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Background. Diabetic retinopathy (DR) is the most important manifestation of diabetic microangiopathy. It is essential to explore
the gene regulatory relationship and genomic variation disturbance of biological networks in DR progression. Methods. In this
study, we constructed a comprehensive lncRNA-mRNA ceRNA network of DR procession (CLMN) and explored its
topological characteristics. Results. Modular and functional analysis indicated that the organization of CLMN performed
fundamental and specific functions in diabetes and DR pathology. The differential expression of hub ceRNA nodes and
positive correlation reveals the highly connected ceRNA regulation and important roles in the regulating of DR pathology. A
large proportion of SNPs in the TFBS, DHS, and enhancer regions of lncRNAs will affect lncRNA transcription and further
cause expression variation. Some SNPs were found to disrupt the lncRNA functional elements such as miRNA target binding
sites. These results indicate the complex nature of genotypic effects in the disturbing of CLMN and further contribute to gene
expression variation and different disease phenotypes. Conclusion. The identification of individual genomic variations and
analysis of biological network disturbance by these genomic variations will help provide more personalized treatment plans
and promote the development of precision medicine for DR.

1. Introduction

Diabetic retinopathy (DR) is the most important manifesta-
tion of diabetic microangiopathy, a common and specific
microvascular complication of diabetes, and one of the seri-
ous complications of diabetes [1, 2]. Therefore, it is essential
to explore the gene regulatory relationship and genomic var-
iation disturbance of biological network in DR progression
and further contribute to the prevention and treatment of
this complex disease. With the development and improve-
ment of bioinformatics techniques and high throughput
RNA sequencing data, we can apply methods such as con-
structing biological networks and differential expression to
analyze the pathogenesis of complex diseases. At the same
time, protein-protein interaction (PPI) networks and non-
coding RNA-mRNA networks can be constructed for more
comprehensive analysis [3]. With the gradual improvement

of genomic annotations, multiple sources of disease-related
genomic variations such as single nucleotide polymorphisms
(SNPs) have been identified, providing opportunities for us
to further understand the regulatory mechanisms of complex
diseases and discover new therapeutic targets.

Long noncoding RNA (lncRNA) is a new type of non-
coding RNA, usually defined as RNA molecules longer than
200 nucleotides [4]. LncRNAs have been shown to be com-
peting endogenous RNAs (ceRNAs) and involved in various
biological processes, such as cell growth, antiapoptosis,
migration, and invasion [5, 6]. As research progresses,
lncRNA has been confirmed to be a key regulator of certain
diseases and as an important biomarker in certain biological
processes [7]. Experiments confirmed that knockdown of
MALAT1 inhibited cell proliferation, migration, and angio-
genesis of hRMECs via suppressing the VE-cadherin/β-
catenin complex through targeting miR-125b. Inhibition of
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MALAT1 may serve as a potential target for antiangiogenic
therapy for DR [8]. HCG18 promotes M1 macrophage
polarization through regulating the miR-146a/TRAF6 axis,
facilitating the progression of diabetic peripheral neuropathy
[9]. HOTTIP improves diabetic retinopathy by regulating
the p38-MAPK pathway [10]. Emerging evidence suggests
that the expression of lncRNAs can be affected by genomic
variations such as SNPs, somatic mutations, and copy num-
ber variation [11]. A number of SNPs have been identified in
human lncRNA regions and to be associating with various
complex diseases including DR [12]. Thus, it is essential to
explore the distribution on lncRNAs and perform systematic
analysis to evaluate lncRNA-related biological networks
affected by genomic variations.

