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In recent years, multiscale modelling approach has begun to receive an overwhelming appreciation as an appropriate technique to
characterize the complexity of infectious disease systems. In this study, we develop an embedded multiscale model of
paratuberculosis in ruminants at host level that integrates the within-host scale and the between-host. A key feature of
embedded multiscale models developed at host level of organization of an infectious disease system is that the within-host
scale and the between-host scale influence each other in a reciprocal (i.e., both) way through superinfection, that is, through
repeated infection before the host recovers from the initial infectious episode. This key feature is demonstrated in this study
through a multiscale model of paratuberculosis in ruminants. The results of this study, through numerical analysis of the
multiscale model, show that superinfection influences the dynamics of paratuberculosis only at the start of the infection, while
the MAP bacteria replication continuously influences paratuberculosis dynamics throughout the infection until the host
recovers from the initial infectious episode. This is largely because the replication of MAP bacteria at the within-host scale
sustains the dynamics of paratuberculosis at this scale domain. We further use the embedded multiscale model developed in
this study to evaluate the comparative effectiveness of paratuberculosis health interventions that influence the disease dynamics
at different scales from efficacy data.

1. Introduction

In the field of mathematical biology, we are beginning to wit-
ness an overwhelming appreciation of multiscale modelling
in studying infectious disease systems dynamics (see [1–7]
and references therein). The complexity of an infectious dis-
ease system arises from the interactions of three main subsys-
tems which are the host subsystem, the pathogen subsystem,
and the environment subsystem [8]. It is worthy noting that
the foundations for development of multiscale models of
infectious disease systems have been established in four main
pivotal publications [7–10]. These publications introduced
critical concepts and summarized them in a form that trans-
formed mainstream thinking about the multiscale dynamics

of infectious disease systems. The multiscale dynamics of
infectious disease systems comes from the fact that patho-
gens select habitat at different hierarchical levels and at mul-
tiple scales (in space and time) within each hierarchical level.
One of the foundational ideas established in [7, 8] is that
infectious disease systems are organized into seven main
levels of organization which are [7, 8] the cell level, the tissue
level, the organ or microcommunity level, the microecosys-
tem level, the host level, the macrocommunity level, and
the macroecosystem level. For more details on the seven-
level hierarchical framework of organization of an infectious
disease system, see the key publications [7, 9, 10]. In the
context of this seven-level hierarchical framework of organi-
zation of an infectious disease system, these publications
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established the fundamental idea that disease processes inter-
act across scales in space and time, such that as the spatial
scale of the phenomenon increases so does the temporal scale
over which it operates. Another monumental contribution to
the modern perspective on multiscale dynamics of infectious
disease systems is that the multiscale modelling of infectious
disease systems can be described by five main different
categories of multiscale models which are [9, 10] (i)
individual-based multiscale models (IMSMs), (ii) nested mul-
tiscale models (NMSMs), (iii) embedded multiscale models
(EMSMs), (iv) hybrid multiscale models (HMSMs), and (v)
coupled multiscale models (CMSMs). These five different cat-
egories of multiscale models of infectious disease systems can
be developed at any of the seven main hierarchical levels of
organization of an infectious disease system. However, in this
study, we develop an embedded multiscale model that inte-
grates two adjacent scales at the host level of organization
(i.e., the within-host scale and the between-host scale) to
investigate the influence of superinfection on the dynamics
of infectious disease systems with a pathogen replication-
cycle at the microscale using paratuberculosis as a paradigm.

A defining feature of embedded multiscale models is that
at any level of organization of a disease system the macro-
scale influences the microscale through superinfection, that
is, repeated infection before the host recovers from the initial
infectious episode [7, 8]. This is unlike the nested multiscale
models in which the macroscale influences the microscale
through initial infective inoculum [7]. Thus, the main objec-
tive of this study is to investigate using an embedded multi-
scale model how superinfection influences disease dynamics
for an infection with a pathogen replication-cycle at the
microscale and further use the model to evaluate the com-
parative effectiveness of the health interventions that operate
at different scale domains (i.e., the within-host scale and the
between-host scale) of an infectious disease system using
paratuberculosis in ruminants as a case study. To the best
of our knowledge, there is no embedded multiscale model
in the literature that we are aware of which characterizes
the multiscale dynamics of an infectious disease that has a
pathogen replication-cycle at the microscale of any of the 7
levels of organization of an infectious disease system [8].
The embedded multiscale model presented in this study is
the first of its kind to be developed to characterize infectious
disease dynamics with a pathogen replication-cycle at the
microscale. However, the only embedded multiscale models
that we aware of are for infectious disease systems without a
pathogen replication-cycle at the microscale [1, 2, 4, 7].

Unlike infectious disease systems such as hookworm
infection, Guinea worm infection and human schistosomiasis
[2, 4, 7] in which their disease-causing agents have no
replication-cycle at the microscale (i.e., within-host scale),
paratuberculosis (PTB) in ruminants considered in this study
as a paradigm is caused by a bacteria that has a replication-
cycle at within-host scale. The bacteria which is responsible
for PTB infection in ruminants is called Mycobacterium
Avium Subspecies Paratuberculosis (MAP) [11–13]. This is
one of the most notorious obligate pathogen affecting domes-
tic ruminants and wild animals throughout the world [14–16].
MAP is commonly widespread in dairy cattle and can signifi-

cantly pose serious economic burdens in dairy cattle industries
due to the reduction of milk production, increased cattle mor-
tality, and premature culling of infected cattle as well as reduc-
tion of sale price for cattle in regions with high PTB prevalence
[17]. Moreover, clinical outcomes of PTB infection in rumi-
nants such as dairy cattle is manifested through ruminant
growth failure, increases in weight loss, and chronic diarrhea
[15, 18]. The dynamics of PTB disease causing-bacteria
(MAP bacteria) in the ruminant population involves the trans-
mission of bacteria at between-host scale which usually occurs
through a fecal-oral route [14]. It also involves the replication
of the bacteria within an infected ruminant macrophages and
the survival of the bacteria outside the ruminant host. For
more details on the transmission, replication, and survival of
MAP bacteria in ruminant populations, see the published
works in [18, 19]. Here, we only provide a brief description.
The transmission and replication processes of MAP bacteria
in ruminant populations begin when a ruminant ingests fecal
materials in the environment contaminated with MAP bacte-
ria. After the ingestion, MAP bacteria reaches the intestines of
the ruminant and is taken up by either M cells or enterocytes
in the Peyers patches of the lower small intestine and trans-
ported to submucosal macrophages and then engulfed. At this
stage of infection, some of the MAP bacteria will be destroyed
by macrophages, and some will survive and replicate inside
those macrophages. After some period, macrophages with
replicating MAP bacteria burst to release the bacteria into
the extracellular environment of the ruminant at the site of
infection. At the later stage of infection, the ruminant begins
to shed bacteria via feces into the environment. Then, the
ingestion of the bacteria in the environment by other rumi-
nant closes the replication-transmission multiscale cycle of
PTB. However, the replication-transmission multiscale cycle
of MAP bacteria can be interrupted by different health inter-
ventions that can be administrated either at within-host scale
or at between-host scale. Currently, there is no drug that has
been made available to combat the bacteria at within-host
scale. The only control measures against the disease include
(i) vaccination which is administrated at the within-host scale
of the ruminant to increase resistance of ruminants to
infection, (ii) environmental hygiene-management which is
administrated at the between-host scale of ruminants to kill
the MAP bacteria in the environment, and (iii) test and culling
which is administrated at the between-host scale of the rumi-
nant population to eliminate the sources of PTB infection in
the herd. But all these control measures have limited success
against PTB infection. For more details about the aforemen-
tioned health intervention measures and their limited success
against PTB infection in ruminants, see [20].

In the past, multiscale modelling of PTB in ruminants at
host level has been done. This involved the development of
individual-based multiscale models (IMSMs) such as [21]
and hybrid multiscale models (HMSMs) such as [13, 22].
It is also worth mentioning that although both IMSMs and
HMSMs in [13, 21] have, respectively, shed some light into
the multiscale nature of PTB infection and the impact of
health interventions against this disease, there are important
limitations of these categories of multiscale when compared
with the embedded multiscale model presented in this study.
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The IMSMs cannot be easily used to evaluate the compara-
tive effectiveness of health interventions using the often used
disease transmission metrics such as reproductive numbers
and endemic equilibria because it is not easy to derive
explicit expressions of such quantities from these IMSMs.
Similarly, HMSMs cannot also be easily applied to evaluate
the comparative effectiveness of health interventions that
operate at different scale domains such as within-host scale
and between-host scale because they do not often use a
common metric of disease transmission across scales. In
addition, the majority of mathematical models for PTB
infection are single-scale models (see [11, 12, 23–27] and ref-
erences therein). We also note from the work in [10] that at
any level of organization of an infectious disease systems of
an organization (be cell-level, tissue-level, host-level, etc.),
multiscale models can be more advantageous than single-
scale-based models largely because multiscale models can
be used to concurrently evaluate the effectiveness of health
interventions that operate at different scales in the
replication-transmission multiscale cycle of an infectious
disease system. Single-scale-based models restrict themselves
only to one part of the replication-transmission multiscale
multiscale cycle of an infectious disease system.

The remainder of this paper is organized as follows. In
Section 2, we present a baseline embedded multiscale model
for PTB infection in ruminants. Mathematical analysis of
this baseline embedded multiscale model is done in Section
3. In Section 4, this baseline embedded multiscale model is
analyzed numerically to confirm some of the analytical
results obtained in Section 3. In Section 5, we extend the
baseline embedded multiscale in Section 2 to incorporate
PTB health interventions and use it to evaluate the compar-
ative effectiveness of the PTB health interventions. The
paper ends with conclusions in Section 6.

