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In this paper, a statistical simulation algorithm for the power series distribution, called the Max Erlang Binomial distribution, is
proposed, analyzed, and tested for bladder cancer remission time data. In order to present the simulation technique, the EM
algorithm for statistical estimation aimed at estimating the model parameters is described.

1. Introduction

The introduction of this new (generalized) distribution
addresses reliability problems when lifetime can be expressed
as the maximum or minimum of a sequence of independent
and identically distributed (iid) random variables, which rep-
resents the system components’ risk times. In recent years,
some researchers have proposed a series of new distributions
for the maximum and minimum of a sequence of iid random
variables. For example, Adamidis and Loukas [1], Kus [2],
Tahmasbi and Rezaei [3], Louzada et al. [4], and Cancho
et al. [5] were interested in determining the maximum ormin-
imum distribution when the components in a sequence of iid
random variables are exponentially distributed, and a number
of components are of a discrete type. Next, Flores et al. [6]
treated the distribution of a vector’s maximum with compo-
nents that are exponentially distributed in a random number
of a power series distribution type. This type of distribution
is called the complementary exponential power series (CEPS)
distribution. Also, Morais and Barreto-Souza [7] considered
analyzing theWeibull distribution class bymeans of the power
series distribution class (WPS). Recently, Louzada et al. [8]
have developed a mathematical model that unifies the proce-
dure for obtaining a distribution of the maximum and mini-
mum of a sequence of iid random variables of the absolutely
continuous type in a random number N characterized by the

generating function. But the problem of determining the gen-
eral formula when the random variable N forms a part of a
power series distributions remains unsolved.

In this paper, the simulation algorithms for these family
distributions are proposed. This study is intended as a
completion of the research by Balkema and de Haan
(1974), Bryson (1974), Ahsanullah (1991), Balakrishnan
and Ahsanullah (1994), Childs and others (2001), Al Awadhi
and Ghitany (2001, 2007), Zahrani and Harbi (2013),
Al-Zahrani and Sagor (2014), Tahir and Cordeiro ([9],
2016), Hassan and Abd-Elfattah (2016), and Munteanu ([10],
2013). The above-mentioned algorithm was implemented by
means of the Eclipse SDK programming environment.

This work has the following structure: Section 2 defines
the mathematical properties of the Max Erlang Binomial
power series distribution (the cumulative distribution func-
tion, the probability density function, the mean, and
variance). The simulation techniques targeting the Max
Erlang Binomial distribution are analyzed and formulated
in Section 3, with results validation via the Pearson test. In
Section 4, the simulation algorithm for the Max Erlang Bino-
mial distribution parameters is proposed and tested using
the method of the maximum likelihood estimation. Section
5 discusses an application of the proposed distribution using
a real-life dataset. Lastly, in Section 6, some useful conclu-
sions are drawn.

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2021, Article ID 9932729, 8 pages
https://doi.org/10.1155/2021/9932729

https://orcid.org/0000-0002-7848-8881
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9932729


2. Development of the Mathematical Model

In [11], the properties of a new power distribution type
series, called the Max Erlang Binomial (MaxErlB), are intro-
duced and researched. As a mathematical model, this distri-
bution describes the probabilistic behavior of lifetimes,
widely used in researching the reliability of systems. In
[11], this distribution is presented as the distribution of the
maximum value in a random volume sample Z from a statis-
tical population, Erlang distributed, where Z is a binomially
distributed, zero-truncated random variable. Formally,
things are presented as follows.

Let us consider the random variable Z such that ℙðZ ∈
f1, 2,⋯gÞ = 1.

Definition 1 ([12]). We say that the random variable Z has a
power series distribution if

ℙ Z = zð Þ = azΘ
z

A Θð Þ , z = 1, 2,⋯ ;Θ ∈ 0, τð Þ, ð1Þ

where a1, a2,⋯ are nonnegative real numbers, τ is a positive
number bounded by the convergence radius of power series
(series function) AðΘÞ =∑z≥1 azΘ

z , ∀Θ ∈ ð0, τÞ, and Θ is the
power parameter of the distribution (Table 1).