In this study, we have structured our work in several sec-
tions. In Materials and Methods, we constructed a compre-
hensive lncRNA-mRNA ceRNA network (CLMN) related
to diabetes and DR. Based on these networks, we performed
modular and functional analysis to explore the topological
characteristics of lncRNAs and coding genes. In Results,
our analysis revealed that the organization of CLMN per-
formed fundamental and specific functions in diabetes and
DR pathology. Based on high-throughput RNA sequencing
data (GSE102485), we identified differentially expressed
hub ceRNA nodes in the CLMN which were important reg-
ulators in DR progression. The positive correlation of
lncRNA-mRNA relations reveals the highly connected
ceRNA regulations and important roles in the regulating of
DR pathology. Further, a global map of lncRNA-SNP associ-
ations was constructed to show how genomic variants influ-
ence biological functions in DR. We explored DR-related
SNP and linkage disequilibrium (LD) SNP (r2 > 0:8) distri-
bution on lncRNAs and found that there was a large propor-
tion of SNPs localized on the functional regions of lncRNAs,
such as TFBS, DHS, and enhancer regions, which will affect
lncRNA transcription and further cause expression varia-
tion. Some SNPs were found to be localized on the func-
tional elements such as miRNA target binding sites of
lncRNAs. In Discussion and Conclusions, we concluded that
our findings reveal the complex nature of genotypic effects
in the disturbing of CLMN and further contribute to gene
expression variation and different disease phenotypes. Over-
all, the identification of individual genomic variations and
analysis of biological network disturbance by these genomic
variations will help provide more personalized treatment
plans and promote the development of precision medicine
for DR.

2. Materials and Methods

2.1. Collection of Diabetes and DR Associated Gene and
lncRNAs. We downloaded genes associating with diabetes
and diabetic retinopathy (DR) from the DisGeNET
(https://www.disgenet.org/) database [13]. A number of
1,349 diabetes genes and 371 DR genes were collected. There
were 269 common genes in the intersection of diabetes and
DR genes. In addition, to obtain lncRNAs associated with
disease genes, we downloaded 2,799 lncRNA-mRNA ceRNA

regulations from LncACTdb (2.0) [14]. This ceRNA dataset
includes 1,848 lncRNAs and 1,451 protein-coding genes.

2.2. Human Protein-Protein Interaction Network. The
Human Protein-Protein Interaction (PPI) network was
obtained from HuRI (http://www.interactome-atlas.org/)
[15]. The network contains 9,064 proteins and 64,006 inter-
actions. We used molecular complex detection (MCODE) to
characterize the network. MCODE clusters are generated by
MCODE based on topology to identify the function of each
highly connected region. Highly interacting nodes in the
cluster are identified by maintaining a parameter K‐core =
2, a node score cutoff = 0:2, and a maximum depth of 100.

2.3. Construction of CLMN. We mapped diabetes- and DR-
related genes to the PPI network from HuRI and extracted
the largest network component. Further, the lncRNA-
mRNA ceRNA regulations from LncACTdb (2.0) were inte-
grated into the PPI network to construct CLMN. The CLMN
contains a total of 3,299 nodes and 19,691 edges while
lncRNAs, diabetes genes, DR genes, and common genes
were illustrated as different color.

2.4. High-Throughput RNA Sequencing Data. The expression
profile and sample annotation of DR (GSE102485) were
downloaded from the GEO database (https://www.ncbi.nlm
.nih.gov/geo/). This dataset contains 25 DR and 5 normal
retina samples.

2.5. Network Illustration and Topological Analysis. The
Cytoscape (v3.4.0) software was used to illustrate the ceRNA
network. The MCODE plug-in of Cytoscape was used to
detect tightly connected modules. The network analyzer
plug-in of Cytoscape was used to calculate the topological
characteristics of CLMN.

2.6. Genomic Variations and Their Association with
lncRNAs. We collected DR associating SNPs and LD SNPs
(r2 > 0:8) from the LincSNP 3.0 database [16]. These SNPs
were classified into different catalogs according to their rela-
tive genomic locations with lncRNAs, including enhancer
region, transcription factor binding site, lncRNA region,
DNase I hypersensitive sites, open chromatin region, foot-
print region, and topologically associated domains.

2.7. Statistical Analysis. Students’ t-test was used to measure
gene expression variation between DR and normal samples.
We used the cutoff of p value as 0.05 and the cutoff of fold
change as 1.5 as threshold to identify significantly expressed
genes. The Pearson correlation analysis was performed to
identify coexpressed lncRNA-mRNA gene pairs with p value
as 0.05. The Mann-Whitney U-test was used in comparison
of topological characteristics between different types of
nodes. All statistical analysis was performed based on the
R (3.4.1) software.