2. Multiscale Model for Paratuberculosis
Multiscale Cycle Dynamics in Ruminants

In order to explicitly characterize the replication-
transmission multiscale cycle of PTB in ruminants and
further ascertain the influence of superinfection on the
dynamics of the disease, we develop a multiscale model
which takes into account the reciprocal influences between
the within-host scale (pathogen-cell interaction and replica-
tion) dynamics and between-host scale (circulation of
pathogen in the host population) dynamics. Moreover, the
replication-transmission multiscale cycle for PTB considered
in this article is a primary multiscale cycle. For details of
multiscale cycles in disease dynamics which include primary
multiscale cycle, secondary multiscale cycle, and tertiary
multiscale cycle, see the published works [7, 8, 10]. In the
formulation of the embedded multiscale model for PTB
dynamics, the PTB within-host scale submodel was adopted
with minor modifications from a single-scale model frame-
work in Magombedze et al. [12]. However, the only minor
extension to the model in [12] is the addition of a parameter
for excretion/shedding rate αc of MAP into extracellular
environment which is crucial for linking the two main dis-
ease processes of PTB which are the within-host scale

pathogen replication and the between-host scale pathogen
transmission. While the between-host submodel is based
on a susceptible-infected-susceptible (SIS) epidemic frame-
work. Integrating the between-host scale submodel and the
adopted within-host scale submodel results in the proposed
embedded multiscale model for ruminant paratuberculosis
transmission-replication multiscale cycle which is conse-
quently based on monitoring the dynamics of nine popula-
tions: susceptible ruminants (SC), infected ruminants (IC),
and the MAP bacilli bacterial load (BC) in the environment
at the between-host scale in the host population; susceptible
macrophages (MΦ), infected macrophages (Im), and within-
host MAP bacilli bacterial load (Bc) at the within-host scale;
and specific naive CD4+ T cells (T0), Th1 response cells (T1),
and Th2 phenotype response cells (T2) at the within-host scale
in the infected ruminant-host population.Wemake the follow-
ing assumptions for this model:

(i) Infected ruminants can recover naturally from
MAP infection

(ii) Transmission of infection is only through indirect
means, and if there is any direct transmission, it
will be estimated by an indirect (environmental
transmission) expression

(iii) There is no vertical transmission, and ruminant
hosts are not vaccinated or treated and so the
infection state of the ruminant hosts (exposed,
subclinical, clinical, etc.) is only determined by
the within-host scale MAP dynamics

(iv) The recruitment of ruminants in the herd is
through birth and incoming ruminants from other
farms

(v) All the new recruited ruminants are assumed to be
healthy and have not been previously exposed to
the disease

(vi) The extracellular MAP bacterial load Bc = BcðtÞ is a
proxy for individual ruminant infectiousness and
is excreted out of the body of an individual rumi-
nant through feces

(vii) The depletion of MAP bacteria in the extracellular
environment through engulfment by macrophages
is negligible

(viii) There is no bacteria replication in the physical
environment, and the loss of MAP bacteria in the
environment due to uptake of the parasite by sus-
ceptible ruminant hosts is negligible

(ix) Clonal expansion of the T0 cells into T1 is only due
to infected macrophages while clonal expansion of
the T2 is only due to MAP bacteria in the infected
ruminant host

Based on these assumptions, the embedded multiscale
model for PTB transmission dynamics is governed by the
following system of ordinary differential equations.
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1: dSC tð Þ
dt

=ΛC −
βCBC tð ÞSC tð Þ
B0 + BC tð Þ − μCSC tð Þ + γCIC tð Þ,

2: dIC tð Þ
dt

= βCBC tð ÞSC tð Þ
B0 + BC tð Þ − μC + δC + γC½ �IC tð Þ,

3: dBC tð Þ
dt

= αc IC tð Þ + 1½ �Bc tð Þ − αCBC tð Þ,

4: dBc tð Þ
dt

= βCBC tð Þ SC tð Þ − 1½ �
B0 + BC tð Þ½ �ΦC IC tð Þ + 1½ � +NmkmIm tð Þ − μc + αc½ �Bc tð Þ,

5:
dMϕ tð Þ

dt
=Λϕ − βϕMϕ tð ÞBc tð Þ − μϕMϕ tð Þ,

6: dIm tð Þ
dt

= βϕMϕ tð ÞBc tð Þ − km + μϕ

h i
Im tð Þ − γmT1 tð ÞIm tð Þ,

7: dT0 tð Þ
dt

=Λ0 − δmIm tð Þ + δbBc tð Þ½ �T0 tð Þ − μ0T0 tð Þ,

8: dT1 tð Þ
dt

= θ1δmIm tð ÞT0 tð Þ − μ1T1 tð Þ,

9: dT2 tð Þ
dt

= θ2δbBc tð ÞT0 tð Þ − μ2T2 tð Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

Further, the embedded multiscale model (1) is schemat-
ically represented by Figure 1. In this PTB embedded multi-
scale model, the two submodels (within-host scale submodel
and between-host scale submodel) are linked through a
method well established in [1, 2, 4, 7]. In the first two equa-
tions of the multiscale model system (1), equations (1) and
(2) describe the dynamics of susceptible and infected rumi-
nant hosts, respectively. At any time t, new recruits of sus-
ceptible ruminants enter the ruminant population through
birth and incoming ruminants from other farms at a con-
stant rate ΛC . Susceptible ruminant population losses its indi-
viduals due to natural death at a constant rate μC and through
infection at a variable rate βCBCðtÞSCðtÞ/ðB0 + BCðtÞÞ. We also
assume that the population of susceptible ruminants increases
through recovery of infected individuals at a rate γC. Suscepti-
ble ruminants acquire PTB infection when they feed from con-
taminated pasture with fecal material containing infective
MAP or drink from contaminated surface water/water troughs
with MAP bacilli cells. The infected ruminants are generated
when susceptible ruminants become infected and join the
group at a rate variable βCBCðtÞSCðtÞ/ðB0 + BCðtÞÞ. The
infected group decreases due to natural death at a constant rate
μC or through disease induced death at rate δC or through
recovery at a rate γC so that an average lifespan of PTB infected
ruminant in the population is determined by 1/ðδC + μC + γCÞ.
Following the method in [1, 2, 4, 7], we assume that infected
ruminants spread the disease in the population through con-
taminating the environment with fecal material containing
the MAP bacteria cells at a variable rate αcBcðtÞðICðtÞ + 1Þ as
shown in Figure 1. Therefore, the population dynamics of
MAP bacilli in the physical environment, described by
equation (3) of the model system (1), is generated through
excretion/shedding of fecal material containing the MAP
bacteria cells by infected ruminant host at a variable rate
αcBcðtÞðICðtÞ + 1Þ. Further, we also assume that the popula-
tion of MAP bacteria in the physical environment decreases
due to natural death at a rate αC. Equation (4) of the model

system (1) describes the changes in time of the within-host
MAP bacteria cells at the site of infection within a single
infected ruminant host. The within-host MAP bacteria cells
at the site of infection within an infected ruminant host
are generated following uptake of average between-host
MAP bacteria cells in the physical environment through
ingesting of contaminated food or water and the release of
the intracellular MAP bacilli into the extracellular environ-
ment when each infected macrophage bursts. In general, in
the ruminant population, the uptake of contaminated food
or water, which contains between-host MAP bacterial cells,
is the transmission of the MAP bacteria from the physical
environment to susceptible ruminant and become infected
ruminant. Following the methodology described in [2, 4]
for modelling superinfection for environmentally transmitted
infectious disease systems, we model the average rate at
which a single susceptible ruminant host uptake MAP bacte-
ria cells in the physical environment through ingesting con-
taminated food or water and become an infected ruminant
host by the expression

λc tð ÞSc tð Þ =
βCBC tð ÞSC tð Þ
B0 + BC tð Þ :

SC tð Þ − 1½ �
ΦC IC tð Þ + 1½ � , ð2Þ

so that the infection of a single host is defined by [4]:

SC tð Þ, IC tð Þ, BC tð Þð Þ⟶ SC tð Þ − 1, IC tð Þ + 1, BC tð Þð Þ: ð3Þ

𝜃1𝛿MT0IM
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Figure 1: A conceptual diagram of the multiscale model of PTB
replication-transmission dynamics in ruminant population.
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At the within-host scale PTB dynamics, infected macro-
phages burst at constant rate km to release an average number
of intracellular MAP bacilli Nm into the extracellular environ-
ment, so that the total number of intracellular bacteria released
into the extracellular environment is given by NmkmIm. There-
fore, the average number of within-host MAP bacteria cells at
the site of infection within an infected ruminant BcðtÞ within
a single infected ruminant host increases at a mean rate λhðtÞ
ShðtÞ and NmkmIm. We assume that the population of MAP
bacilli in the extracellular environment decay naturally at a
constant rate μc and excreted out of the body of an infected
ruminant into the physical environment through fecal material
at a constant rate αc. Equations (5) and (6) of the model system
(1) describe the dynamics of the susceptible macrophage cells
MϕðtÞ and infected macrophage cells ImðtÞ at the site of infec-
tion within a single infected ruminant host. Similarly, at any
time t, new susceptible macrophages are recruited through
the supply of macrophage cells from progenitor monocytes
that are recruited from the blood to the site of infection at a
constant rate Λϕ, and the population losses individuals due to
natural death at a constant rate μϕ. Susceptible macrophages
acquire infection through engulfing extracellular MAP bacilli
bacteria at a rate βϕ. The infected macrophage cells at the site
of infection within an infected ruminant host are generated
when susceptible macrophages become infected and join the
group of infected macrophages at a rate βϕ. We assume that
in the population of infected macrophages there is an
additional death related to infection and due to removal by
CD4 T + response cells at a rate km and γm, respectively, so that
the lifespan in the population of infected macrophages is

1/ðkm + μϕ + γmT1Þ. The last three equations of the model
system (1), equations (7)–(9), describe the evolution in time
of the population of ruminant immune response cells at a
site of infection in the gut which are specific naive CD4
T + cells (T0) and the two subsets of the MAP specific immune
response, Th1 (T1) and Th2 (T2) cells (see [12] and reference
therein). The population of specific naive CD4 T + cells (T0) for
MAPbacilli are produced at a constant rateΛ0 from the thymus.
Weassume that thesenaiveCD4T + cells decaynaturally at a rate
μ0, so that their average lifespan is 1/μ0. Following the work in
[12], we also assume that T0 cells become T1 and T2 immune
response cells at per capita rates δm and δb, respectively. Thus,
the population ofT1 andT2 immune response cells are prolifer-
ated at a rate θ1δmImT0 and θ1δbBmT0, respectively.We further
assume that both the population ofT1 andT2 immune response
cells decay naturally at a rate μ1 and μ2, respectively.

Figure 1 is a conceptual representation of the embedded
multiscale model (1). The description of the PTB embedded
multiscale model (1) and its parameter values used for model
simulations are tabulated in Tables 1 and 2, respectively.

3. Mathematical Analysis of the Multiscale
Model for Ruminant PTB Multiscale
Cycle Dynamics

In this section, we present some mathematical analysis
results of the PTB embedded multiscale model system (1).
Mathematical analysis of the properties for the PTB embed-
ded multiscale model system (1) is conducted in the region
Γ ∈ R9

+ of biological interest, which is given by:

where

S1 =
ΛC

μC
, S2 =

Λϕ

μϕ
, S3 =

αc ΛC + μCð Þ
2μCαC

ξ1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 + 4ξ2

q� �
,

S4 =
1
2 ξ1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 + 4ξ2

q� �
, S5 =

Λ0
μ0

, S6 =
θ1δmΛ0Λϕ

μϕμ1μ0
,

S7 =
θ2δbΛ0
2μ0μ2

ξ1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 + 4ξ2

q� �
, ξ1 = ν0 ν1 + ν2ð Þ − B0, ξ2 = ν0ν2B0,

ν0 =
αc ΛC + μCð Þ

μCαC
, ν1 =

βC ΛC − μCð Þ
ΦC ΛC + μCð Þ μc + αcð Þ , ν2 =

NmkmΛϕ

μϕ μc + αcð Þ :

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð5Þ

It can be easily shown that all solutions for the PTB
embedded multiscale model system (1) with nonnegative
initial conditions remain bounded within the invariant
region Γ given by (4). Therefore, we conclude that the PTB
embedded multiscale model system (1) is mathematically
and epidemiologically well-posed [28]. Hence, it is sufficient

to consider the dynamics of the flow generated by the PTB
embedded multiscale model system (1) in Γ whenever ΛC
> μC and ν0ðν1 + ν2Þ > B0. We assume in all that follows
(unless stated otherwise) that ΛC > μC and ν0ðν1 + ν2Þ > B0.
Details of the feasibility of the regionΓ ∈ R9

+ are given inAppen-
dix A. In the next three subsections, we provide some results
concerning the equilibrium states (i.e., the disease-free equilib-
rium state and the endemic equilibrium state) of the PTB
embedded multiscale model system (1) and their stabilities.

