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Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality worldwide due to its asymptomatic onset and
poor survival rate. This highlights the urgent need for developing novel diagnostic markers for early HCC detection. The
circadian clock is important for maintaining cellular homeostasis and is tightly associated with key tumorigenesis-associated
molecular events, suggesting the so-called chronotherapy. An analysis of these core circadian genes may lead to the discovery of
biological markers signaling the onset of the disease. In this study, the possible functions of 13 core circadian clock genes
(CCGs) in HCC were systematically analyzed with the aim of identifying ideal biomarkers and therapeutic targets. Profiles of
HCC patients with clinical and gene expression data were downloaded from The Cancer Genome Atlas and International
Cancer Genome Consortium. Various bioinformatics methods were used to investigate the roles of circadian clock genes in
HCC tumorigenesis. We found that patients with high TIMELESS expression or low CRY2, PER1, and RORA expressions have
poor survival. Besides, a prediction model consisting of these four CCGs, the tumor-node-metastasis (TNM) stage, and sex was
constructed, demonstrating higher predictive accuracy than the traditional TNM-based model. In addition, pathway analysis
showed that these four CCGs are involved in the cell cycle, PI3K/AKT pathway, and fatty acid metabolism. Furthermore, the
network of these four CCGs-related coexpressed genes and immune infiltration was analyzed, which revealed the close
association with B cells and nTreg cells. Notably, TIMELESS exhibited contrasting effects against CRY2, PER1, and RORA in
most situations. In sum, our works revealed that these circadian clock genes TIMELESS, CRY2, PER1, and RORA can serve as
potential diagnostic and prognostic biomarkers, as well as therapeutic targets, for HCC patients, which may promote HCC
chronotherapy by rhythmically regulating drug sensitivity and key cellular signaling pathways.

1. Introduction

Liver cancer is the sixth most common type of cancer
and the fourth highest cause of cancer-associated death
globally [1]. Hepatocellular carcinoma (HCC) accounts
for 85–90% of all primary liver cancers with increased
incidence and mortality [2]. Although there are several
therapeutic treatments of HCC, including surgery, radio-
therapy, and chemotherapy, the five-year survival of
HCC patients remains low primarily due to the delayed
diagnoses [3]. Alpha-fetoprotein (AFP) is a tumor marker

commonly used for diagnosing patients with HCC. How-
ever, the lack of specificity and accuracy limits its applica-
tion for early-stage HCC detection. Therefore, it is urgent
to search for novel biomarkers to facilitate early detection
of HCC and improve the clinical survival rate of HCC
patients.

Previous research has demonstrated the link between
the circadian clock and key tumorigenesis-associated
molecular events [4], suggesting the so-called chronother-
apy [5]. The circadian clock is an internal timing system
that adjusts behaviors and rhythm according to
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geophysical time. Similarly, the mammalian circadian
clock describes an internal timekeeping mechanism regu-
lating physiology and behavior [6]. A set of core “clock
genes” that form a feedback loop of gene transcription
and translation has been identified to generate circadian
rhythms in cells. The key “positive” transcriptional regula-
tors CLOCK and BMAL1 bind to E-box regulatory ele-
ments and transactivate the transcription of the
“negative” elements PERs and CRYs, as well as multiple
other rhythmically expressed genes.

Conversely, PER and CRY act as repressors to inhibit the
CLOCK : BMAL1 complex. Notably, by rhythmically tran-
scriptionally regulating the gene expression and gene activity
throughout the genome, circadian clock genes play critical
roles in biological processes such as apoptosis, cellular senes-
cence, DNA damage repair, and metastasis [7]. Accumulat-
ing evidence has shown the importance of circadian clock
genes in the diagnosis, therapy, and prognosis of different
kinds of cancers. For instance, the expression alterations of
most circadian clock genes were associated with overall sur-
vival, tumor-node-metastasis stage, and cellular sensitivity to
anticancer drugs [8]. Besides, PER1 and CLOCK were
reported as potential biomarkers for head and neck squa-
mous cell carcinoma [9], whereas PER2 was reported to be
associated with vital tumor-related genes in oral cancer
[10]. Until now, little is known about the roles of circadian
clock genes in HCC.