PSD denotes the power series distribution function
families. If the random variable Z has the distribution in
Equation (1), then we write Z ∈ PSD.

We consider that Xi ~ Erlangðk, λÞ, k ∈ℕ, k ≥ 1, λ > 0,
where ðXiÞi≥1 are iid random variables with the distribution

function FXi
ðxÞ ≡ FErlðxÞ = 1 −∑k−1

i=0 ððλxÞi/i!Þe−λx, x > 0, and
the probability density function f Xi

ðxÞ ≡ f ErlðxÞ = ðλkxk−1
e−λx/ðk − 1Þ!Þ, x > 0.

We note that UErl = max fX1, X2,⋯, XZg.
The results in this section are obtained using the general

framework in [13], for which reason some proofs are not
presented.

Proposition 1 (see [11]). If the random variable UErl =max
fX1, X2,⋯, XZg, where ðXiÞi≥1 are nonnegative iid random
variables, Xi ~ Erlangðk, λÞ, k ∈ℕ, k ≥ 1, λ > 0 and Z ~ Bino
m∗ðn, pÞ, Z ∈ PSD, n ∈ f1, 2⋯ g, with AðΘÞ = ðΘ + 1Þn − 1,
Θ = ðp/ð1 − pÞÞ, p ∈ ð0, 1Þ, Θ ∈ ð0, τÞ, τ > 0, the random vari-
ables ðXiÞi≥1 and Z being independent; then, the cumulative
distribution functions and the probability density function
of the random variable UErlB are the following:

UErlB xð Þ =
1 − pe−λx∑k−1

i=0 λxð Þi/i!
� �� �n

− 1 − pð Þn
1 − 1 − pð Þn , x > 0,

ð2Þ

uErlB xð Þ =
npλkxk−1e−λx 1 − pe−λx∑k−1

i=0 λxð Þi/i!
� �� �n−1

1 − 1 − pð Þn , x > 0:

ð3Þ
Definition 2 (see [11]). We say that the random variable UErlB

has a Max Erlang Binomial power series distribution with
parameters k, λ, n, and p (UErlB ~ MaxErlB ðk, λ, n, pÞ), if it
has the cumulative distribution function (cdf) defined by
Equation (2) and probability density function (pdf) defined
by Equation (3).

The numerical characteristics (mean, variance) of a
random variable with a MaxErlB distribution, in a particular
case (k = 2), are presented in the following result:

Proposition 2. The mean and variance of the random
variable UErlB ~MaxErlBð2, λ, n, pÞ, λ > 0, n ∈ f1, 2⋯ g,
p ∈ ð0, 1Þ, are characterized by the following relations:

EUErlB =
n

λ 1 − 1 − pð Þn½ �〠
n

z=1
−1ð Þz−1

n

z − 1

 !
z + 1ð Þ!pz
zz+2

,

ð4Þ

VarUErlB =
n

λ2 1 − 1 − pð Þn½ � 〠
n

z=1
−1ð Þz−1

n

z − 1

 !
z + 2ð Þ!pz
zz+3

"

−
n

1 − 1 − pð Þn 〠
n

z=1
−1ð Þz−1

n

z − 1

 !
z + 1ð Þ!pz
zz+2

 !2#
:

ð5Þ
Proof. After Equation (3) and the definition of the
mean, we obtain

EUErlB =
npλ2

1 − 1 − pð Þn
ð∞
0
x2e−λx 1 − pe−λx 1 + λxð Þ

� �n−1
dx,

ð6Þ

where ð1 − pe−λxð1 + λxÞÞn−1 =∑n
z=1 ð−1Þz−1

n

z − 1

 !
pz−1

ð1 + λxÞz−1e−ðz−1Þλx, as developed by Newton’s binomial.

Table 1: The representative elements of the PSD families for
various truncated distributions.

Distribution az Θ A Θð Þ τ

Binom∗ n, pð Þ
n

z

 !
p

1 − p
1 +Θð Þn − 1 ∞

Poisson∗ αð Þ 1
z!