3.1. The Disease-Free Equilibrium and Reproductive Number.
We obtain the disease-free equilibrium point (DEF) of the
PTB embedded multiscale model system (1) by setting the
left-hand side of the equations of PTB multiscale model sys-
tem (1) equal to zero and also assume that IC = BC = Bc =
Im = T1 = T2 = 0. Thus,

E0 =
ΛC

μC
, 0, 0, 0,

Λϕ

μϕ
, 0, Λ0

μ0
, 0, 0

 !
, ð6Þ

Γ = SC , IC, BC, Bc,Mϕ, Im, T0, T1, T2
� �

∈ R9
+ : 0 ≤ SC + IC ≤ S1, 0 ≤Mϕ + Im ≤ S2, 0 ≤ BC ≤ S3, 0 ≤ Bc ≤ S4, 0 ≤ T0 ≤ S5, 0 ≤ T1 ≤ S6, 0 ≤ T2 ≤ S7

� �
,

�
ð4Þ
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denotes the disease-free equilibrium of the PTB multiscale
model system (1). For the purpose of analyzing the stabil-
ity of the DFE, we make use of the basic reproduction
number R0. The basic reproduction number of the system

model (1) is calculated in this section using next genera-
tion operator approach described in [29]. Thus, the PTB
multiscale model model system (1) can also be written in
the form

Table 1: A summary of the variables of the PTB multiscale model given by (1).

No. Variable Description

1 SC tð Þ Population of susceptible ruminant hosts at time t

2 IC tð Þ Population of infected ruminant hosts at time t

3 BC tð Þ Population of MAP bacteria in the environment at time t

4 Bc tð Þ Population of extracellular MAP bacteria within an infected ruminant host at time t

5 Mϕ tð Þ Population of susceptible macrophages within an infected ruminant host at time t

6 Im tð Þ Population of infected macrophages within an infected ruminant host at time t

7 T0 tð Þ Population of naive CD4 T cells within an infected ruminant host at time t

8 T1 tð Þ Population of specific immune response, Th1 within an infected ruminant host at time t

9 T2 tð Þ Population of specific immune response, Th2 within an infected ruminant at time t

Table 2: Model parameter values used for simulations.

Parameter Description Unit Value (range explored) Source

ΛC Ruminant birth rate day−1 0.27 (0.14-0.27) [11, 13]

βC Ruminant infection rate day−1 0.00027 (0.0-0.008) Assumed

μC Natural death rate of ruminants day−1 0.0001 (0.001-0.0001) [11]

δC Ruminant removal rate due to PTB infection day−1 0.0008 (0.005-0.0008) [11]

αC Environmentally bacteria death rate day−1 0.0018 (0.001-0.0008) [11]

γC Ruminant recovery rate day−1 0.0014 (0.014-0.0008) Assumed

B0 Saturation rate of bacteria day−1 1000 (0-1000) [13]

ΦC Down-scaling parameter day−1 0.03 (0.0-0.003) Assumed

Λϕ Macrophage supply rate day−1 10 (8.0-10.0) [12]

βϕ Macrophage infection rate day−1 0.002 (0.0-0.01) [12]

μϕ Macrophage natural death rate day−1 0.02 (0.11-0.025) [12]

Nm Burst size day−1 100 (80-100) [12]

km Burst rate day−1 0.00075 (0.00-0.0001) [12]

γm T1 lytic effect day−1 0.01 (0.0-0.2) [12]

μc Bacteria’s death rate day−1 0.03 (0.0-1.0) [12]

αc Excretion rate day−1 0.01 (0.0-1.0) [13]

Λ0 T0 supply rate day−1 0.001 (0.00001-0.001) [12]

μ0 T0 death rate day−1 0.01 (0.1-0.01) [12]

μ1 T1 death rate day−1 0.03 (0.1-0.01) [12]

μ2 T2 death rate day−1 0.02 (0.1-0.01) [12]

δm T0 differentiation into T1 cells day−1 0.01 (0.0-0.1) [12]

δb T0 differentiation into T2 cells day−1 0.01 (0.0-0.1) [12]

θ1 T1 cell clonal expansion day−1 9000 (1.0-10000) [12]

θ2 T2 cell clonal expansion day−1 9000 (1.0-10000) [12]
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dX
dt

= f X, Y , Zð Þ,
dY
dt

= g X, Y , Zð Þ,
dZ
dt

= h X, Y , Zð Þ,

8>>>>>>><
>>>>>>>:

ð7Þ

where

(i) X = ðSC ,Mϕ, T0, T1, T2Þ represents all compart-
ments of individuals who are not infected

(ii) Y = ðIC , ImÞ represents all compartments of infected
individuals who are not capable of infecting others

(iii) Z = ðBC , BcÞ represents all compartments of infected
individuals who are capable of infecting

In this case, we let the disease free-equilibrium of the
model (1) be denoted by the following expression

�U0 =
ΛC

μC
, 0, 0, 0,

Λϕ

μϕ
, 0, Λ0

μ0
, 0, 0

 !
: ð8Þ

Following [29], we let

~g X∗, Zð Þ = ~g1 X∗, Zð Þ, ~g2 X∗, Zð Þð Þ, ð9Þ

with

~g1 X∗, Zð Þ = βCΛCBC

μC μC + δC + γCð Þ B0 + BCð Þ ,

~g2 X∗, Zð Þ = βϕΛϕBc

μϕ μϕ + km
	 
 :

8>>>><
>>>>:

ð10Þ

We deduce that

h X, Y , Zð Þ = h1 X, Y , Zð Þ, h2 X, Y , Zð Þð Þ, ð11Þ

with

h1 X, Y , Zð Þ = K0BCBm

B0 + Bcð Þ + αcBc − αCBC ,

h2 X, Y , Zð Þ = K1BC

K3 + K2BCð Þ + K4Bc − μc + αcð ÞBc,

8>>><
>>>:

ð12Þ

where

K0 =
βCΛCαc

μC μC + δC + γCð Þ ,

K1 =
βC ΛC − μCð Þ μC + δC + γCð Þ

ΦC
,

K2 = βCΛC + μC μC + δC + γCð Þ,
K3 = μC μC + δC + γCð ÞB0,

K4 =
βϕΛϕNmkm

μϕ μϕ + km
	 
 :

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð13Þ

The matrix

A =DZh X∗, ~g X∗, 0ð Þ, 0ð Þ =
−αC αc

K1
K3

K4 − μc + αcð Þ

2
64

3
75,

ð14Þ

can be written in the form A =M −D, so that

M =
0 αc

K1
K3

K4

2
64

3
75,

D =
αC 0
0 μc + αcð Þ

" #
:

ð15Þ

The basic reproductive number is the spectral radius
(dominant eigenvalue) of the matrix T =MD−1, that is,

R0 = ρ Tð Þ: ð16Þ

Hence, in this case, the basic reproduction number of the
embedded multiscale model (1) is expressed by the following
quantity

R0 =
1
2 R0c +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0C + 4R0C

qh i
, ð17Þ

with

R0c =
βϕΛϕNmkm

μϕ μϕ + km
	 


μc + αcð Þ
, ð18Þ

being a partial within-host basic reproduction number, and

R0C =
βC ΛC − μCð Þαc
αCμCΦC μc + αcð Þ , ð19Þ

being a partial between-host reproduction number.
Overall, we can conclude from expression (17) of the

reproductive number that it is a function of both the
within-host scale parameters and the between-host scale
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parameters. Therefore, the obtained results here show that
the within-host scale and the between-host scale influence
each other in a reciprocal way. We further make a use of
the basic reproductive number (17) to test both the local
and global stability of the disease-free equilibrium (E0) of
the multiscale model system (1). We then established that
if the basic reproductive number is less than a unity, then
E0 is locally and globally asymptotically stable. Details of
the local and global stability of E0 are given in the following
next two subsections.

3.2. Stability of the Disease-Free Equilibrium

3.2.1. Local Stability of the Disease-Free Equilibrium. In this
subsection, we determine the local stability of DFE of the
PTB multiscale model system (1). We linearize equations
of the PTB multiscale model system (1) in order to obtain
a Jacobian matrix. Then, we evaluate the Jacobian matrix
of the system at the disease-free equilibrium (DFE),

E0 =
ΛC

μC
, 0, 0, 0,

Λϕ

μϕ
, 0, Λ0

μ0
, 0, 0

 !
: ð20Þ

The Jacobian matrix of the PTB multiscale model system
(1) evaluated at the disease-free equilibrium state (DFE) is
given by

J E0ð Þ =

−μC γC −
βCΛC

μCB0
0 0 0 0 0 0

0 −a0
βCΛC

μCB0
0 0 0 0 0 0

0 0 −αC αc 0 0 0 0 0
0 0 A1 −a1 0 Nmkm 0 0 0

0 0 0 −
βϕΛϕ

μϕ
−μϕ 0 0 0 0

0 0 0
βΦΛϕ

μϕ
0 −a2 0 0 0

0 0 0 −
δbΛ0
μ0

0 −
δmΛ0
μ0

−μ0 0 0

0 0 0 0 0 θ1δmΛ0
μ0

0 −μ1 0

0 0 0 θ2δbΛ0
μ0

0 0 0 0 −μ2,

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

ð21Þ

where

a0 = μC + δC + γCð Þ, a1 = μc + αcð Þ,

a2 = μϕ + km
	 


, A1 =
βC ΛC − μCð Þ
ΦCμCB0

:

8><
>: ð22Þ

We consider stability of DFE by calculating the eigen-
values (λs) of the Jacobian matrix given by equation (21).
The characteristic equation for the eigenvalues is given by

Q0 λ3 +Φ1λ
2 +Φ2λ +Φ3

� �
= 0, ð23Þ

where the coefficient Q0 is as follows:

Q0 = −μC − λð Þ −μϕ − λ
	 


−μ0 − λð Þ −μ1 − λð Þ −μ2 − λð Þ −a0 − λð Þ:
ð24Þ

It can be easily noted from equation (23) that there are
six negative eigenvalues (-μC , -μϕ, -μ0, -a0, -μ1, and -μ2).
Now in order to make conclusions about the stability of
the DFE, we use the Routh-Hurwitz criteria to determine
the sign of the remaining eigenvalues of the polynomial

λ3 +Φ1λ
2 +Φ2λ +Φ3 = 0, ð25Þ

where

Φ1 = αC + a1 + a2,
Φ2 = αC + a2ð Þa1 + αCa2 1 − R0Cð Þ,
Φ3 = a1a2 R0c + αC 1 − R0Cð Þ½ �:

8>><
>>: ð26Þ

Using the Routh-Hurwitz stability criterion, the equilib-
rium state associated with the PTB multiscale model system
(1) is stable if and only if the determinants of all the Hurwitz
matrices associated with the characteristic equation (25) are
positive, that is

Det Hj

� �
> 0 ; j = 1, 2, 3, ð27Þ

where

H1 = Φ1ð Þ ;H2 =
Φ1 1
Φ3 Φ2

 !
,

H3 =
Φ1 1 0
Φ3 Φ2 Φ1

0 0 Φ3

0
BB@

1
CCA:

8>>>>>>>><
>>>>>>>>:

ð28Þ

The Routh-Huiwitz criterion applied to expressions in
equation (28) requires that the following conditions C1 and
C2 be satisfied, in order to guarantee the local stability of the
disease-free equilibrium point of the model system (1).