Herein, we systematically characterized the expression
pattern of core circadian clock genes, including ARNTL,
CLOCK, CRY1, CRY2, DBP, NPAS2, NR1D1, NR1D2,
PER1, PER2, PER3, RORA, and TIMELESS, and their clinical
significances in HCC. The expression and clinical informa-
tion profiles were extracted from The Cancer Genome Atlas
(TCGA) and the International Cancer Genome Consortium
(ICGC) databases. Various bioinformatics methods were
applied to analyze the data to screen vital hits possibly
involved in the development of HCC. We also established
a prediction model with high performance to predict the
overall survival of HCC patients. Moreover, we comprehen-
sively analyzed the mutation, drug sensitivity, immune infil-
tration, key cellular signaling pathway, and coexpression
network of circadian clock genes in the HCC tumor
microenvironment.

2. Materials and Methods

2.1. Patient Data. The gene expression profiles and clinical
information of HCC patients were downloaded from TCGA
(https://portal.gdc.cancer.gov/) and ICGC (https://dcc.icgc
.org/) databases, containing 50 normal and 374 tumor sam-
ples (TCGA) and 202 normal and 240 tumor samples
(ICGC), respectively. Univariate and multivariate Cox
regression analyses were performed to investigate the corre-
lation between clinicopathological characteristics and overall
survival (OS) by R software (4.0.2).

2.2. Analysis of Differential Expressed Gene. To investigate
the expression difference of circadian clock genes between
the tumor and normal samples, 374/424 of tumor samples

from TCGA and 240/442 of tumor samples from ICGC were
analyzed using the ‘edgeR’ package and ‘limma’ package,
respectively. Log2 fold change (logFC), P value, and false
discovery rate (FDR) were calculated. Genes with P < 0:05
and FDR < 0:05 were regarded as differentially expressed
genes (DEGs). The expression difference of each gene was
shown by boxplots. Besides, a Venn diagram was drawn to
show the overlapping genes which represent similar expres-
sion tendency in all HCC cases.

2.3. Validation of DEGs between HCC and Normal Liver
Tissues. Methylation and copy number variation (CNV)
analysis were performed to validate the differentially
expressed genes between normal liver tissues and tumor
tissues. Student’s t-test was used to analyze the methyla-
tion difference between the normal and tumor samples.
The correlation between gene CNV and mRNA expression
in HCC was also built. A Venn diagram was drawn to
present circadian clock genes regulated by both methyla-
tion and CNV. The Human Protein Atlas (HPA)
(https://www.proteinatlas.org/) database was used to vali-
date the protein expression of DEGs between normal liver
tissues and HCC tissues.

2.4. Survival Analysis. After dividing patients into the high-
and low-expression groups, survival curves were drawn
according to the Kaplan-Meier method by ‘survival’ package
in R software, with significance set at P < 0:05. Besides, the
receiver operating characteristic (ROC) curves were gener-
ated to determine the survival parameters, while the area
under the curve (AUC) value determined the prognostic
performance of the survival model. In addition, to further
verify the result of survival analysis, the hazard ratio (HR)
and P value of circadian clock genes were calculated through
the univariate Cox regression based on the gene expression
and overall survival.