α eΘ − 1 ∞

Log pð Þ 1
z

p −ln 1 −Θð Þ 1

Geom∗ pð Þ 1 1 − p
Θ

1 −Θ
1

Pascal k, pð Þ
z − 1
k − 1

 !
1 − p

Θ

1 −Θ

� �k

1

Bineg∗ k, pð Þ
z + k − 1

z

 !
p 1 −Θð Þ−k − 1 1
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A sum of n-integrals then can be solved with elementary
methods (method of integration by parts), which leads
to Equation (4).

Similarly, evaluating the second-order moment

EU2
ErlB =

npλ2

1 − 1 − pð Þn
ð∞
0
x3e−λx 1 − pe−λx 1 + λxð Þ

� �n−1
dx,

ð7Þ

together with the definition of variance, leads us to
Equation (5).

Remark 1. We notice that for k = 1, we obtain the comple-
mentary exponential distribution introduced by Flores
et al. [6].

3. Statistical Simulation for the
MaxErlB Distribution

Taking advantage of the fact that the random variable
UErlB ~ MaxErlBðk, λ, n, pÞ, λ > 0, k, n ∈ f1, 2⋯ g, p ∈ ð0, 1Þ,
has the same distribution as the random variable
max1≤i≤ZXi, where ðXiÞi≥1 are iid random variables, Xi ~
Erlangðk, λÞ, k ∈ℕ, k ≥ 1, λ > 0, and the value of the ran-
dom variable Z ~ Binom∗ðn, pÞ, p ∈ ð0, 1Þ, n ∈ f1, 2,⋯g,
coincide with the value of the random variable zero-
truncated binomial distributed with the same parameters,
but provided this is a nonzero value, we can briefly
describe the following algorithm.

3.1. Statistical Simulation Algorithm for the MaxErlB
Distribution

Step 1. We generate a value z⋆ of the random variable Z⋆

~ Binomðn, pÞ, p ∈ ð0, 1Þ, n ∈ f1, 2,⋯g

Step 2. If z⋆ = 0, then GO TO Step 1; otherwise, z = z∗

Step 3. For the value z of the random variable Z (generated
in Steps 1 and 2), simulate the values xi, i = 1, 2,⋯ as a
values of z-iid random variables with distribution Erlang
ðk, λÞ, k ∈ℕ, k ≥ 1, λ > 0

Step 4. It is considered uErlB = max1≤i≤zxi, STOP.

Following the simulation, we can apply the Chi-square
test of concordance. Based on a test, based on the results
ðu1ErlB, u2ErlB,⋯, umErlBÞ, the Chi-square criterion (Pearson’s
criterion) is applied, and the basic and alternative
hypotheses are verified, respectively:

H0: sample values ðu1ErlB, u2ErlB,⋯, umErlBÞ are values of the
random variable distributed MaxErlBð2, λ, n, pÞ

H1: sample values ðu1ErlB, u2ErlB,⋯, umErlBÞ are not the values
of the random variable distributed MaxErlBð2, λ, n, pÞ.

The test is considered valid if the empirical value of χ2
c

is less than the upper critical value of the Chi-square with
ðr − 1Þ − L = ð12 − 1Þ − 4 = 7 freedom degrees (χ2

0:05;7 =

14:067). The statistics of Pearson’s test is calculated using
the following relation:

χ2
c = 〠

r

j=1

nj − n0pj
� �2

n0pj
, ð8Þ

where nj, j = �1, r represents the number of observed values
in the interval ½t j−1, t jÞ, n0 =∑r

j=1 nj.
The probabilities pj that the random variable UErlB takes

the values in the interval ½t j−1, t jÞ are calculated using the
following relation:

pj =UErlB t j
� �

−UErlB t j−1
� �

=2ð Þ 1
1 − 1 − pð Þn

� 1 − pe−λt j 〠
k−1

i=0

λt j
� �i
i!

 !n

− 1 − pe−λt j−1 〠
k−1

i=0

λt j−1
� �i

i!