C1:Φ1,Φ2,Φ3 >0,
C2:Φ1Φ2 −Φ3 >0:

(
ð29Þ

From equations (25) and (28), we note that all the coeffi-
cientsΦ1, Φ2, andΦ3 of the polynomial PðλÞ are greater than
zero whenever R0C , R0c < 1. And we also noted that the condi-
tions above are satisfied if and only if R0 < 1. Hence, all the
roots of the polynomial PðλÞ are either negative or have neg-
ative real parts. The results are summarized in the following
theorem.

Theorem 1. The disease-free equilibrium point of the model
system (1) is locally asymptotically stable whenever R0 < 1.
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3.2.2. Global Stability of the Disease-Free Equilibrium. We
determine the global stability of DFE of the PTB embedded
multiscale model system (1) by using a next generation oper-
ator [29]. Thus, the system (1) can be rewritten in the form

dX
dt

= F X, Zð Þ,
dY
dt

= G X, Zð Þ,

8>><
>>: ð30Þ

where

(i) X = SC ,Mϕ, T0, T1, T2 comprises of the uninfected
components

(ii) Z = IC , BC , Bc, Im comprises of infected and infec-
tious components

We let

E0 = X∗, 0ð Þ = ΛC

μC
, 0, 0, 0,

Λϕ

μϕ
, 0, Λ0

μ0
, 0, 0

 !
, ð31Þ

denote the disease-free equilibrium (DFE) of the embedded
multiscale model system (1). For E0 to be globally asymptot-
ically stable, the following conditions (H1) and (H2) must
be satisfied.

(H1.) dX/dt = FðX, 0Þ is globally asymptotically stable
(g.a.s)

(H2.) GðX, ZÞ = AZ − ĜðX, ZÞ, ĜððX, ZÞ ≥ 0 for ðX, ZÞ
∈ R9

+ where A =DZGðX∗, 0Þ is an M-matrix and
R9
+ is the region where the model makes biological

sense

In this case

F X, 0ð Þ =

ΛC − μCSC

Λϕ − μϕMϕ

0
0

2
666664

3
777775, ð32Þ

and the matrix A is given by

A =

− μC + δC + γCð Þ βCΛC

B0μC
0 0

0 −αC αc 0

0 βC ΛC − μCð Þ
B0ΦCμC

− αc + μcð Þ Nmkm

0 0
βϕΛϕ

μϕ
− μϕ + km
	 


2
666666666664

3
777777777775
,

ð33Þ

with ĜðX, ZÞ given by

Ĝ X, Zð Þ =

ΛC

B0μC
−

SC
B0 + BC

 �
βCBC

0
0

Λϕ

μϕ
−Mϕ

 !
βϕBc + γmT1Im:

2
6666666664

3
7777777775
: ð34Þ

It is clear that ĜðX, ZÞ ≥ 0 for all ðX, ZÞ ∈ R9
+, since

ðΛC/μCB0Þ ≥ ðSC/ðB0 + BCÞÞ and ðΛϕ/μϕÞ ≥Mϕ. It is also
clear that A is an M-matrix, since the off diagonal ele-
ments of A are nonnegative. We state a theorem which
summarizes the above result.

Theorem 2. The disease-free equilibrium of model system (1)
is globally asymptotically stable if R0 < 1, and the assumptions
(H1) and (H2) are satisfied.

3.3. The Endemic Equilibrium and Its Stability

3.3.1. The Existence of the Endemic Equilibrium State. The
endemic equilibrium state of the multiscale model system
(1) is obtained by setting the left-hand side of the model to
zero. Letting

E∗ = S∗C , I∗C , B∗
C , B∗

c ,M∗
ϕ , I∗m, T∗

0T
∗
1 , T∗

2

	 

, ð35Þ

be the endemic solution for the multiscale model system (1),
we can then estimate the disease burden of PTB in rumi-
nants when the disease has reached its endemic level. We
achieve this by considering the dependences of endemic
values of the PTB disease variables S∗C , I∗C , B∗

C , B∗
c ,M∗

ϕ , I∗m,
T∗
0 , T∗

1 , T∗
2 . The endemic value of susceptible humans is

given by

S∗C =
ΛC + γCI

∗
C

λ∗C + μC
: ð36Þ

From (36), we note that the susceptible ruminant popu-
lation at endemic equilibrium is given by the average time of
stay in the susceptible class and the rate at which new sus-
ceptible individuals are entering the susceptible class at a
constant rate ΛC as well as infected ruminant individuals
entering the class through recovery at a rate γC . Susceptible
ruminants leave the susceptible class either through infec-
tion or death. The endemic value of infected ruminants is
given by

I∗C =
λ∗CS

∗
C

μC + δC + γC
: ð37Þ

We note from (37) that the population of infected rumi-
nants at the endemic equilibrium point is determined by the
average time of stay in the infected class, the rate at which

9Computational and Mathematical Methods in Medicine



susceptible ruminants become infected and the density of
susceptible ruminants. The endemic value of between-host
scale MAP bacterial load in the environment at the equilib-
rium point is given by

B∗
C =

αcB
∗
c I∗C + 1ð Þ
αC

: ð38Þ

From equation (38), we note that the between-host MAP
bacterial load in the environment at the equilibrium point is
equal to the average life-span of the bacteria in the environ-
ment and the rate of excretion of the average number of the
within-host MAP bacterial load by each infected ruminant
individual into the environment. We also note that this
expression provides a link between the dynamics of the
within-host MAP bacteria load and the transmission
dynamics of the disease at the ruminant population level.
The endemic value of within-host scale MAP bacterial load
within a single infected ruminant is given by

B∗
c =

λ∗c S
∗
c +NmkmI

∗
m

αc + μcð Þ : ð39Þ

We note from (39) that the population of within-host
MAP bacteria within a single infected ruminant at endemic
equilibrium point is determined by the average dose of the
between-host bacterial load in the environment are ingested
and the average life-span of within-host bacterial load at the
site of infection within an infected ruminant and the average
number rate of the within-host MAP bacilli bacteria pro-
duced upon bursting of infected macrophage cells at a site
of infection. We also note that this expression provides a link
between the dynamics of the between-host MAP bacteria
load in the environment and the within-host infection
dynamics within a single infected ruminant. The value of
susceptible macrophage population within a single infected
ruminant at equilibrium point is given by

M∗
ϕ =

Λϕ

βϕB
∗
c + μϕ

: ð40Þ

From (40), we note that susceptible macrophage popula-
tion at endemic equilibrium is proportional to the average
time of stay in susceptible macrophage class and the rate at
which new susceptible macrophage is supplied into the sus-
ceptible macrophage class at the site of infection within an
infected ruminant. The endemic value of infected macro-
phage population is given by

I∗m =
βϕB

∗
c M

∗
ϕ

km + μϕ + γmT
∗
1
: ð41Þ

We also note from (41) that infected macrophage popu-
lation at the endemic equilibrium point is proportional to
the average time of stay in the infected macrophage class at
the site of infection, the rate at which susceptible macro-
phages become infected and the density of susceptible mac-
rophages. The endemic value of naive CD4 T cell population

within a single infected ruminant at the site of infection is
given by

T∗
0 =

Λ0
δmI

∗
m + δbB

∗
c + μ0

: ð42Þ

The average population of naive immune response cells
at a site of infection within an infected human at endemic
equilibrium point is equal to the average life-span of naive
CD4 T cells and the supply rate of naive CD4 T cells into
a site of infection from the source within an infected rumi-
nant body. The endemic value of a single ruminant MAP-
specific immune response Th1 effector cells within a single
infected ruminant at the site of infection is given by

T∗
1 =

θ1δmI
∗
mT

∗
0

μ1
: ð43Þ

The average population of MAP-specific immune
response Th1 effector cells within an infected ruminant is
proportional to the differential rate of naive CD4 T cells into
the class of MAP-specific immune response cell Th1 effector
population after a detection of infected macrophage cells at
the site of infection. The endemic value of a single ruminant
MAP-specific immune response Th2 effector cell within a
single infected ruminant at the site of infection is given by

T∗
2 =

θ2δbB
∗
c T

∗
0

μ2
: ð44Þ

We note from (44) that the MAP-specific immune
response Th1 effector cell population within a single infected
ruminant at equilibrium point is proportional to the differ-
ential rate of naive CD4 T cells into the class of MAP-
specific immune response Th2 effector population after a
detection of the within-host scale MAP bacterial load at
the site of infection.

From the endemic equilibrium values of the model sys-
tem (1) given by expressions (36)–(44), we can easily deduce
that the between-host scale expression B∗

C depends on both
the within-host scale and the between-host scale disease var-
iables, while the within-host scale expression B∗

c is deter-
mined by both the within-host and the between-host
disease variables. Therefore, the obtained results here show
that the within-host scale and the between-host scale
dynamics influence each other in a reciprocal way. The next
section is the analysis for the stability of the endemic equilib-
rium (E∗) of the multiscale model system (1), where we use
the center manifold theory [30].

3.3.2. Local Stability of the Endemic Equilibrium State. In this
subsection, we study the local asymptotic stability of the
endemic steady state of the model system (1) by using the
center manifold theory described in [30]. In this case, we
employ center manifold theory by making the following
change of variables: letting SC = x1, IC = x2, BC = x3, Bc = x4,
Mϕ = x5, Im = x6, T0 = x7, T1 = x8, and T2 = x9. We also use

the vector notation x = ðx1, x2, x3, x4, x5, x6, x7, x8, x9ÞT so
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that the model system (1) can be written in the form

dx
dt

= f x, β∗ð Þ, ð45Þ

where

f = f1, f2, f3, f4, f5, f6, f7, f8, f9ð Þ: ð46Þ

Therefore, model system (1) can be rewritten as follows:

1: _x1 =ΛC −
βCx3 tð Þx1 tð Þ
B0 + x3 tð Þ − μCx1 tð Þ + γCx2 tð Þ,

2: _x2 =
βCx3 tð Þx1 tð Þ
B0 + x3 tð Þ − μC + δC + γC½ �x2 tð Þ,

3: _x3 = αcx4 tð Þ x2 tð Þ + 1ð Þ − αCx3 tð Þ,

4: _x4 =
βCx3 tð Þ x1 tð Þ − 1ð Þ
B0 + x3 tð Þð ÞΦC x2 + 1ð Þ +Nmkmx6 tð Þ − μc + αc½ �x4 tð Þ,

5: _x5 =Λϕ − βϕx5 tð Þx4 tð Þ − μϕx5 tð Þ,

6: _x6 = βϕx5 tð Þx4 tð Þ − γmx8 tð Þx6 tð Þ − km + μϕ

h i
x6 tð Þ,

7: _x7 =Λ0 − δmx6 tð Þ + δbx4 tð Þ½ �x7 tð Þ − μ0x7 tð Þ,
8: _x8 = θ1δmx6 tð Þx7 tð Þ − μ1x8 tð Þ,
9: _x9 = θ2δbx4 tð Þx7 tð Þ − μ2x9 tð Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð47Þ

The method involves evaluating the Jacobian matrix of
the system (47) at the disease-free equilibrium E0 denoted
by JðE0Þ. The Jacobian matrix associated with the system
of equation (47) evaluated at the disease-free equilibrium
(E0) is given by