2.5. Prognosis Prediction Models. Prediction models were
used to predict the prognosis of HCC patients based on sur-
vival analysis. Through a stepwise multivariate Cox hazard
regression analysis, a four-gene model was established. The
risk score of each HCC patient was calculated by the follow-
ing formula:

Risk score = 〠
n

i=1
Coef i × Expi, ð1Þ

where n, Coef, and Exp represent the number of
included circadian clock genes, the coefficient of each gene,
and the gene expression level, respectively. The ROC curve
was then constructed for the cohorts from TCGA and ICGC.
The AUC representing the predictability of 3-year survival
was also calculated by the ‘survival ROC’ package. When
the AUC value was >0.6, the prediction method was consid-
ered reliable. Furthermore, the HCC patients were grouped
into the high-risk and low-risk groups according to the
median risk score, and the survival curve was then obtained.
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2.6. Weighted Gene Coexpression Network Analysis
(WGCNA). WGCNA was performed to construct a gene
coexpression network, aimed at finding genes coexpressing
with circadian clock genes in HCC tissues. The coexpression
network was drawn using Cytoscape software (version 3.8.0).

2.7. Immune Infiltrate Analysis. The connection between
the gene expression and immune cell infiltration in each
sample was evaluated by Immune Cell Abundance Identi-
fier (ImmuCellAI). ImmuCellAI is a database-derived web
tool to estimate the abundance of 24 immune cells from
gene expression datasets, including RNA-Seq and micro-
array data, which provides infiltration scores of
pancancer.

2.8. Pathway Analysis. The potential mechanism of circa-
dian clock genes was explored by Gene Set Cancer Analy-
sis (http://bioinfo.life.hust.edu.cn/web/GSCALite/), which
is an online research tool for genomics analysis. A pie
chart describes several critical cancer pathways in which
the circadian clock genes play different roles. To further
determine the underlying mechanism of circadian clock
genes, the expression profiles of tumor samples down-
loaded from TCGA were used to conduct Gene Set
Enrichment Analysis (GSEA). Hallmark gene sets (h) and
Kyoto Encyclopedia of Genes and Genomes gene sets
(c2) were used as references. A significant enrichment
pathway was used to screen which circadian clock genes
were upregulated in the high-risk group, with P < 0:05
set as the threshold. Furthermore, drug sensitivity analysis
was carried out to investigate the correlation between
clock genes and anticancer drugs.

3. Results

3.1. Circadian Rhythm of Core Circadian Clock Genes in the
Liver. Herein, we investigated the possible roles of 13 core
circadian clock genes in HCC, including ARNTL, CLOCK,
CRY1, CRY2, DBP, NR1D1, NR1D2, NPAS2, PER1, PER2,
PER3, RORA, and TIMELESS. The expression profiles of
core circadian genes in liver tissue were explored by RNA
sequencing at different intervals [11]. The corresponding
expression fluctuations of these genes are shown in
Figure 1. Apparently, all these genes showed significant cir-
cadian rhythms in liver tissue except TIMELESS. Besides,
ARNTL and CLOCK, two central circadian clock regulators
controlling the circadian rhythm of PERs, CRYs, NR1Ds,
RORA, DBP, and TIMISS [6], exhibited the most regular
rhythms.

3.2. Clinicopathological Characteristics of the HCC Patients.
To investigate the functions of circadian clock genes in
HCC, 424 samples from TCGA and 442 samples from ICGC
were analyzed by univariate and multivariate Cox regression
analyses, respectively. In univariate analysis, the poor overall
survival of patients was related to tumor-node-metastasis
(TNM) stage and T stage in TCGA. It was significantly asso-
ciated with TNM stage and sex in ICGC (Tables 1 and 2).
Clinicopathological characteristics observed with P < 0:3 in
the univariate analysis were further screened and used for

multivariate analysis, revealing that sex and TNM stage
might be independent prognostic factors for patients with
HCC (Table 2).