 !n" #
,

ð9Þ

where t j, j = �0, r1 represent the ends of each interval after
they have been merged.

Based on the algorithm presented above, we can notice
(see Table 2) that the mean and the empirical variance of
the simulation results are well approximated by the mean
and the theoretical variance of the random variable UErlB
~MaxErlBð2,10,3, 0:2Þ (Proposition 2), and the Chi-
square criterion validates each time the basic hypothesis
according to which the simulated values are indeed
governed by this distribution.

Moreover, the validation is confirmed for samples values
m ∈ f100,1000,10000,100000,1000000,10000000g.

The histogram of the simulated data and the plot of the
probability density function of the simulated distribution
(Figure 1) also confirm the validity of the basic hypothesis,
but visually.

4. EM Algorithm for the MaxErlB Distribution

The EM algorithm introduced in 1977 in the paper [14]
comes to perfect the maximum likelihood method which,
in the case of processing incomplete statistical data, becomes
practically unusable. Next, the algorithm is implemented for
the MaxErlBð2, λ, 3, pÞ, λ > 0, p ∈ ð0, 1Þ distribution.

We consider the values of a sample ðx1, x2,⋯, xmÞ of size
m a statistical population govorned by a MaxErlB distribu-
tion with the probability density function uErlBðx,ΨÞ, x > 0,
which depends on the parameter vector Ψ = ðλ, pÞ, given
that the parameter n of the zero-truncated binomial distri-
bution and the parameter k of the Erlang distribution are
given. According to the definition of the maximum likeli-
hood function and Equation (3), we have
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L x1, x2,⋯, xm ;Ψð Þ =
Ym
j=1

3pλ2xje−λxj 1 − pe−λxj − pλxje
−λxj

� �2
1 − 1 − pð Þ3

= 3pλ2
� �m

e−λ∑
m
j=1 x j

1 − 1 − pð Þ3� �m Ym
j=1

xj

� 1 − pe−λxj − pλxje
−λxj

� �2
:

ð10Þ

To obtain the maximum likelihood equations for the

MaxErlB distribution regarding the estimation bλ , p̂ for the
parameters λ, p, we consider

ln L x1, x2,⋯, xm ; λ, pð Þ =m ln 3 + ln p + 2 ln λð Þ

− λ〠
k−1

i=0
xj −m ln 1 − 1 − pð Þ3� �

+ 〠
m

j=1
ln xj + 2 1 − pe−λxj − pλxje

−λxj
� �h i

:

ð11Þ

The parameters n and k being considered known, then the
equations of the method for the maximum likelihood estima-
tion function (MLE) are characterized by the nonlinear system
SðΨÞ = 0, where SðΨÞ = ðð∂ ln L/∂λÞ, ð∂ ln L/∂pÞÞ. Develop-
ing the system of equations SðΨÞ = 0, we notice that it
becomes difficult to solve in relation to the unknowns λ and
p. We are thus in the situation in which the application of
the EM algorithm explained and analyzed by Dempster et al.
[14], then expanded by McLachlan and Krishnan [15] is
required. In this algorithm, the random variable Z is consid-
ered a random variable latency, that is, the random variable
which cannot be observed directly.

For this, we consider, formally, the following sample:

x1, z1ð Þ, x2, z2ð Þ,⋯, xm, zmð Þð Þ, ð12Þ

by m observations of the random variable ðUErlB, ZÞ.
This shows that ððx1, z1Þ, ðx2, z2Þ,⋯, ðxm, zmÞÞ can be

interpreted as a complete set of statistics, being, in this case,
a sample of incomplete data. The description of the EM
algorithm supposes a known conditional mean EðZjUErlB ;
ΨÞ, where Ψ = ðλ, pÞ.