J E0ð Þ =

−μC γC −
βCΛC

μCB0
0 0 0 0 0 0

0 −z0
βCΛC

μCB0
0 0 0 0 0 0

0 0 −αC αc 0 0 0 0 0
0 0 q1 −z1 0 Nmkm 0 0 0

0 0 0 −
βϕΛϕ

μϕ
−μϕ 0 0 0 0

0 0 0
βϕΛϕ

μϕ
0 −z2 0 0 0

0 0 0 −
δbΛ0
μ0

0 −
δmΛ0
μ0

−μ0 0 0

0 0 0 0 0 θ1δmΛ0
μ0

0 −μ1 0

0 0 0 θ2δbΛ0
μ0

0 0 0 0 −μ2,

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

ð48Þ

where

z0 = μC + δC + γCð Þ, z1 = μc + αcð Þ,

z2 = μϕ + km
	 


, q1 =
βC ΛC − μCð Þ
ΦCμCB0

:

8><
>: ð49Þ

By using the similar approach as in [29], therefore the
basic reproductive number of model system (47) is

R0 =
1
2 R0c +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0c + 4R0C

q� �
, ð50Þ

where

R0c =
βϕΛϕNkkm

μϕ μϕ + km
	 


μc + αcð Þ
,

R0C =
βC ΛC − μCð Þαc

αCB0μC μc + αcð ÞΦC
:

ð51Þ

Now let us consider βϕ = kβC , regardless of whether
k ∈ ð0, 1Þ or k ≥ 1 and let βC = β∗ be a bifurcation param-
eter of the model system (47). Considering R0 = 1 and
solve for β∗ in equation (50), we obtain

β∗ =
μc + αcð Þμϕ μϕ + km

	 

αCB0μCΦC

kΛϕNmkmαCμCB0μCΦC + αc ΛC − μCð Þμϕ μϕ + km
	 
 :

ð52Þ

We can easily note that the linearized system of the
transformed equation (47) with bifurcation point β∗ has
a simple zero eigenvalue. Hence, the center manifold
theory [30] can be used to analyze the dynamics of
(2.48) near βC = β∗. We, therefore, apply Theorem 4.1
in Castillo-Chavez and Song [31] as stated in Appendix
B for convenience. For us to apply Theorem B.1 in
Appendix B, the following computations are necessary
(it should be noted that we are using β∗ as the bifurca-
tion parameter, in place of ϕ in Theorem B.1).

Eigenvectors of Jβ∗ : For the case when R0 = 1, it can be
shown that the Jacobian matrix of (48) at βC = β∗ (denoted
by Jβ∗) has a right eigenvector associated with the zero
eigenvalue given by

u = u1, u2, u3, u4, u5, u6, u7, u8, u9½ �T , ð53Þ
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where

u1 = −
β∗ΛC 1 − γCð Þ

μ2CB0αC
, u2 =

αcβ
∗ΛC

B0μC μC + δC + γCð ÞαC
, u3 =

αc
αC

,

u4 = 1, u5 = −
kβ∗Λϕ

μ2ϕ
, u6 =

kβ∗ΛΦ

μϕ μϕ + km
	 
 ,

u7 = −
δbΛ0
μ20

+ δmΛ0kβ
∗ΛΦ

μ20 μϕ + km
	 


μϕ

2
4

3
5, u8 = θ1δmΛ0kβ

∗Λϕ

μ0 μϕ + km
	 


μϕμ1

, u9 =
θ2δbΛ0
μ0μ2

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð54Þ

In addition, the left eigenvector of the Jacobian matrix in
(48) associated with the zero eigenvalue at βC = β∗ is given by

v = v1, v2, v3, v4, v5, v6, v7, v8, v9½ �T , ð55Þ

where

v1 = 0, v2 = 0, v3 =
β∗ ΛC − μCð Þ
αCμCΦCB0

,

v4 = 1, v5 = 0, v6 =
Nmkm

μϕ + km
	 
 ,

v7 = 0, v8 = 0, v9 = 0:

8>>>>>>><
>>>>>>>:

ð56Þ

Computation of bifurcation parameters a and b:
We evaluate the nonzero second order mixed derivatives

of f with respect to the variables and β∗ in order to deter-
mine the signs of a and b. The sign of a is associated with

the following nonvanishing partial derivatives of f:

∂2 f1
∂x23

= 2β∗ΛC

B2
0μC

,

∂2 f2
∂x23

= −
2β∗ΛC

B2
0μC

,

∂2 f3
∂x23

= −
2β∗ ΛC − μCð Þ

B2
0μCΦC

:

8>>>>>>>>><
>>>>>>>>>:

ð57Þ

The sign of b is associated with the following nonvanish-
ing partial derivatives of f:

∂2 f1
∂x3∂β

∗ = −
ΛC

μCB0
,

∂2 f2
∂x3∂β

∗ = ΛC

μCB0
,

∂2 f4
∂x3∂β

∗ = ΛC − μCð Þ
μCB0ΦC

,

∂2 f5
∂x4∂β

∗ = −
Λϕ

μϕ
,

∂2 f6
∂x4∂β

∗ =
kΛϕ

μϕ
:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð58Þ

Substituting expressions (54) and (56), (57) into equa-
tion (B.2), we get

since ðu1 − u2Þ < 0, u4 > 0, and v3 > 0. Similarly, substituting expressions (54) and (56) and (58)
into equation (B.2), we get

since ðu2 − u1Þ > 0, ðu6 − u5Þ > 0, u4 > 0, and v3 > 0.
Thus, a < 0 and b > 0. Using Theorem B.1, item ðivÞ, we

have established the following result which only holds for
R0 > 1 but close to 1.

Theorem 3. The endemic equilibrium guaranteed by Theo-
rem B.1 is locally asymptotically stable for R0 > 1 near 1.

4. Numerical Simulations and Sensitivity
Analysis of the PTB Multiscale Model

In this section, we present some numerical simulations that
demonstrate the reciprocal influence between the MAP rep-
lication process at the within-host scale and the MAP trans-
mission process of PTB infection using numerical
simulations of the embedded multiscale model. Numerical

a = u1v
2
3
∂2 f1
∂x23

+ u2v
2
3
∂2 f2
∂x23

+ u4v
2
3
∂2 f4
∂x23

, = u1v
2
3
2β∗ΛC

B2
0μC

� �
+ u2v

2
3
−2β∗ΛC

B2
0μC

� �
+ u4v

2
3
−2β∗ ΛC − μCð Þ

ΦCB
2
0μC

� �
, = 2β∗ΛC

B2
0μC

:v23 u1 − u2½ � − u4v
2
3
2β∗ ΛC − μCð Þ

ΦCB
2
0μC

� �
< 0,

(

ð59Þ

b = u1v3
∂2 f1

∂x3∂β
∗ + u2v3

∂2 f2
∂x3∂β

∗ + u4v3
∂2 f4

∂x3∂β
∗ + u5v4

∂2 f4
∂x10∂β

∗ + u6v4
∂2 f6

∂x4∂β
∗ , = v3

ΛC

B0μC
:u2 −

ΛC

B0μC
:u1 +

ΛC − μCð Þ
ΦCB0μC

:u4

� �
+ v4

kΛϕ

μϕ
:u6 −

kΛϕ

μϕ
:u5

" #
, = ΛC

B0μC
:v3 u2 − u1½ � + ΛC − μCð Þ

ΦCB0μC
:v3u4 +

kΛϕ

μϕ
:v4 u6 − u5½ � > 0,

(

ð60Þ
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simulations of the model system (1) are carried out using a
Python program version V 2.6 in windows operation system
(Windows 10). The program uses a package odeint function
in the python-scipy that integrate or solve any system of dif-
ferential equations. We also perform some sensitivity analy-
sis of the model basic reproductive number on the variation
of the model parameters. The numerical values of the
parameters used in the numerical simulations and sensitivity
analysis are given in Table 2. In the next two subsections are
the numerical simulation results obtained from the PTB
multiscale model system (1).

4.1. The Influence of Between-Host Scale on the Within-Host
PTB Disease Dynamics. In this subsection, we illustrate using
numerical simulations the effect of the between-host scale sub-
model parameters on the within-host scale submodel variables
of the embedded multiscale model (1). Figures 2–4 show the
impact of variation of four between-host scale parameters
(βC, αC , B0) on the dynamics of four selected key with-host
scale variables (Im, Bc, T1, T2).

Figure 2 shows graphs of numerical solutions of the
model system (1) showing propagation of (a) infected mac-
rophage population, (b) within-host scale MAP bacteria

population, (c) MAP-specific Th1 immune response cells,
and (d) MAP-specific Th2 immune response cells for
different values of between-host scale transmission rate
βC : βC =0.00027, βC =0.0027, and βC =0.027. The results
show that the variation in the infection rate at the between-
host scale influence the dynamics of the disease at the
within-host scale only within a period of about 50 days. But
after that, the dynamics of the disease reach an endemic level.
Therefore, this implies that different initial inoculum values
converge to the same endemic state after a period of about
50 days. This confirms that for a pathogen with a replication
cycle the superinfection only influences the within-host scale
PTB population dynamics at the start of the infection.

Figure 3 illustrates the solution profile of the population
of (a) infected macrophages, (b) within-host scale MAP
bacteria, (c) MAP-specific Th1 immune response cells, and
(d) MAP-specific Th2 immune response cells for different
values of natural death rate of MAP bacilli in the environ-
ment αC : αC =0.18, αC =0.018, and αC =0.0018. The results
in Figure 3 show that the variation in the MAP bacilli death
rate at the between-host scale influences the dynamics of the
disease at the within-host scale only within a period of about
50 days. But after that, the dynamics of the disease reach an
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Figure 2: Graph of numerical solutions of multiscale model system (1) showing the evolution in time of (a) infected macrophage
population, (b) within-host scale MAP bacteria population, (c) MAP-specific Th1 immune response cells, and (d) MAP-specific Th2
immune response cells for different values of between-host scale transmission rate βC : βC = 0:00027, βC = 0:0027, and βC = 0:027.
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endemic level. Therefore, this also implies that different MAP
bacilli death rate values converge to the same endemic state
after a period of about 50 days. This also confirms that the
superinfection only influences the within-host PTB popula-
tion dynamics at the start of the infection and further confirms
that as the between-host scale MAP bacilli decay rate
increases, the time to reach the endemic state also increases.

Figure 4 shows the solution profile of the (a) infected
macrophage population, (b) within-host scale MAP bacteria
population, (c) MAP-specific Th1 immune response cells,
and (d) MAP-specific Th2 immune response cells for differ-
ent values of bacteria half saturation constant B0: B0 = 1000,
B0 = 10000, and B0 = 100000. In Figure 4, the results show
that the variation in the saturation rate of bacteria at the
between-host scale influences the dynamics of the disease
at the within-host scale only within a period of about 50
days. But after that, the dynamics of the disease reaches an
endemic level. Therefore, this again implies that different
saturation rates of bacteria values converge to the same
endemic state after a period of about 50 days. This also con-
firms that for a pathogen with a replication cycle superinfec-
tion only influences the within-host scale PTB population

dynamics at the start of the infection. This again confirms
that as the initial inoculum increases, the time to reach the
endemic state in the population of the within-host scale
MAP bacteria also increases.

4.2. The Influence of Within-Host Scale on the Between-Host
PTB Disease Dynamics. This subsubsection highlights some
numerical assessment results of the influence of the within-
host submodel parameters on the between-host submodel
PTB transmission dynamics. Figures 5–7 show the impact in
the variation of three within-host parameters (αc, Nm, μc) on
the dynamics of three key between-host variables (SC, IC, BC).