3.3. Identification of Differentially Expressed Circadian Clock
Genes. The differential expression of the circadian clock
genes between the tumor and normal samples was
described using a boxplot (Figures 2(a) and 2(b)).
Besides, the overlapping genes that exhibited similar
expression levels in tumor samples from both the TCGA
and ICGC databases were shown in a Venn diagram,
including DBP, NPAS2, PER1, RORA, and TIMELESS
(Figure 2(c)). Next, we analyzed the copy number varia-
tion (CNV) and methylation, two important factors
influencing the mRNA expression, of these circadian
clock genes. As shown in Figure 2(d), the methylation
levels of CRY2, DBP, and RORA were statistically higher
in HCC tissues than in normal liver tissues. Besides, most
of the circadian clock genes were regulated by methyla-
tion except for ARNTL and PER1 (Figure 2(e)). The
result of the CNV analysis indicated that the mRNA
expressions of all circadian clock genes, except for DBP
and NPAS2, were regulated by copy number variation
(Figure 2(f)). Moreover, a Venn diagram was drawn to
demonstrate that these genes were regulated by both
methylation and CNV (Figure 2(g)).

Furthermore, the protein expression levels of TIME-
LESS and CRY2 were validated using the HPA database.
The protein expression level of TIMELESS was increased,
and that of CRY2 was decreased in cancerous tissues com-
pared to those in adjacent noncancerous tissues in HCC
patients (Fig. S1), which was in agreement with the bioin-
formatics analysis. Finally, to investigate the interrelation-
ship between circadian clock genes, the Pearson
correlation coefficient was applied to draw the correlation
coefficient heatmap based on the gene expression profiles.
As shown in Figure 2(h), three circadian clock genes
CRY2, PER1, and RORA, were positively and closely
related to each other, indicating their similar effects on
HCC patients. Additionally, the correlation between each
gene was investigated by R software (Fig. S2), which fur-
ther verified the close relationship between CRY2, PER1,
and RORA. On the contrast, TIMELESS showed a low rel-
evance to the expression of CRY2, PER1, and RORA,
which were slightly negatively associated. Indeed, CRY2,
PER1, and RORA were downregulated, and TIMELESS
was upregulated in tumor tissues, suggesting that TIME-
LESS may play a different role in HCC.

3.4. Circadian Clock Genes as Prognostic Biomarkers for
HCC Patients. HCC patients were grouped into the high-
and low-risk groups according to the expression of the tar-
geted gene. The survival curves of circadian clock genes were
plotted using the K-M method (Figures 3(a) and 3(b)).
Among 13 circadian clock genes, CRY2, PER1, RORA, and
TIMELESS were the only four genes associated with the
overall survival of HCC patients (Fig. S3). Patients with
higher TIMELESS expression had poorer overall survival
rates (P = 0:01 in TCGA and P = 0:003 in ICGC). On the
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contrary, patients with lower CRY2, PER1, and RORA
expressions exhibited poor overall survival rates (P = 0, P =
0:001, and P = 0:018 in TCGA and P = 0:003, P = 0:005,
and P = 0:004 in ICGC, respectively). Collectively, these
results suggested that CRY2, PER1, RORA, and TIMELESS
were closely associated with the prognosis of HCC.

3.5. Circadian Clock Gene-Based Prediction Models. Subse-
quently, a circadian clock gene-based prediction model was
established to predict patient survival using the multivariate
Cox regression analysis. As shown in Figures 4(a) and 4(b),
ROC curves of the single-gene model (CRY2, PER1, RORA,
and TIMELESS, respectively) showed unsatisfactory predic-
tive effects, with the AUC value of 0.6 approximately (0.63,
0.673, 0.586, and 0.62 in TCGA and 0.641, 0.672, 0.62,
0.696 in ICGC, respectively). Furthermore, the traditional
TNM stage-based prediction model was constructed, and it
was observed that the AUC value was 0.642 in both TCGA
and ICGC, which is nearly equal to the single-gene-based
model (Figures 4(c) and 4(d)). In addition, the combinatory
prediction models consisting of a single circadian clock gene
and the TNM stage were constructed, which still exhibited
unsatisfactory prediction (Fig. S4). A four-gene-based pre-

diction model combined with two clinicopathological risk
factors, TNM stage and sex, was established to further
improve predictive frequency (Figures 4(e) and 4(f)). Risk
scores of the patients were calculated according to the fol-
lowing formulas:

Risk Score TCGAð Þ = −0:235 ∗ CRY2Exp
� �

+ −0:031 ∗ RORAExp
� �

+ −0:267 ∗ PER1Exp
� �

+ 0:077 ∗ TIMELESSExp
� �

+ −0:130 ∗ SEXð Þ
+ 0:905 ∗ TNMð Þ,

Risk Score ICGCð Þ = −0:576 ∗ CRY2Exp
� �

+ 0:193 ∗ RORAExp
� �

+ −0:236 ∗ PER1Exp
� �

+ 0:913 ∗ TIMELESSExp
� �

+ −1:109 ∗ SEXð Þ
+ 1:135 ∗ TNMð Þ:

ð2Þ

As a result, the AUC value reached 0.743 in the TCGA
database and 0.806 in the ICGC database. Finally, patients
were divided into the high-risk and low-risk groups accord-
ing to the median point, and survival curves were plotted,
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Figure 1: Core circadian clock genes in HCC. The circadian rhythm of core circadian genes in HCC, including ARNTL, CRY1, CRY2,
CLOCK, DBP, NR1D1, NR1D2, NPAS2, PER1, PER2, PER3, RORA, and TIMELESS. RNA-seq data are from ref. [12].
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demonstrating a similar tendency. Collectively, the results
showed that the prognostic model proposed in this study
effectively predicted the survival of HCC patients.

3.6. Nomogram Analysis Indicates the Sampling Time of
HCC Patients. Furthermore, nomogram analysis was per-
formed based on genes showing significant circadian
rhythms in liver tissue, which showed that CCGs, including
CRY2, PER1, and RORA, have significant impacts on the
predictive accuracy of the 4-CCG-based predictive model
(Figure 5(a)). The nomogram results also revealed that lower
expression levels of CRY2, PER1, and RORA were associated
with higher predictive ability. More importantly, due to the
rhythmic expression of CCGs in the liver, the time course
of CCG’s predictive accuracy was plotted based on their dif-
ferent expression levels (Figure 5(b)). Previous research indi-

cates that the expression peak phase of CCGs shifted by ~12
hours between the mouse and baboon [12]. Accordingly, we
found that, when patents sampling at night (8:00 pm), CRY2
and PER1 reached their peak, resulting in higher risk scores
and facilitating the early diagnosis of patients. Therefore, it is
better to sample the HCC patients in the evening to obtain a
more accurate predictive function.

3.7. Molecular Mechanisms of Circadian Clock Genes in
HCC. To investigate the underlying mechanisms of circa-
dian clock genes in the prognosis and diagnosis of HCC,
firstly, WGCNA was performed to construct a coexpression
gene network of the four core clock genes. As shown in
Figure 5, these four clock genes are marked as large red
nodes, whereas blue nodes represent the other coexpressed
genes. Notably, gene CRY2, PER1, and RORA were closely

Table 1: Univariate and multivariate analyses of clinicopathological characteristics for overall survival in HCC patients from the TCGA
dataset (N = 318).

Variables n (%)
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Age

<60 152 (47.8%) 1 (reference)

>60 166 (52.2%) 1.173 (0.796-1.730) 0.421

Sex

Female 99 (31.1%) 1 (reference) 1 (reference)

Male 219 (68.9%) 0.804 (0.539-1.198) 0.284 0.864 (0.579-1.287) 0.472

TNM stage

I+II 237 (73.9%) 1 (reference) 1 (reference)

III+IV 83 (26.1%) 2.815 (1.909-4.151) <0.001 1.522 (0.206-11.219) 0.68

Tumor grade

G1+G2 197 (61.9%) 1 (reference)

G3+G4 121 (38.1%) 1.077 (0.724-1.603) 0.713

T stage

T1+T2 237 (74.5%) 1 (reference) 1 (reference)

T3+T4 81 (25.5%) 2.839 (1.923-4.189) <0.001 1.822 (0.247-13.464) 0.556

Note: characteristics with P < 0:3 in the univariate analysis were further screened in the multivariate analysis. HR: hazard ratio; CI: confidence interval; TNM
stage: tumor-node-metastasis stage; T stage: stage of tumor invasion.