3. Results

3.1. Construction of CLMN and Topological Characteristic
Analysis. To provide a global view of lncRNA-mRNA regu-
lations in the procession of diabetes and DR, we collected
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diabetes- and DR-related genes from the DisGeNET [13]. A
number of 1,349 diabetes genes and 371 DR genes were col-
lected. There were 269 common genes in the intersection of
diabetes and DR genes (Figure 1(a)). We mapped these
genes to the PPI network from HuRI and extracted the larg-
est network component. Further, we collected ceRNA regu-
lations consisting of lncRNAs and mRNAs from the
LncACTdb (2.0) database [14]. These lncRNA-gene regula-
tions were integrated into the PPI network to construct a
comprehensive lncRNA-mRNA network of DR procession
(CLMN). The CLMN contains a total of 3,299 nodes and
19,691 edges while lncRNAs, diabetes genes, DR genes, and
common genes were illustrated as different color
(Figure 1(b)).

We explored the node degree distribution of lncRNAs,
diabetes genes, DR genes, and common genes, respectively.
Investigation of the degree distribution of lncRNA nodes
(R2 = 0:9797, slope = 1:36), diabetes nodes (R2 = 0:98, slope
= −1:405), DR nodes (R2 = 0:8045, slope = −0:903), and
common nodes (R2 = 0:7727, slope = −0:773) revealed
power-law distributions (Figures 1(c)–1(f)), which indicated
that the CLMN was a scale-free network. These results sug-
gested that the CLMN was similar as most biological net-
works and was well organized by a core set of nodes rather
than random networks [6]. Further, we compared several
topological properties, including degree, betweenness cen-
trality (BC), and topological coefficient (TC), between differ-
ent types of nodes. In general, degrees are the number of
edges connected to the nodes, while high degree indicates a
hub that participated in more regulations. We found that
common gene nodes usually had more degrees compared
to diabetes nodes and DR nodes (Figure 1(g)). The BC is
defined as the ratio of the shortest path between a pair of
nodes passing through a given node. Node with high BC
reveals a bottleneck that acted as bridges connecting differ-
ent network modules. Also, we found that common gene
nodes had higher BC values compared to diabetes nodes
and DR nodes (Figure 1(h)). The TC is calculated to mea-
sure the degree to which a node shares links with other
nodes in the network. However, the analysis of the results
shows that there is no significant difference of TC between
the different types of nodes (Figure 1(i)). These observations
indicated that the common genes exhibited more specific
topological properties and played important roles in the pro-
gression of DR.

3.2. Modular Organization of CLMN Reveals Fundamental
Processes. Disease-related genes tend to interact with others
rather than individual genes and act as regulators of patho-
logical processes. Generally, the protein products encoded
by these genes can perform similar functions in the same
module. In order to study the common pathology of diabetes
and DR, we use the MCODE plug-in in Cytoscape to dis-
cover potential modules in the network and select the top
5 modules with the highest complex scores [17] as the
important modules in the network. As a result, the five most
important modules (with top five highest MCODE score)
were identified from the interactive network (Figure 2(a)).
Each module contains a subnet of disease-related genes

and their ceRNA relationship of lncRNAs. Subsequently,
we studied the function of each module by performing func-
tional enrichment analysis of coding genes based on Kyoto
Encyclopedia of Genes and Genomes (KEGG) and GO
(Gene Ontology) (Figures 2(b) and 2(c)). KEGG is a
resource for understanding high-level functions and utilities
of the biological pathways that are manually created by cap-
turing knowledge from published literature [18]. GO is a
comprehensive system of biological functions, ranging from
the molecular to the organism level, across the multiplicity
of species in the tree of life [19]. We found that these mod-
ules were associating with basic biological processes such as
transforming growth factor beta receptor binding, RNA
polymerase II transcription factor bindings, and TGF-beta
signaling pathway. These are the fundamental processes to
maintain the cell growth and transcription of genes of cellu-
lar biology. For example, the module M1 was identified to be
associating with the TGF-beta signaling pathway, which has
diverse effects on cell differentiation, migration, prolifera-
tion, and gene expression [20]. This pathway also regulates
cell fate during embryonic development and in the mainte-
nance of adult tissue homeostasis [21]. Further, several can-
cer pathways were found to be associating with these
modules indicating there were common genes and regula-
tors beheading complex disease, while dysregulation of these
modules can lead to a plethora of developmental disorders
and diseases [22]. These results indicated that the organiza-
tion of CLMN modules performed fundamental processes of
cellular biology.