Figure 5 shows graphs of numerical solutions of the
model system (1) showing propagation of (a) population of
susceptible ruminant (SC), (b) population of infected rumi-
nant (IC), and (c) between-host MAP bacterial load (BC)
for different values of excretion rate of within-host MAP
bacilli into the environment αc: αc = 0:001, αc = 0:01, and
αc = 0:1. The results show that an increase of excretion rate
of the within-host bacterial load into the physical environ-
ment by each infected ruminant individual has important
public health effect at the ruminant population-level in that
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Figure 3: Simulations of model system (1) showing propagation of (a) infected macrophage population, (b) within-host MAP bacteria
population, (c) MAP-specific Th1 response cells, and (d) MAP-specific Th2 response cells for different values of environmentally MAP
bacilli death rate αC : αC =0.18, αC =0.018, and αC =0.0018.
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there is a noticeable increase in the between-host MAP bac-
teria BC and population of infected ruminant IC as well as
decrease in the population of susceptible ruminant SC . This
confirms that within-host parameters continuously influ-
ence the between-host PTB population dynamics through-
out the infection.

Figure 6 shows graphs of numerical solutions of the model
system (1) showing variation of (a) population of susceptible
ruminants (SC), (b) population of infected ruminants (IC),
and (c) between-host MAP bacterial load (BC) for different
values of within-host scale MAP bacteria produced per burst-
ing infected macrophage cell Nm: Nm = 10, Nm = 100, and
Nm = 1000. This shows that as the average replication rate of
the within-host scaleMAP bacilli bacteria for an infectedmac-
rophage cell at individual ruminant level increases, transmis-
sion of PTB infection at herd-level of ruminants also
increases. This again confirms that within-host scale parame-
ters continuously influence the between-host scale PTB popu-
lation dynamics throughout the infection.

Figure 7 illustrates the solution profile of the multiscale
model (1) showing variations of (a) population of suscepti-

ble ruminants (SC), (b) population of infected ruminants
(IC), and (c) between-host scale MAP bacterial load (BC)
for different values of natural death rate of within-host scale
MAP bacilli at the site of infection within an infected rumi-
nant μc: μc = 0:3, μc = 0:025, and μc = 0:003. The results in
Figure 7 show that as the death rate of the within-host scale
MAP bacilli increases, there is a noticeable decrease in the
between-host scale MAP bacterial load BC and population
of infected ruminants IC as well as increase in population
of susceptible ruminants SC . This further confirms that
within-host scale parameters continuously influence the
between-host scale PTB population dynamics throughout
the infection.

Overall, the results in Figures 2–7 show that during the
dynamics for PTB infection in ruminants, once the infection
has successfully established at the within-host scale, the
contribution of superinfection to the total pathogen load at
this scale domain becomes negligible compared to the con-
tribution of the pathogen replication. However, at the
between-host scale, the dynamics of populations (SC, IC, BC)
implicated in the spread of PTB are significantly sensitive to
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Figure 4: Graph of numerical solutions of model system (1) showing propagation of (a) infected macrophage population, (b) within-host
MAP bacteria population, (c) MAP-specific Th1 response cells, and (d) MAP-specific Th2 response cell population for different values of the
saturation rate of bacteria B0: B0 = 1000, B0 = 10000, and B0 = 100000.
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the variation of the three selected within-host scale parameters
(αc, μc, and Nm), particularly the decay rate μc of the within-
host scale MAP bacteria. We also performed sensitivity analy-
sis of the PTB disease transmissionmetric to the parameters of
the multiscale model system (1). In what follow, we present
the sensitivity analysis results of the PTB disease transmission
metric (i.e., the basic reproductive number) to the variation of
the multiscale model system (1)’s parameters.

4.3. Sensitivity Analysis. In this section, we carry out sensitiv-
ity analysis on the basic reproductive number to evaluate the
relative change in PTB disease dynamics metric when the
within-host scale and between-host scale parameters of the
multiscale model system (1) change. We achieve this by
using Latin hypercube sampling (LHS) and partial rank cor-
relation coefficients (PRCCs). The PTB disease dynamics
metric used to characterize disease dynamics in this study
is the basic reproductive number (R0) obtained from the
multiscale model (1). We used 1000 simulations per run to
investigate the impact of each of the multiscale model sys-
tem (1)’s parameters. The results of the assessment of the

sensitivity of the PTB basic reproductive number (R0) to
the baseline PTB multiscale model system (1) parameters
are shown in the Tornado plot, Figure 8. From Figure 8,
we notice that some of the model parameters have positive
PRCCs while some have negative PRCCs. Thus, parameters
with positive PRCCs will increase R0 when they are
increased, whereas parameters with negative PRCCs will
decrease R0 when they are increased. For instance, increas-
ing parameter like Nm increases the value of R0, and also
increasing parameters like μc reduces the value of R0.

Therefore, from Figure 8, we make the following
deductions:

(i) The most sensitive parameters to the PTB disease
dynamics metric (R0) are Nm, km, μϕ, μc, and βϕ,
with all being the within-host scale PTB disease
dynamics. This implies that care should be taken in
improving the accuracy of these five within-host
scale parameters during data collection if the validity
and utility of the multiscale model of PTB disease
dynamics given by (1) is to be improved. From the
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Figure 5: Graph of numerical solutions of the model system (1) showing the evolution in time of (a) population of susceptible ruminants
(SC), (b) population of infected ruminants (IC), and (c) between-host scale MAP bacterial load (BC) for different values of excretion rate of
within-host scale MAP bacterial load, Bc, αc: αc = 0:001, αc = 0:01, and αc = 0:1.
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assessment of the sensitivity of R0 to two additional
parameters that we might have the most control over
(Nm and μc), we note that R0 is also significantly sen-
sitive to all these two within-host scale parameters
while having the highest sensitivity to Nm. We con-
clude that administration of PTB drug treatment that
kill and restrict bacteria cell replication at within-host
scale will likely yield the highest benefits in reducing
the transmission of PTB at between-host scale

(ii) The least sensitive parameters to the PTB health inter-
vention metric (R0) are βC, ΛC, αC, μC, Λϕ, B0, ΦC,
and αc. This indicates that the multiscale model system
for PTB transmission dynamics given by (1) is robust to
these parameters. We note from the results in Figure 8
that R0 is also less sensitive to the all three between-host
scale parameters (βC, αC, B0) that we might have a sig-
nificant control over through environmentally health
management and vaccination interventions which kill
and consequently reduce the transmission of the
MAP bacteria among ruminants at the population level
and prevent ruminant from infection. Therefore, we

conclude that administration of PTB vaccination that
reduces the susceptibility of ruminants from the infec-
tion and sanitary-hygiene practices by farmers which
kill the population of the between-host scale bacteria
in the environment and consequently reduce the trans-
mission of the disease among ruminants in the herd
will likely yield the least benefit in reducing the severity
of PTB disease both at the individual ruminant level
and at the population level of ruminants

Overall, we note that the assessment of the sensitivity of
the basic reproductive number R0 to the multiscale model
parameters was useful with respect to guiding data collection
for model parameterization and to identify parameters which
are crucial in the control of the PTB infection in ruminant at
both the within-host scale and between-host scale.

5. Multiscale Model for the Control of
Ruminant Paratuberculosis

In this section, we extend the baseline multiscale model of
ruminant PTB disease dynamics introduced in Section 2,
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Figure 6: Graphs showing changes in (a) population of susceptible ruminants (SC), (b) population of infected ruminants (IC), and (c)
between-host scale MAP bacterial load (BC) for different values of within-host scale MAP bacteria produced per bursting infected
macrophage cell Nm: Nm = 10, Nm = 100, and Nm = 1000.
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to incorporate two main health interventions that can be
used for control and elimination of PTB disease in rumi-
nants. The two major health interventions for PTB infection
in ruminant are (i) environmental-hygiene management
(EHM) and (ii) medical-based prevention and therapy
(MBPT). We use the extended multiscale model that incor-
porates the two PTB health interventions (EHM and MBPT)
to evaluate the comparative effectiveness of these two com-
posite health interventions. In this study, we assume that
both EHM and MBPT are complex intervention systems as
they are composed of a number of components, which
may act independently or interdependently. For instance,
EHM has two components which are (i) health and sanitary
education effect of EHM and (ii) killing of environmental
bacilli bacteria effect of EHM. Also, MBPT can have three
components which are (i) PTB vaccination effect of MBPT,
(ii) PTB test and culling effect of MBPT, and (iii) the pro-
posed PTB test and treat effect of MBTP. In addition, it
should be noted that these two PTB health interventions in
ruminants (EHM and MBPT) are administrated at different
scale domains of the PTB disease system with EHM

2000

1900

1800

1700

1600

1500

1400

1300

25
00

50
00

75
00

10
00

0

12
50

0

15
00

0

17
50

0

20
00

00

S
c

(a)

25
00

50
00

75
00

10
00

0

12
50

0

15
00

0

17
50

0

20
00

00

200

150

125
100

75

50
25

0

175

I
c

(b)

𝜇c=0.03
𝜇c=0.025
𝜇c=0.003

1e6

4

5

3

2

1

0

B
c

2500 5000 7500 10000
Time in days

12500 15000 17500 200000

(c)

Figure 7: Simulations of model system (1) showing changes of (a) population of susceptible ruminants (SC), (b) population of infected
ruminants (IC), and (c) between-host scale MAP bacterial load (BC) for different values of death rate of the within-host scale MAP
bacterial load, Bc, μc: μc = 0:3, μc = 0:025, and μc = 0:003.
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administrated at between-host scale while MBPT adminis-
trated at within-host scale. Hence, evaluating concurrently
the effectiveness of these two PTB health interventions using
single-scale models is unrealistic due to a mismatch between
the scale at which the interventions operate and the scale at
which decisions on them are made. Therefore, we use a base-
line multiscale model system (1) to evaluate the effectiveness
of the two PTB health interventions. We now briefly
describe the modifications to baseline embedded multiscale
model parameters due to the effect of these two PTB health
interventions which are as follows:

(i) Environmentally Hygiene Management. We assume
this intervention strategy has two effects. The first
is the health and sanitary education effect which
has the net effect of reducing the infection rate in
the ruminant population. The second, which results
from the first effect, is the treatment of dams or
water troughs effect using some chemical for killing
bacterial load in water which also have the net effect
of increasing the natural death of MAP in the phys-
ical water environment. Therefore, if we assume that
health and sanitary education intervention and treat-
ment of water are administered, then the rate of
ruminant contact with the physical environmental
bacterial load parameter βC is modified to become
βCð1 − eÞ, and the natural death rate of the environ-
mental bacterial load in the physical water environ-
ment is modified to become αCð1 − eÞ, where e is
the efficacy of environmental hygiene-management
intervention, with 0 <e < 1. Thus, βCð1 − eÞ mea-
sures the probability of the reduction of susceptible
ruminant contact with unsafe water bodies or other
contaminated physical environments due to health
education campaign and changes in behavioral prac-
tices that aims to reduce the transmission risk of the
disease in ruminant animals, while αCð1 − eÞ mea-
sures the probability of the reduction of the popula-
tion of MAP bacilli bacteria in the physical
environment due to the treatment of unsafe water
with some chemicals

(ii) Medical-Based Prevention and Treatment. This
intervention strategy also has two effects. Firstly,
PTB vaccination effect which can be described by
the quality B0ð1 + vÞ, with 0 < v < 1, where v is the
efficacy of vaccine preventive intervention and it is
a parameter that relates to the supply and usage of
vaccine in the herd. Thus, B0ð1 + vÞ measures the
probability of reducing the susceptibility of rumi-
nant when contact with the environmental bacterial
load. Secondly, test and curing effect which also
can be described by the qualities μcð1 + dÞ and Nmð
1 + dÞ, with 0 < d < 1, where d is the efficacy of drug
therapy intervention and it is a parameter that
relates to the treatment of each ruminant using the
drugs after tested positive to PTB infection. Thus,
μcð1 + dÞ measures the probability of killing the
within-host bacterial load and Nmð1 + dÞ measures

the probability of restriction of the replication of
intracellular bacteria within each infected macro-
phages if drug treatment is administered. Overall,
health-sanitary education and the administration of
PTB vaccination in the herd modify λC and λc to
become ~λC and ~λc, respectively, where

~λC tð Þ = βC 1 − eð ÞBC tð Þ
B0 1 − vð Þ + BC tð Þ ,

~λc tð Þ =
βC 1 − eð ÞBC tð Þ

B0 1 − vð Þ + BC tð Þ½ �ΦC IC tð Þ + 1½ � :

8>>><
>>>:

ð61Þ

A summary of the modifications of the multiscale model
given by (1) due to effects of the two PTB health interven-
tions (EHM and MBPT) is given in Table 3.