The probability density function uErlBðx,ΨÞ, x > 0, of the
random variable UErlB wich corresponds to a complete set of
data, is defined by the following relation according to the
definition of probability density in the case of the maximum
(see [13], Consequence 2.2):

uErlB xð Þ =
Θλ2xe−λx A′ Θ 1 − e−λx − λxe−λx

� �� 	n o
A Θð Þ , x > 0,

ð13Þ

In these conditions, the probability density function
uErlBðx, zÞ of the random variable ðUErlB, ZÞ which corre-
sponds to a complete set of data is given by

uErlB x, z ;Ψð Þ = zf Erl xð Þ FErl xð Þð Þz−1ℙ Z = zð Þ

= zazΘ
zλ2xe−λx 1 − e−λx − λxe−λx

� �z−1
A Θð Þ ,

ð14Þ

where AðΘÞ = ð1 +ΘÞn − 1, Θ = p/1 − p, p ∈ ð0, 1Þ, az =

n

z

 !
, z ≤ n, f ErlðxÞ, and FErlðxÞ, x > 0 are the probability

density function, respectively, the cumulative distribution
function which has the Erlangðk, λÞ, k ∈ℕ, k ≥ 1, λ > 0
distribution.

Then, the probability density function of the random
variable Z conditioned by the random variable UErlB has
the following expression:

uErlB z xjð Þ = uErlB x, zð Þ
uErlB xð Þ = zazΘ

z−1 1 − e−λx − λxe−λx
� �z−1

A′ Θ 1 − e−λx − λxe−λx
� �� 	 :

ð15Þ

Therefore, considering the obvious relation ∑z≥1 z
2azΘ

z−2

= A′′ðΘÞ + ð1/ΘÞ ·A′ðΘÞ, the conditional mean becomes

E Z UErlBj ;Ψð Þ = 〠
n

z=1
z · uErlB z xj ;Ψð Þ

= ∑n
z=1 z

2azΘ
z−1 1 − e−λx − λxe−λx
� �z−1

A′ Θ 1 − e−λx − λxe−λx
� �� 	

= Θ 1 − e−λx − λxe−λx
� �

A′ Θ 1 − e−λx − λxe−λx
� �� 	

�〠
n

z=1
z2azΘ

z−2 1 − e−λx − λxe−λx
� �z−2

= Θ 1 − e−λx − λxe−λx
� �

· A′′ Θ 1 − e−λx − λxe−λx
� �� 	

A′ Θ 1 − e−λx − λxe−λx
� �� 	 + 1:

ð16Þ

Table 2: The validation of the MaxErlB simulation results with the
application of the Chi-square test.

Sample
size

Mean Variance Chi-
squareTheoretical Empirical Theoretical Empirical

100

0.2197

0.2080

0.0202

0.0182 2.061

1000 0.2141 0.0228 6.952

10000 0.2151 0.0217 5.317

100000 0.2170 0.0216 4.833

1000000 0.2168 0.0215 7.636

10000000 0.2167 0.0214 2.901
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Since Z ~ Binom⋆ðn, pÞ ∈ PSD, k, n ∈ f1, 2,⋯g with A
ðΘÞ = ð1 +ΘÞn − 1, Θ ∈ ð0,+∞Þ, Θ = p/1 − p, p ∈ ð0, 1Þ,
we have

E Z UErlBj ;Ψð Þ = 2p 1 − e−λx − λxe−λx
� �

1 − pe−λx − pλxe−λx
+ 1: ð17Þ

We describe the EM algorithm for theMaxErlBð2, λ, 3, pÞ
distribution as an iterative process of estimating the unknown
parameter Ψ = ðλ, pÞ throughΨðhÞ = ðλðhÞ, pðhÞÞ calculated for
a few steps h ≥ 1 such that the following condition is satisfied:

max λ hð Þ − λ h−1ð Þ



 


, p hð Þ − p h−1ð Þ




 


� �
≤ ε, ð18Þ

or h = K be accomplished when ε > 0 and K represents the
number of preset iterations.