3.3. Subnetwork Analysis Elucidates Crucial Functions in DR
Pathology. While the CLMN could provide a global view of
all possible ceRNA regulations and revealed network mod-
ules involved in fundamental processes of cellular biology,
the partial subnetworks would indicate a more detailed illus-
tration of ceRNA regulations and functions. Based on the
above observations that common genes exhibited more spe-
cific topological properties (Figures 1(g)–1(i)), we con-
structed a ceRNA subnetwork consisting of 269 common
genes and 1,848 lncRNAs and further explored modular
organization and functional analysis (Figures 3(a) and
3(b)). We used the MCODE plug-in of Cytoscape to find
the submodules of this subnetwork. After obtaining the sub-
modules, we performed GO and KEGG analysis on the mod-
ules with relatively high scores in the network (Figures 3(c)–
3(f)). A module was found to be mainly involved in collagen
binding, protein serine/threonine kinase activity, and AGE-
RAGE signaling pathway in diabetic complications, which
are functions and pathways related to diabetes
(Figures 3(c) and 3(d)) [23]. Another module was associat-
ing with mTOR signaling and AMPK signaling pathways,
which play important roles in the development of diabetes
and DR (Figures 3(e) and 3(f)) [24, 25]. Studies have docu-
mented the protective effects of the AMPK signaling path-
way on DR angiogenesis [26]. Under pathological
conditions, AMPK can attenuate angiogenesis by inhibition
of mTOR and TGF-β/BMP signaling in DR [24]. Insulin
resistance and insulin signaling pathways were also found
to be associating with this module (Figure 3(f)). In diabetes,
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insulin resistance will lead to high glucose which can sup-
press AMPK activity and activate mTOR in procession
[27]. These results indicated that the subnetwork consisting
of common genes elucidates crucial and specific functions in
diabetes and DR pathology.

3.4. Identification of Key ceRNA Relations and Functional
Analysis. The regulating effect of a gene can be reflected
from topological characteristics based on the background
of gene regulatory network [28]. In the CLMN, some well-
known coding genes and lncRNAs exhibited higher values
of degree and BC, indicating that these nodes participate in
more ceRNA regulations and play key roles in DR pathology
(Figures 4(a) and 4(b)). For example, the coding genes
VEGFA, HGF1R, and BCL2 have been found to be involved
in diabetes and DR progression [29–31]. Knockdown of the
lncRNA NEAT1 exerts suppressive effects on diabetic reti-
nopathy progression [32]. Another lncRNA XIST regulates
hyperglycemia-associated apoptosis and migration in
human retinal pigment epithelial cells [33]. Based on the
ceRNA theory, lncRNAs are always considered to be
upstream of mRNAs and playing driver roles of ceRNA reg-
ulation [6]. We compared the topological characteristics
between coding genes and lncRNAs in the CLMN
(Figures 4(c)–4(f)). In the whole network, coding genes
had higher values of degree (Figure 4(c)) and BC
(Figure 4(e)). Further, we compared the topological charac-
teristics between hub (defined as nodes with top 50 higher
degrees) coding genes and hub lncRNAs and found that
lncRNAs exhibited higher values of degree (Figure 4(d))
and BC (Figure 4(f)) than coding genes. To explore the reg-
ulating tendency of hub lncRNAs, we calculated their regu-
lating proportion of diabetes genes, DR genes, and
common genes regulated by lncRNAs and found that most
hub lncRNAs tend to regulate higher proportion of common
genes (Figures 4(g) and 4(h)). These results indicate that hub

lncRNAs play key roles and control the major component of
CLMN.