Table 2: Univariate and multivariate analyses of clinicopathological characteristics for overall survival in HCC patients from the ICGC
dataset (N = 231).

Variables n (%)
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Age

<60 44 (19.0%) 1 (reference)

>60 187 (81.0%) 0.890 (0.426-1.862) 0.758

Sex

Female 61 (26.4%) 1 (reference) 1 (reference)

Male 170 (73.6%) 0.502 (0.268-0.940) 0.031 0.389 (0.203-0.744) 0.004

TNM stage

I+II 141 (61.0%) 1 (reference) 1 (reference)

III+IV 90 (39.0%) 2.492 (1.351-4.599) 0.003 3.003 (1.598-5.645) <0.001
Note: characteristics with P < 0:3 in the univariate analysis were further screened in the multivariate analysis. HR: hazard ratio; CI: confidence interval; TNM
stage: tumor-node-metastasis stage.
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Figure 2: Continued.
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Figure 2: Differential expression analysis of circadian clock genes between HCC and normal tissues. (a, b) Box diagrams showing the
expression levels of 13 circadian clock genes in tumor samples compared with normal samples in TCGA and ICGC. The P values of the
differential expressed four CCGs (CRY2, PER1, RORA, and TIMELESS) were >0.05. (c) The circadian clock genes showing a similar
expression tendency in TCGA and ICGC. (d) Methylation difference between normal and tumor tissues. (e) Correlation between
methylation and mRNA expression. (f) Correlation of copy number variation (CNV) with mRNA expression. (g) Venn diagram showing
clock genes that were regulated by both methylation and CNV. (h) The interrelationship between circadian clock genes. TCGA: The
Cancer Genome Atlas; ICGC: International Cancer Genome Consortium.
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Figure 3: The prognostic value of circadian clock gene in HCC. The role of circadian clock genes in the overall survival of HCC patients
based on the TCGA database (a) or ICGC database (b).
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Figure 4: Prediction models to predict the survival of HCC patients. (a, b) ROC and survival curves of single-gene-based models in TCGA
and ICGC, respectively. (c, d) ROC and survival curves of TNM stage-based model in TCGA and ICGC, respectively. (e, f) ROC and
survival curves of the model consisting of survival-related four genes significantly associated with TNM stage and sex in TCGA and
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Figure 6: Coexpression network of circadian clock genes. The red nodes are circadian clock genes, while the blue nodes are the coexpressed
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associated, possessing several mutual cooperators (hereafter
referred to as Cluster 1). However, TIMELESS was a rela-
tively independent part of the coexpression gene network
(Figure 6). This result was in accordance with the interrela-
tionship between circadian clock genes (Figure 2(h)).

Previous studies have revealed the connection between
the circadian rhythm and tumor microenvironment [13].
However, the role of the circadian clock in the tumor micro-
environment remains unclear. Next, a correlation analysis
was performed between the four core circadian clock genes
and the infiltration levels of different immune cells
(Figure 7). It was observed that Cluster 1 was significantly
negatively associated with B cell, natural CD4+ regulatory
T cell (nTreg), CD8+ T cell, and dendritic cell (DC) and pos-
itively related with the infiltration of T helper 17 (Th17) cell.
On the contrary, TIMELESS was positively associated with B
cell and nTreg cell. TIMELESS was also correlated with Tfh
cell, NK cell, and Tr1 cell. These results indicated that Clus-
ter 1 and TIMELESS might affect the survival of HCC
patients by regulating immune infiltration levels, especially
B cell and nTreg cell.

