of residual attention module.

Table 2: Average PSNR/SSIM of various SSIR methods; the best
and second-best results are in bold and italics.

Algorithm Scale
Set 5 Set 14 Urban 100

PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic [6] 2× 33.69 0.931 30.25 0.870 26.88 0.841

A+ [27] 2× 36.60 0.955 32.32 0.906 29.25 0.895

SCN [28] 2× 36.58 0.954 32.35 0.905 29.52 0.897

SRCNN [9] 2× 36.72 0.955 32.51 0.908 29.53 0.896

FSRCNN [10] 2× 37.05 0.956 32.66 0.909 29.88 0.902

VDSR [11] 2× 37.53 0.959 33.05 0.913 30.77 0.914

DRCN [12] 2× 37.63 0.959 33.06 0.912 30.76 0.914

LapSRN [14] 2× 37.52 0.959 33.08 0.913 30.41 0.910

DRRN [29] 2× 37.74 0.959 33.23 0.914 31.23 0.919

MCRN (ours) 2× 37.88 0.961 33.63 0.919 31.27 0.919

Bicubic [6] 3× 30.41 0.869 27.79 0.775 24.46 0.735

A+ [27] 3× 32.62 0.909 29.15 0.820 26.05 0.799

SCN [28] 3× 32.62 0.908 29.16 0.818 26.21 0.801

SRCNN [9] 3× 32.78 0.909 29.32 0.823 26.25 0.801

FSRCNN [10] 3× 33.18 0.914 29.37 0.824 26.43 0.808

VDSR [11] 3× 33.67 0.921 29.78 0.832 27.14 0.829

DRCN [12] 3× 33.83 0.922 29.77 0.832 27.15 0.828

LapSRN [14] 3× 33.82 0.922 29.87 0.832 27.07 0.828

DRRN [29] 3× 34.03 0.924 29.96 0.835 27.53 0.764

MCRN (ours) 3× 33.99 0.925 30.28 0.844 27.27 0.830

Bicubic [6] 4× 28.43 0.811 26.22 0.715 23.14 0.658

A+ [27] 4× 30.32 0.860 27.34 0.751 24.34 0.721

SCN [28] 4× 30.41 0.863 27.39 0.751 24.52 0.726

SRCNN [9] 4× 30.50 0.863 27.52 0.753 24.53 0.725

FSRCNN [10] 4× 30.72 0.866 27.61 0.755 24.62 0.728

VDSR [11] 4× 31.35 0.883 28.02 0.768 25.18 0.754

DRCN [12] 4× 31.54 0.884 28.03 0.768 25.14 0.752

LapSRN [14] 4× 31.54 0.885 28.19 0.772 25.21 0.756

DRRN [29] 4× 31.68 0.888 28.21 0.772 25.44 0.764

MCRN(ours) 4× 31.67 0.887 28.45 0.783 25.25 0.759
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pixels, and the l in the variable superscript is the last one in
the network convolutional layer and l − 2 is the first convolu-
tional layer of the reconstruction part.

4. Experiment and Analysis

4.1. Dataset and Training Details. Owing to the relatively
deep network, the algorithm needs to use a larger training
set to train better results. T91 [21] dataset and Berkeley Seg-
mentation Dataset 500 (BSD500) are selected, respectively,
with a total of 591 images [5]. In order to make full use of
the depth image, the dataset image is rotated by 90°, 180°,
and 270° and scaled according to the coefficients of 0.9, 0.8,
and 0.7 and then saved the picture; a total of 9456 images
are generated; and the test dataset uses Set5 [20], Set14
[22], and Urban100 [23] datasets.

To build a CMR diagnosis model based on deep learning,
we tested it on the public CMR datasets. We used the cardiac
MRI dataset [24], which is the medical imaging data of
atrium in patients with heart disease, including cardiac MR
images of 33 subjects, with a total of 7980 images (Cardiac
MRI dataset: http://www.cse.yorku.ca/~mridataset/).