To illustrate detail ceRNA relationship of hub lncRNAs
and coding genes, a ceRNA interaction profile has been built
(Figure 4(i)). Among the 50 hub mRNAs, there were 32 dia-
betes genes, 17 common genes, and 1 DR gene, respectively.
Based on hierarchical clustering result, we found that diabe-
tes genes were more likely to be involved in a cluster (with
shorter distance than common genes), indicating the stable
ceRNA relationship in diabetes. While in the progression
of DR, the coding genes were more specifically to be regu-
lated by a certain or a group of lncRNAs. Several well-
known DR genes (VEGFA, HGF1R, TIMP3, HIF1A, ATM,
BCL2, and STAT3) were coregulated by a panel of lncRNAs
(NEAT1, EAF1−AS1, KCNQ1OT1, LINC00657, etc.) indi-
cating the synergistic regulation of these lncRNAs. Func-
tional analysis revealed that the hub coding genes were
involved in the AGE-RAGE signaling pathway in diabetic
complications, diabetic cardiomyopathy, and several cancer
pathways (Figure 4(j)). These coding genes were also associ-
ating with response to hypoxia and response to oxygen level
based on GO background (Figure 4(k)). The hypoxia process
will lead to an increased expression of angiogenic factors and
subsequent neovascularisation, which characterize the pro-
liferative phase of DR [34]. These results revealed that hub
lncRNAs and coding genes exhibited specific topological
characteristics and play key roles in the progression of DR.

3.5. Specific Expression Pattern of Hub ceRNA Relations in
CLMN. To characterize the expression patterns of hub
ceRNA relations, a high-throughput RNA sequencing data-
set from GEO (GSE102485) which contains 25 DR and 5
normal retina samples was used to perform differential
expression and coexpression analysis. Several hub lncRNAs
have been found to be differentially expressed between DR
and normal retina samples (Figure 5(a)). For example, a
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well-known DR-related lncRNA NEAT1 was highly
expressed in DR samples, indicating its risk role in DR pro-
gression, which is consistent with previous founding [32].
Some other lncRNAs such as LINC00963, AC093157.1,
NR2F1-AS1, NUTM2B-AS1, and AL024507.2 were also

upregulated in DR samples. These lncRNAs may be poten-
tial risk factors in DR progression. The increased lncRNA
expression can enhance downstream coding-gene expres-
sion; thus, a functional ceRNA relation can be captured by
coexpression analysis [6, 35]. We explored the coexpression
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patterns of ceRNAs including hub lncRNAs and coding
genes (Figures 5(b) and 5(c)). The lncRNA NEAT1 was sig-
nificantly coexpressed with other hub coding genes
(Figure 5(b)). Three of these coding genes (BCL2, HIF1A,
and TIMP3) were common genes in diabetes and DR. Posi-
tive correlation patterns have also been found in some other
ceRNA pairs (Figure 5(c)). Overall, the differential expres-
sion of hub ceRNA nodes and positive correlation of their
relations reveals the highly connected ceRNA regulations
and important roles in the regulating of DR pathology.

3.6. A Global Map of Genomic Variations Disturbing CLMN.
Emerging evidence suggests that the expression of lncRNAs
can be affected by genomic variations such as single nucleo-
tide polymorphisms (SNPs), somatic mutations, and copy
number variations [11]. A number of SNPs have been iden-
tified in human lncRNA regions and to be associating with
various complex diseases including DR [12]. To explore
the SNP distribution on lncRNAs and their functional affec-
tion on the CLMN, we collected DR associating SNPs and
LD SNPs (r2 > 0:8) from the LincSNP 3.0 database [16]
and built a global map of lncRNA-SNP associations in DR
(Figures 6(a) and 6(b)). These SNPs were classified into dif-
ferent catalogs according to their relative genomic locations
with lncRNAs, such as enhancer region, transcription factor

binding site, lncRNA region, and DNase I hypersensitive
sites. We found that most of the lncRNAs in CLMN were
associating with DR SNPs and LD SNPs, indicating the
CLMN was under disturbance of genomic variations. There
was a large proportion of SNPs localized on the TFBS, DHS,
and enhancer regions of lncRNA (Figures 6(c) and 6(d))
which will affect lncRNA transcription and further cause
expression variation. Some SNPs were found to be localized
on the lncRNA region, which will disrupt the lncRNA func-
tional elements such as miRNA target binding sites.