In addition, the role of circadian clock genes in cancer-
related signaling pathways, including TSC/mTOR, RTK,
RAS/MAPK, PI3K/AKT, hormone ER, hormone AR, EMT,
DNA damage response, cell cycle, and apoptosis pathways,
were examined (Figures 8(a) and 8(b)). As shown in pancan-
cer analysis (Figure 8(a)) or liver cancer analysis
(Figure 8(b)), Cluster 1 and TIMELESS exerted opposite
effects on the same signaling pathway; that is, Cluster 1 acti-
vated, whereas TIMELESS inhibited the same pathway and
vice versa. Besides, Cluster 1 mainly inhibited apoptosis, cell
cycle, and DNA damage response, which play a critical role
in maintaining uncontrolled proliferation and chemoresis-
tance of cancer cells. For a better understanding of the
molecular functions underlying the oncogenesis of early
HCC, Gene Set Enrichment Analysis (GSEA) was per-
formed, which showed that each clock gene of Cluster 1
was enriched in the same pathway, such as fatty acid metab-
olism, adipogenesis, bile acid metabolism, and peroxisome
pathway based on the Hallmark Gene Sets. By contrast,
TIMELESS was involved in pathways, including mitotic
spindle, oxidative phosphorylation, and the E2F pathway.
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Figure 7: The correlation between circadian clock genes and the immune infiltration level in HCC. nTreg: natural regulator T cell; Th17: T
helper 17 cells; DC: dendritic cell; Tfh: T follicular helper cell; NK, natural killer cell; Tr1: type 1 regulatory T cell.
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Figure 8: Continued.
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KEGG gene sets were also applied as a reference cohort
(Figures 8(c) and 8(d)). It was also observed that Cluster 1
was closely positively related to the metabolism of amino
acids, whereas TIMELESS was related to DNA replication
and DNA repair-associated signaling pathways (Fig. S5).

Cancer chronotherapy, a therapeutic treatment at a spe-
cific time following circadian rhythms, may improve the
antitumor effects and reduce toxicity [14]. Accordingly, the
correlation between clock gene expression and drug sensitiv-
ity was also investigated using datasets from Genomics of
Drug Sensitivity in Cancer (GDSC), in which high expres-
sion means resistance to a particular anticancer drug. We
found that higher expression of Cluster 1 exhibited a similar
positive correlation with chemoreagents such as selumetinib,
17-AAG, docetaxel, PD-0325901, and trametinib. Con-
versely, TIMELESS showed a stronger negative correlation
with masitinib, GSK1070916, methotrexate, navitoclax, PI-
103, SNX-2112, and 5-fluorouracil (Figure 8(e)). These
results suggested that inhibition of Cluster 1 or activation
of TIMELESS might enhance the chemotherapeutic sensitiv-
ity toward special anticancer drugs.

4. Discussion

This study demonstrated that four circadian clock genes,
including CRY2, PER1, RORA, and TIMELESS, could be

potential diagnostic and prognostic biomarkers for HCC
patients. We also established a prediction model consisting
of these four genes, TNM stage, and sex, demonstrating high
predictive ability. In addition, it was shown that Cluster 1
(CRY2, PER1, and RORA) and TIMELESS exerted opposite
impacts on interactive gene network, infiltration of immune
cells, cancer-related signaling pathways, and cellular sensi-
tivity to clinically used drugs.