Taking into account all these modifications, the multi-
scale model of PTB infection dynamics that incorporates
the effects of the two PTB health interventions in ruminant
(EHM and MBPT) becomes

1: dSC tð Þ
dt

=ΛC −
βC 1 − eð ÞBC tð ÞSC tð Þ
B0 1 − vð Þ + BC tð Þ − μCSC tð Þ + γCIC tð Þ,

2: dIC tð Þ
dt

= βC 1 − eð ÞBC tð ÞSC tð Þ
B0 1 − vð Þ + BC tð Þ − μC + δC + γC½ �IC tð Þ,

3: dBC tð Þ
dt

= αc IC tð Þ + 1½ �Bc tð Þ − αCBC tð Þ,

4: dBc tð Þ
dt

= βC 1 − eð ÞBC tð Þ SC tð Þ − 1½ �
B0 1 − vð Þ + BC tð Þ½ �ΦC IC tð Þ + 1½ � +NmkmIm tð Þ − μc + αc½ �Bc tð Þ,

5:
dMϕ tð Þ

dt
=Λϕ − βϕMϕ tð ÞBc tð Þ − μϕMϕ tð Þ,

6: dIm tð Þ
dt

= βϕMϕ tð ÞBc tð Þ − km + μϕ

h i
Im tð Þ − γmT1 tð ÞIm tð Þ,

7: dT0 tð Þ
dt

=Λ0 − δmIm tð Þ + δbBc tð Þ½ �T0 tð Þ − μ0T0 tð Þ,

8: dT1 tð Þ
dt

= θ1δmIm tð ÞT0 tð Þ − μ1T1 tð Þ,

9: dT2 tð Þ
dt

= θ2δbBc tð ÞT0 tð Þ − μ2T2 tð Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð62Þ

Following the same principles for model analysis as in the
previous section, the multiscale model system (62)’s solutions,
equilibria, basic reproductive number, and stability can be
established. Themultiscale model system (62) has PTB control
induced disease-free equilibrium given by

~E0 =
ΛC

μC
, 0, 0, 0,

Λϕ

μϕ
, 0, Λ0

μ0
, 0, 0

 !
, ð63Þ

and PTB control induced endemic equilibrium give by

Ê = ŜC , ÎC , B̂C , B̂c, M̂ϕ, Îm, T̂0, T̂1, T̂2
� �

: ð64Þ

Furthermore, the basic reproduction number for the mul-
tiscale model system (62) is likewise similar to the baseline
multiscale model system (1) reproduction number (R0) expect
that the new basic reproductive number of the multiscale
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model system (62) is associated with efficacy of the two PTB
health interventions (EHM and MBPT). Therefore, the new
effective basic reproductive number is as follows:

~R0 =
1
2 R0e +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0e + 4R0E

q� �
, ð65Þ

where

R0e =
βϕΛϕNm 1 − dð Þkm

μϕ μϕ + km
	 


μc 1 − dð Þ + αcð Þ
, ð66Þ

is the partial within-host scale basic reproduction number
associated with the efficacy of killing of the within-host scale
MAP bacteria, and

R0E =
βC 1 − eð Þ ΛC − μCð Þαc

αC 1 − tð ÞμCΦC μc 1 − dð Þ + αcð ÞB0 1 − vð Þ , ð67Þ

is the partial between-host scale basic reproduction number
associated with the efficacy of health-sanitary education,
administration of vaccine and drugs, and treatment adminis-
tered into water sources such as dams and wells.

In this study, we use the basic reproductive number of
the baseline multiscale model system (1) as a public health
measure of PTB disease dynamics to successively evaluate
the comparative effectiveness of the two PTB health inter-
ventions (EHM and MBPT). Therefore, we determine the
comparative effectiveness of the two PTB interventions by
ranking the percentage reductions of the proposed public
health measure (R0) when the two PTB health interventions
are implemented.

The ranking of the percentage reductions of these two
health interventions of PTB disease dynamics ranges from 1
to 8 based on the different combinations of the PTB health
interventions. In the ranking, 1 corresponds to the highest
comparative effectiveness, and 8 corresponds to the lowest
comparative effectiveness. In this study, we use a notation
(pr½R0�) to denote the percentage reductions of R0 when the
two health measures are implemented. Therefore, the percent-
age reductions of the two health measures of PTB disease
dynamics are calculated using the following expression:

pr R0½ � = R0 − ~R0
R0

" #
× 100%, ð68Þ

where ~R0 is the effective reproductive number of themultiscale
model system (62) incorporating the effects of the two PTB
health interventions (EHM and MBPT). The expression in
(68) is used to calculate the comparative effectiveness at low
efficacy level (CEL-eff) which is taken to be e = v = d = 0:1,
comparative effectiveness at medium efficacy level (CEM-eff)
which is taken to be e = v = d = 0:4, and comparative effective-
ness at high efficacy level (CEH-eff) which is taken to be
e = v = d = 0:8 using each of the basic reproductive number
of the multiscale model system (1) as a PTB public health
measures (R0). The results of the comparative effectiveness
of the PTB health intervention strategies and their respec-
tive combinations are tabulated in Table 4.

Table 4 shows the results of the assessment of the
comparative effectiveness of three PTB health intervention
strategies administrated in isolation and in combination
which are obtained using R0 as an indicator of intervention
effectiveness. Based on the results in Table 4, we deduce
the following results regarding the comparative effectiveness
of the 8 different combinations of interventions considered
as follows:

(1) When environmental-hygiene management, vacci-
nation and killing of the within-host MAP bacteria
effects are considered separately, killing of the
within-host MAP bacteria effects presents the high-
est comparative effectiveness with an increase in
efficacy levels as illustrated by CEL-eff < CEM-eff <
CEH-eff, while the vaccination effect has a much
lower comparative effectiveness than the rest. There-
fore, a treatment that cures an infected ruminant
with PTB infection is equally good for both the
infected ruminant and the ruminant population
because the infected ruminant will no longer poss a
transmission risk for the disease in the herd

(2) When a combination of two intervention components
of EHM andMBPT is considered, the results show that
the combinations of the killing of the within-host scale
MAP bacteria effect and environmental-hygiene man-
agement effect has the highest comparative effective-
ness for all efficacy levels (0.1, 0.4, and 0.8) followed
by the combinations of the killing of the within-host
MAP bacteria effect and vaccination effect, while the
combination of environmental-hygiene management
effect and vaccination effect has a much lower compar-
ative effectiveness and ranking the fifth when each

Table 3: Summary of the actions of the components of the two PTB health interventions against the disease dynamics.

Health interventions Transformation
Efficacy

Value range

Interventions whose efficacy is modified by environmentally management (e)
βC ⟶ βC 1 − eð Þ
αC ⟶ αC 1 + eð Þ 0.1-0.8

Interventions whose efficacy is modified by vaccination (v) B0 ⟶ B0 1 + vð Þ 0.1-0.8

Interventions whose efficacy is modified by drug therapy (d)
μc ⟶ μc 1 + dð Þ
Nm ⟶Nm 1 − dð Þ 0.1-0.8
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individual intervention is assumed to have the same
efficacy value. Therefore, a treatment that cures an
infected ruminant with PTB infection complement
with the good sanitation and hygiene practices of
farmers is considerable good for the ruminant popula-
tion in the herd because they reduce the risk of PTB
transmission among the ruminants

(3) Finally, we considered the comparative effectiveness
of the PTB interventions when all the components
of the two PTB interventions (EHM and MBPT)
are implemented together. We note from the results
that this combination has the highest comparative
effectiveness than any of the other combination
interventions considered in this study for all efficacy
levels (0.1, 0.4, and 0.8). Therefore, a joint introduc-
tion of environmentally management, vaccination,
and drug therapy can lead to a more considerable
percentage reduction of R0 with an increase in effi-
cacy from low level of 10% to moderate level of
40% and high level of 80%

6. Discussion and Conclusions

The main innovation of this study is the development of an
embedded multiscale modelling framework that enables
investigation of the role of superinfection plays in paratuber-
culosis (PTB) disease dynamics of in ruminants. Unlike
hybrid multiscale models (HMSMs), our multiscale model
uses pathogen load as a common metric for infectiousness
and disease transmission potential across the microscale
and the macroscale. In HMSMs such as in [13, 22], pathogen
load is used as the metric for disease transmission while at
between-host scale; disease class (i.e., infected class or prev-
alence) was used as the metric for disease transmission. In
this study, we used the basic reproductive number as the
metric for disease dynamics to evaluate the comparative
effectiveness of health interventions that operate at different
scales. With individual-based multiscale models (IMSMs), it
is not easy to derive the expression for the basic reproductive
number explicitly because IMSMs do not explicitly incorpo-

rate the two scales (microscale and macroscale) in the multi-
scale model. Therefore, it is not easy to use IMSMs to
evaluate the comparative effectiveness of health interven-
tions that operate at different scales.