3.7. Dissecting Causative Genomic Variations Affecting
Biological Network of DR. Based on the above global map
(Figures 6(a) and 6(b)), we found a SNP rs12108041(C/T)
was localized on the lncRNA region of ENTPD3-AS1.
According to the ceRNA regulation of CLMN, ENTPD3-
AS1 was regulating a DR-related gene SIRT3 by sharing
two common miRNA binding sites of hsa-miR-6796-5p
and has-miR-1249-5p (Figures 7(a) and 7(b)). SIRT3 has
been reported to be involved in regulating neuronal dysfunc-
tion of DR [36]. Individuals with the genotype T on
ENTPD3-AS1 transcript will generate hsa-miR-6796-5p
and has-miR-1249-5p binding sites and construct a ceRNA
relation between ENTPD3-AS1 and SIRT3 (Figures 7(a)
and 7(b)). Also, the genotype A of rs931998 (G/A) on
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Figure 3: The subnetwork and modules of CLMN consisting of common genes. (a) The Venn diagram of diabetes, DR, and common genes.
(b) The subnetwork illustration. This network consisting of 269 common genes and 1,848 lncRNAs. (c–f) Illustration of subnetwork
modules and functional enrichment analysis based on KEGG and GO background.
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lncRNA STX1B-AS1 will generate hsa-miR-6868-5p binding
sites and further construct a ceRNA relation between
STX1B-AS1 and SOD1 (Figure 7(c)). The potential benefit
of SOD1 overexpression to inhibit retinal abnormality has
been previously studied [37]. The lncRNA MIR4435-2HG,
which is a host gene of hsa-miR-4435, has a large proportion
of SNPs localized on the TFBS region (Figures 6(c) and
6(d)). We collected experimentally verified miRNA targets
of hsa-miR-4435 from miRTarBase (v2020) [38] and found
a number of DR-related genes were targeted by hsa-miR-
4435 (Figure 7(d)), indicating an important regulating role
of MIR4435-2HG in DR progression. By using Chromatin
Immunoprecipitation Sequencing (ChIP-seq) data from
ENCODE (v112), we found enriched sequencing read peaks
of several transcript factors, such as ERG and PPARG, in the
TFBS region of MIR4435-2HG (Figure S1). Based on the
high-throughput RNA sequencing data (GSE102485), the
MIR4435-2HG and two transcript factors were
differentially expressed between DR and normal retina
samples (Figures 7(e)–7(g)). The lncRNA MIR4435-2HG

was significantly coexpressed with ERG (Figure 7(h)). A
number of SNPs were found to be localized within the
TFBS region of MIR4435-2HG (Figure S1). SNPs localized
on the MIR4435-2HG TFBS region will generate or disrupt
the binding sites of ERG (Figures 7(i) and 7(j)) and
PPARG (Figures 7(k) and 7(l)) bind sites and further affect
its transcriptional process. These results indicate the
complex nature of genotypic effects in the disturbing of
CLMN and further contribute to gene expression variation
and different disease phenotypes.

4. Discussion

In this study, a comprehensive lncRNA-mRNA ceRNA net-
work of DR procession was constructed to explore the
lncRNA regulatory behaviors through ceRNA interactions.
At the same time, we divided the CLMN into diabetes-
related gene nodes, DR-related gene nodes, and common
gene nodes and further analyzed the topological characteris-
tics of the network. Observations indicated that the common

(k)

Figure 4: Topological characteristics and functional analysis of key ceRNAs in DR progression. (a) The degree and BC distribution of
mRNAs in the CLMN. (b) The degree and BC distribution of lncRNAs in the CLMN. (c) Comparison of node degree between all coding
genes and lncRNAs in the CLMN. (d) Comparison of node degree between the hub coding genes and lncRNAs in the CLMN. (e)
Comparison of BC between all coding genes and lncRNAs in the CLMN. (f) Comparison of BC between the hub coding genes and
lncRNAs in the CLMN. (g) The regulating tendency of hub lncRNAs in regulating diabetes genes, DR genes, and common genes. (h)
The regulating proportion of hub lncRNAs in regulating different genes. (i) The ceRNA interaction profile between the top 50 hub
lncRNAs and coding genes. (j, k) Functional analysis of hub coding genes based on KEGG and GO.
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genes exhibited more specific topological properties and
played important roles in the progression of DR. Modular
and functional analysis indicated that the organization of
CLMN performed fundamental processes. Modules of
CLMN were identified to be involved in basic biological pro-
cesses such as transforming growth factor beta receptor
binding, RNA polymerase II transcription factor bindings,
and TGF-beta signaling pathway. These are the fundamental
processes to maintain the cell growth and transcription of
genes of cellular biology. Further, several cancer pathways
were found to be associating with these modules indicating