Disruption of the circadian rhythm always leads to
physiological disorders of homeostasis in mammals,
which is closely associated with the development of can-
cer [4]. Gene expression, cell cycle, and DNA repair are
regulated by the clock genes, providing the base to the
hypothesis that disruption of biorhythms may predispose
individuals to cancer [6]. Considering the possibility that
circadian clock genes play a pivotal role in the physiolog-
ical functions of mammals, rendering individuals towards
the development of cancer [15], the differential expression
of core circadian clock genes between HCC tissues and
normal tissues was discussed. It was observed that DBP,
NPAS2, PER1, RORA, and TIMELESS showed similar
expression tendency in HCC tissues in the TCGA and
ICGC databases. The mRNA expression was either
affected by methylation [16] or by copy number variation
(CNV), and the fluctuation of DNA copy number was
found responsible for the alteration in coding RNA
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Figure 8: Pathway associated with survival-related clock genes. (a, b) Correlation between survival-related genes and cancer-related
pathways. Pancancer (a) or liver cancer analysis (b) was performed to find the key cellular processes associated with the four CCGs. (c,
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expression level [17]. It was also observed that the
expression of genes such as CRY2, DBP, NPAS2, and
RORA was significantly affected by methylation
(Figure 2(d)), and all circadian clock genes, except for
DBP and NPAS2, exhibited a significant correlation with
CNV. Collectively, the results mentioned above implied
the involvement of methylation or CNV in the dysregula-
tion of circadian clock genes.

In addition, we demonstrated that the dysregulation of
circadian clock genes was associated with the prognosis of
HCC patients. High expression of Cluster 1 (CRY2, PER1,
and RORA), or low expression of TIMELESS, was corre-
lated with prolonged overall survival (OS) of patients
(Figure 3). The investigation of the molecular mechanisms
revealed that Cluster 1 and TIMELESS counteractively reg-
ulated the infiltration of several immune cells such as B
cells and nTreg cells. Inherently, B cells can inhibit tumor
growth by producing antibodies and presenting tumor
antigens, while nTreg cells control the inflammatory
microenvironment to restrict tumor development
[18–20]. High expression of Cluster 1, or low expression
of TIMELESS, might inhibit both the infiltration of B cells
and nTreg cells (Figure 7), suggesting that the dysregula-
tion of circadian clock genes may manifest HCC by dis-
rupting the tumor microenvironment.

Another important finding of this study was that dys-
regulation of the circadian clock genes was also found to
be associated with several cancer-related pathways
(Figure 8), such as DNA damage response, cell cycle,
and apoptosis, which is in accordance with previous
research that the circadian clock genes influenced cancer
susceptibility through DNA damage and apoptosis [21].
Although the cell cycle and circadian clock genes are con-
sidered two different biological oscillators, their close rela-
tion and interaction have been reported [22]. The GSEA
results showed that gene sets of E2F targets, fatty acid
metabolism, AKT/mTOR, and p53 signal pathway were
significantly enriched. Similarly, Cluster 1 and TIMELESS
exerted effects on these signaling pathways conversely.
Moreover, AKT/mTOR and p53 pathways played vital
roles in regulating cell proliferation, and TIMELESS could
promote the proliferation of HCC cells by inhibiting the
p53-dependent signals [23], affirming the finding that high
expression of TIMELESS is related to poor survival of
HCC patients (Figure 3).

Furthermore, the interaction between the circadian clock
genes and cellular sensitivity to an anticancer drug was ana-
lyzed. Several chemoreagents, such as 5-FU [24] and doce-
taxel [25], have demonstrated potent antiliver cancer
activities. It was observed that higher expression of Cluster
1 might enhance the chemoresistance of these anticancer
reagents, implying that inhibition of Cluster 1, or activation
of TIMELESS, may render liver cancer cells more sensitive to
chemotherapy.

5. Conclusion

This work demonstrated that four CCGs, including CRY2,
PER1, RORA, and TIMELESS, could be potential diagnos-

tic and prognostic biomarkers for HCC patients. Besides,
CRY2, PER1, and RORA exerted opposite impacts against
TIMELESS on immune cell infiltration and cancer-related
signaling pathways, affecting the overall survival of HCC
patients. Selective regulation of circadian clock genes
may further assist in precise chronotherapy of HCC
patients.
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