In this study, we established that superinfection of the
ruminant does not significantly alter the total pathogen load
within an infected ruminant. Collectively, the numerical
results in this study establish that once the infection has suc-
cessfully established at the within-host scale the replication
of MAP bacteria sustains PTB disease dynamics. Further,
the results of sensitivity analysis of R0 indicate that the var-
iation of the within-host scale parameters in particular the
decay rate of the within-host MAP bacteria population have
significant affect disease dynamics in the ruminant popula-
tion. Therefore, considering that there are no drugs for
PTB infection, the results of sensitivity analysis reveal that
the development of a drug that kills and restricts replication
of MAP bacteria at the within-host scale would have benefi-
cial effect on the reduction of the transmission risk of the
disease among the ruminants at between-host scale. We fur-
ther used the multiscale model to assess the comparative
effectiveness of two PTB health interventions which are (i)
environmental-hygiene management (EHM) and medical-
based preventive and treatment (MBPT). The comparative
effectiveness results show that administration of drug treat-
ments that kill MAP bacteria at individual ruminant level
has a higher comparative effectiveness than other two PTB
health interventions (sanitary education, treatment of water
bodies that kill MAP bacteria in water, and vaccination of
susceptible ruminants). The results also show that employ-
ing all PTB control measures could lead to a more consider-
able reduction of the disease at the start of infection. The
embedded multiscale model developed in this study provides
new insight into the role that superinfection plays on the
dynamics of environmental disease systems with obligate
pathogens that cannot replicate outside the host. The
embedded multiscale model in this article also provides a
better understanding about the reciprocal influence between
the replication of pathogen load at within-host scale and
transmission at between-host scale. We were also able to
identify, through the sensitivity analysis of the basic

Table 4: Results of the assessment of comparative effectiveness of PTB health interventions using the effective reproductive number (R0) as
the indicator of intervention effectiveness when each of the two interventions is assumed to have (a) low efficacy of e = v = d = 0:1, (b)
medium efficacy of e = v = d = 0:4, and (c) high efficacy of e = v = d = 0:8.

No. Indicator CEL-eff Rank CEM-eff Rank CEH-eff Rank

1 R0 0.00 8 0.00 8 0.00 8

2 Re
0 0.52 6 1.64 6 2.58 6

3 Rv
0 0.26 7 0.82 7 1.27 7

4 Rd
0 15.37 4 50.39 4 79.00 4

5 Rev
0 0.73 5 2.00 5 2.73 5

6 Red
0 15.93 2 52,89 2 86.27 2

7 Rdv
0 15.65 3 51.61 3 82.06 3

8 Redv
0 16.17 1 53.45 1 86.89 1
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reproductive number and the numerical simulations of the
multiscale model, the key target parameters for eliminating
paratuberculosis infection in ruminants. Although this study
was focused on PTB infection in ruminants, the multiscale
modeling framework itself is general enough and is
applicable to guide control and elimination of many other
environmentally transmitted diseases with obligate patho-
gens beyond the specific case study of PTB disease system.

Appendix

A. Feasible Region of the Equilibria of
the Model

The embedded multiscale model system (1) for PTB trans-
mission dynamics can be analyzed in a region Γ ∈ R+ of
biological interest. Now assuming that all parameters and state
variables for model system (1) are positive for all t > 0, it can
be shown that all solutions for the model system (1) with pos-
itive initial conditions remain bounded. Letting NC = SC + IC
and Nϕ = Sϕ + Im, and further add the 1st and 2nd and 5th
and 6th equations of the model system (1), respectively,
we obtain

1: dNC tð Þ
dt

=ΛC − μCNC − δCIC ,

2:
dNϕ tð Þ
dt

=Λϕ − μϕNϕ − γmT1 + km½ �Im:

8>><
>>: ðA:1Þ

It follows that

dNC tð Þ
dt

≤ΛC − μCNC ,

dNϕ tð Þ
dt

≤Λϕ − μϕNϕ:

8>><
>>: ðA:2Þ

From which we get

NC tð Þ ≤NC 0ð Þe−μCt + ΛC

μC
1 − e−μCt
� �

,

Nϕ tð Þ ≤Nϕ 0ð Þe−μϕt + Λϕ

μϕ
1 − e−μϕt
� �

,

8>>><
>>>:

ðA:3Þ

where NCð0Þ represents the value of total ruminant popula-
tion at the between-host scale in the population-host level
and Nϕð0Þ represents the value of total macrophage cell
population at the within-host scale within a single infected
ruminant-host level evaluated at the initial values of the
respective variables. Taking the limits of both NCðtÞ and
NϕðtÞ in (A.3) as time gets larger, we get the following
expressions

lim
t⟶∞

sup NC tð Þð Þ ≤ ΛC

μC
,

lim
t⟶∞

sup Nϕ tð Þ� �
≤
Λϕ

μϕ
:

8>>><
>>>:

ðA:4Þ

Now, considering the 7th equation of the model system
(1) given by

dT0 tð Þ
dt

=Λ0 − δmIm tð Þ + δbBc tð Þ½ �T0 tð Þ − μ0T0 tð Þ, ðA:5Þ

It is true that

dT0
dt

≤Λ0 − μ0T0: ðA:6Þ

From which we get

T0 tð Þ ≤ T0 0ð Þe−μ0t + Λ0
μ0

1 − e−μ0t
� �

, ðA:7Þ

with T0ð0Þ denotes the value of total naive immune
response cell population at the within-host scale within an
infected ruminant-host level evaluated at the initial values
of T0. Taking the limits of T0ðtÞ as time gets larger, we
get the following

lim
t⟶∞

sup T0 tð Þð Þ ≤ Λ0
μ0

: ðA:8Þ

From the 8th equation of the model system (1), we get

dT1
dt

≤
θ1δmΛ0Λϕ

μϕμ0
− μ1T1: ðA:9Þ

From which we get

T1 tð Þ ≤ T1 0ð Þe−μ1t + θ1δmΛ0Λϕ

μϕμ1μ0
1 − e−μ1t
� �

, ðA:10Þ

with T1ð0Þ being the value of total Th1 immune response
cell population at the within-host scale within a single
infected ruminant-host level evaluated at the initial values
of T1. This implies that

lim
t⟶∞

sup T1 tð Þð Þ ≤ θ1δmΛ0Λϕ

μϕμ1μ0
: ðA:11Þ

Therefore, substituting NC ≤ΛC/μC , Nϕ ≤Λϕ/μϕ, and
T1 ≤ θ1δmΛ0Λϕ/μϕμ1μ0 into the 3rd, 4th, and 9th equations
of the model system (1), we obtain the following

dBC tð Þ
dt

≤
αc ΛC + μCð Þ

μC
Bc − αCBC ,

dBc tð Þ
dt

≤
βC ΛC − μCð ÞBC

ΦC ΛC + μCð Þ B0 + BCð Þ +
NmkmΛϕ

μϕ
− μc + αcð ÞBc,

dT2 tð Þ
dt

≤
θ2δbΛ0
μ0

Bc − μ2T2,

8>>>>>>>>><
>>>>>>>>>:

ðA:12Þ
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From which we can easily get

BC ≤
αc ΛC + μCð Þ

μCαC
Bc,

Bc ≤
βC ΛC − μCð ÞBC

ΦC ΛC + μCð Þ B0 + BCð Þ μc + αcð Þ +
NmkmΛϕ

μϕ μc + αcð Þ ,

T2 ≤
θ2δbΛ0
μ0μ2

Bc:

8>>>>>>>>><
>>>>>>>>>:

ðA:13Þ

Following some algebraic solving, we obtain

BC ≤
αc ΛC + μCð Þ

2μCαC
ξ1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 + 4ξ2

q� �
,

Bc ≤
1
2 ξ1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 + 4ξ2

q� �
,

T2 ≤
θ2δbΛ0
2μ0μ2

ξ1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 + 4ξ2

q� �
,

8>>>>>>>><
>>>>>>>>:

ðA:14Þ

where the constants ξ1 and ξ2 are as follows:

ξ1 = ν0 ν1 + ν2ð Þ − B0, ξ2 = ν0ν2B0, ðA:15Þ

with

ν0 =
αc ΛC + μCð Þ

μCαC
, ν1 =

βC ΛC − μCð Þ
ΦC ΛC + μCð Þ μc + αcð Þ , ν2 =

NmkmΛϕ

μϕ μc + αcð Þ :

ðA:16Þ

This also implies that

lim
t⟶∞

sup BC tð Þð Þ ≤ αc ΛC + μCð Þ
2μCαC

ξ1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 + 4ξ2

q� �
,

lim
t⟶∞

sup Bc tð Þð Þ ≤ 1
2 ξ1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 + 4ξ2

q� �
,

lim
t⟶∞

sup T2 tð Þð Þ ≤ θ2δbΛ0
2μ0μ2

ξ1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 + 4ξ2

q� �
:

8>>>>>>>><
>>>>>>>>:

ðA:17Þ

Therefore, all feasible solutions of the model system (1)
are positive and enter a region define by

which is positively invariant and attracting for all t > 0,
where

S1 =
ΛC

μC
, S2 =

Λϕ

μϕ
, S3 =

αc ΛC + μCð Þ
2μCαC

ξ1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 + 4ξ2

q� �
,

S4 =
1
2 ξ1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 + 4ξ2

q� �
, S5 =

Λ0
μ0

, S6 =
θ1δmΛ0Λϕ

μϕμ1μ0
,

S7 =
θ2δbΛ0
2μ0μ2

ξ1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 + 4ξ2

q� �
, ξ1 = ν0 ν1 + ν2ð Þ − B0, ξ2 = ν0ν2B0:

8>>>>>>>>><
>>>>>>>>>:

ðA:19Þ

B. Center Manifold Theorem for Local Stability

Theorem B.1. Consider the following general system of ordi-
nary differential equations with parameter ϕ:

dx
dt

= f x, ϕð Þ, f : Rn × R⟶ R, f : C2 R2 × R
� �

, ðB:1Þ

where 0 is an equilibrium of the system, that is f ð0, ϕÞ = 0 for
all ϕ, and assume that

A1. A =Dxf ð0, 0Þ = ðð∂f i/∂xjÞð0, 0ÞÞ is a linearization
matrix of the model system (B.1) around the equilibrium 0
with ϕ evaluated at 0. Zero is a simple eigenvalue of A, and
other eigenvalues of A have negative real parts

A2. Matrix A has a right eigenvector u and a left eigenvec-
tor v corresponding to the zero eigenvalue

Let f k be the kth component of f and

a = 〠
n

k,i,j=1
ukvivj

∂2 f k
∂xi∂xj

0, 0ð Þ, ðB:2Þ

b = 〠
n

k,i=1
ukvi

∂2 f k
∂xi∂ϕ

0, 0ð Þ: ðB:3Þ

The local dynamics of (B.1) around 0 are totally governed
by a and b and are summarized as follows.

(1) a > 0, b > 0. When ϕ < 0 with jϕj≪ 1, 0 is locally
asymptotically stable, and there exists a positive
unstable equilibrium; when 0 < ϕ≪ 1, 0 is unstable,
and there exists a negative and locally asymptotically
stable equilibrium

Γ = SC , IC, BC, Bc,Mϕ, Im, T0, T1, T2
� �

∈ R9
+ : 0 ≤ SC + IC ≤ S1, 0 ≤Mϕ + Im ≤ S2, 0 ≤ BC ≤ S3, 0 ≤ Bc ≤ S4, 0 ≤ T0 ≤ S5, 0 ≤ T1 ≤ S6, 0 ≤ T2 ≤ S7

� �
,

�
ðA:18Þ
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(2) a < 0, b < 0. When ϕ < 0 with jϕj≪ 1, 0 is unstable;
when 0 < ϕ≪ 1, 0 is locally asymptotically stable,
and there exists a positive unstable equilibrium

(3) a > 0, b < 0. When ϕ < 0 with jϕj≪ 1, 0 is unstable,
and there exists a locally asymptotically stable nega-
tive equilibrium; when 0 < ϕ≪ 1, 0 is stable, and a
positive unstable equilibrium appears

(4) a < 0, b > 0. When ϕ changes from negative to posi-
tive, 0 changes its stability from stable to unstable.
Correspondingly, a negative unstable equilibrium
becomes positive and locally asymptotically stable
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