Furthermore, our algorithm was trained on Ubuntu
16.04, CUDA Toolkit 10.0, PyTorch 1.20, python 3.7, and
GPU NVIDIA GeForce RTX 1080Ti. In addition, the initial
learning rate is set to 10−4, the Adam optimizer was set

withβ1 = 0:9,β2 = 0:999, ε = 10−8, andL1-normalization was
used as the loss function. To evaluate the performance of
the proposed MCRN, we use the peak signal-to-noise ratio
(PSNR) [25] and structural similarity index (SSIM) [26] as
the evaluating metrics. The specific operations of PSNR and
SSIM are shown in Equations (12) and (13).

PSNR = 10l g MN

IH − ISk k2 , ð12Þ

where M and N represent the sizes of the HR image and the
SR image.

SSIM = 2μHμS + C1ð Þ σHS + C2ð Þ
μH

2 + μS
2 + C1ð Þ σH

2 + σS
2 + C2ð Þ , ð13Þ

where μH and μS represent the average grey values of the HR
image and the SR image, σH and σS represent the variances of
the HR image and the SR image, and σHS denotes the covari-
ance of the HR image and the SR image.

4.2. Comparison with Other State-Of-The-Art Algorithms.We
compare our method with 9 state-of-the-art SR algorithms:
Bicubic [6], A+ [27], SCN [28], SRCNN [9], FSRCNN [10],
VDSR [11], DRCN [12], LapSRN [14], and DRRN [29].

Bicubic SRCN FSRCNN VDSR

LapSRN DRCN DRRN MCRN

(a)

Bicubic SRCN FSRCNN VDSR

LapSRN DRCN DRRN MCRN

(b)

Bicubic SRCN FSRCNN VDSR

LapSRN DRCN DRRN MCRN

(c)

Figure 7: Comparison of rendering of images with superresolution magnification of 4 under our MCRN and other state-of-art methods. (a)
Aorta in short axis orientation (3 × 11 × 25, coronal), (b) aorta in short axis orientation (3 × 11 × 25, axial), and (c) heart imaged in 3
orthogonal orientations (axial).
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Table 2 shows the comparison of experimental results with
an amplification factor of 2, 3, and 4. It can be found from
Table 2 that when the scaling factors are 2, 3, and 4, the algo-
rithm proposed in this paper achieves the best performance
in PSNR and SSIM on each dataset. When the scaling factor
is 2, the algorithm in this paper achieves the optimal recon-
struction effect for each index on each dataset. Among them,
when the scaling factor is 2 on the Set14 dataset, the PSNR
improvement of this algorithm is the most obvious compared
with other algorithms. It reaches 33.72 dB, which is 0.40 dB
higher than the PSNR of the suboptimal DRRN algorithm.

As can be seen from the Figure 7, the image reconstructed
by Bicubic [3] appears severely blurred, and the details of
CMR cannot be observed. The image reconstructed by
SRCNN [9], FSRCNN [10], and LapSRN [15] appears
severely distorted, and the details of the information are not
enough. Moreover, the result of the reconstruction of VDSR
[18], DRCN [13], and DRRN [19] algorithms obtains a better
visual experience, and there is still a lack of detailed informa-
tion. In fact, compared with state-of-the-art methods, our
MCRN algorithm restores the details of the original image
and improves the clarity of the CMR image, indicating that
our model shows obvious superiority in both objective indi-
cators and visual effects.

5. Conclusion

In this paper, we propose a CMR image superresolution algo-
rithm based on multichannel residual attention network
(MCRN), which mainly uses the back-projection method
and combines residual learning and attention mechanisms
to alleviate the problems of insufficient feature information
and loss of high-frequency information in the learning pro-
cess. At the same time, the difference between feature maps
is fully utilized, so that more useful high-frequency informa-
tion can be discovered when reconstructing the predicted
image. The experimental results prove the superiority of the
algorithm in the PSNR and SSIM indicators, and the detailed
information of the predicted CMR image is more abundant,
which effectively improves the clarity of the CMR image
and can effectively assist the CMR diagnosis and quantitative
evaluation. For future implementation, we will consider
improving the image reconstruction part so that the recon-
struction part can make full use of the characteristics of net-
work learning and achieve the excellent image reconstruction
effects.

Data Availability
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cardiac-atlas/).
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