there were common genes and regulators beheading com-
plex disease, while dysregulation of these modules can lead
to a plethora of developmental disorders and diseases [22].
Further, we constructed a ceRNA subnetwork consisting of
269 common genes and 1,848 lncRNAs and further explored
modular organization and functional analysis. After obtain-
ing the submodules, we performed GO and KEGG analysis
and found that the subnetwork consisting of common genes
elucidates crucial and specific functions in diabetes and DR
pathology. Apart from other techniques, our method pro-
vides a global view of all possible ceRNA regulations and
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Figure 5: The differential expression and coexpression analysis of hub lncRNAs and coding genes in CLMN. (a) Differentially expressed
lncRNAs between DR and normal retina samples. (b) Coexpression patterns of NEAT1 related ceRNAs. (c) Coexpression patterns of
other hub ceRNAs. The expression values were log2-transformed.

20 Computational and Mathematical Methods in Medicine



(a)

Figure 6: Continued.
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Figure 6: Continued.
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Figure 6: The association between DR-related SNPs and lncRNAs. (a, b) A global map of DR-related SNP and LD SNP distribution and
their association with lncRNAs in CLMN. (c, d) Proportion of DR-related SNPs and LD SNPs localized on the different lncRNA regions.
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revealed network modules involved in fundamental pro-
cesses of cellular biology. Further, the partial subnetworks
would indicate a more detailed illustration of ceRNA regula-
tions and functions of DR. However, our method is mainly
performed based on the computational framework and pro-
vides a large number of potential regulators associated with
DR pathology. Thus, experimental validation is needed to
be performed to identify confidential genes in DR.

Based on high-throughput RNA sequencing data, we
performed differential expression of hub ceRNA nodes and
correlation analysis. Some of the previously reported
lncRNAs and ceRNAs were not significantly expressed or
coexpressed with ceRNA partners. These may be caused by
the individual genomic variations. Emerging evidence sug-
gests that the expression of lncRNAs can be affected by
genomic variations such as SNPs, somatic mutations, and
copy number variations [11]. To address this issue, we
explored SNP distribution on lncRNAs and built a global
map of lncRNA-SNP associations in DR. A number of
DR-related SNPs and LD SNPs have been identified in
human lncRNA regions and to be associating with various
complex diseases including DR [12]. To dissect the complex
disease pathology from individual genotype to phenotype,
systematic analysis was performed to evaluate biological net-
works affected by genomic variations. We found that there
was a large proportion of SNPs localized on the TFBS,
DHS, and enhancer regions of lncRNA which will affect
lncRNA transcription and further cause expression varia-
tion. Some SNPs were found to be localized on the lncRNA
region, which will disrupt the lncRNA functional elements
such as miRNA target binding sites. These results indicate
the complex nature of genotypic effects in the disturbing of
CLMN and further contribute to gene expression variation
and different disease phenotypes.

5. Conclusions

In conclusion, we constructed a comprehensive lncRNA-
mRNA ceRNA network of DR procession and performed
system analysis of this biological network. Further, we
explored the biological networks affected by genomic varia-
tions to dissect complex pathology of DR. The comprehen-

sive ceRNA network will provide a global view of all
possible lncRNA-mRNA associations under the complex
disease background. By exploring the network, some key
regulators with specific topological characteristics can be
easily identified. For example, the coding genes VEGFA,
HGF1R, and BCL2, which exhibiting higher degree and BC
in the network, have been found to be involved in diabetes
and DR progression [29–31]. Based on the genomic varia-
tion, patients can be divided into subsets with distinct phe-
notypes and outcomes, which allowing specific therapeutic
approaches [39, 40]. Thus, mapping of individual genomic
variations to genes and analysis of its biological network dis-
turbance by these personalized genomic variations will pro-
vide opportunities for us to further understand the
regulatory mechanisms of complex diseases and discover
new therapeutic targets of DR.
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Figure 7: The functional effect of different genomic variations. (a–c) Individuals with different SNP genotypes will gain or lose miRNA
binding sites and further disturb a ceRNA relation. (d) Some of the experimentally verified miRNA targets of hsa-miR-4435 were DR-
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