The steps of the EM algorithm for MaxErlB distribution
are the following:

Step 1. We take λ = λð0Þ, p = pð0Þ, λð0Þ > 0, pð0Þ ∈ ð0, 1Þ

Step 2. (Expectation). To iterate h, h ≥ 1, we calculate the

mean value of zðh−1Þj , j = �1,m according to Equation (17)
for k = 2:

z h−1ð Þ
j =

2p h−1ð Þ 1 − e−λ
h−1ð Þxj 1 + λ h−1ð Þxj

� �� �
1 − p h−1ð Þe−λ

h−1ð Þxj 1 + λ h−1ð Þxj
� � + 1 ð19Þ

Step 3. (Maximization). Through the maximum likelihood
estimation (MLE) method, we take into consideration the
following sample:

x1, z
h−1ð Þ
1

� �
, x2, z

h−1ð Þ
2

� �
,⋯, xm, z h−1ð Þ

m

� �� �
, ð20Þ

with the maximum likelihood function:

Thus, we can find iteration ΨðhÞ = ðλðhÞ, pðhÞÞ which
estimates the parameters Ψ = ðλ, pÞ

Step 4. We examine Equation (18). If NOT, then GO TO
Step 2; otherwise, Ψ≔ΨðhÞ, STOP.

Given the function

ln L x1, x2,⋯, xm, z
h−1ð Þ
1 , z h−1ð Þ

2 ,⋯, z h−1ð Þ
m ;Ψ h−1ð Þ

� �
== 2m ln λ h−1ð Þ −m ln 1 − 1 − p h−1ð Þ

� �3� �

+ 〠
m

j=1
ln

3

z h−1ð Þ
j

0@ 1A + ln z h−1ð Þ
j + z h−1ð Þ

j ln p h−1ð Þ

8<:
+ 3 − z h−1ð Þ

j

� �
ln 1 − p h−1ð Þ
� �

+ + ln xj − λ h−1ð Þxj

+ z h−1ð Þ
j − 1

� �
ln 1 − e−λ

h−1ð Þxj 1 + λ h−1ð Þxj
� �h i)

,

ð22Þ

the maximum likelihood equations are characterized by the
nonlinear system SðΨðh−1ÞÞ = ðð∂ ln L/∂λðh−1ÞÞ, ð∂ ln L/∂
pðh−1ÞÞ, namely

S Ψ h−1ð Þ
� �

:

2m
λ h−1ð Þ + 〠

m

j=1

x2jλ
h−1ð Þ z h−1ð Þ

j − 1
� �

e−λ
h−1ð Þxj

1 − e−λ
h−1ð Þxj 1 + λ h−1ð Þxj

� � − xj

0@ 1A = 0

−
3m 1 − p h−1ð Þ� �2
1 − 1 − p h−1ð Þ� �3 −

3m
1 − p h−1ð Þ +

∑m
j=1 z

h−1ð Þ
j

p h−1ð Þ 1 − p h−1ð Þ� � = 0:

8>>>>>>><>>>>>>>:
ð23Þ

Table 3 shows the results obtained from the imple-
mentation of the EM algorithm (described above), in
the Octave 1.5.4 GUI programming environment. We
must also emphasize that for different sample sizes
(m ∈ f100,1000,10000,100000,1000000g), we obtain very
good approximations of the parameters λ and p that

L x1,⋯, xm, z
h−1ð Þ
1 ,⋯, z h−1ð Þ

m ;Ψ h−1ð Þ
� �

=
Ym
j=1

uErlB xj, z
h−1ð Þ
j ;Ψ h−1ð Þ

� �

=
Ym
j=1

z h−1ð Þ
j xj

3

z h−1ð Þ
j

0@ 1A p h−1ð Þ� �z h−1ð Þ
j 1 − p h−1ð Þ� �3−z h−1ð Þ

j

1 ·

26666664 ·
λ h−1ð Þ
� �2

e−λ
h−1ð Þxj 1 − e−λ

h−1ð Þxj 1 + λ h−1ð Þxj
� �� �z h−1ð Þ

j −1

1 − 1 − p h−1ð Þ� �3
3775:

=
λ h−1ð Þ
� �2

1 − 1 − p h−1ð Þ� �3
264

375
mYm

j=1
z h−1ð Þ
j xj

3

z h−1ð Þ
j

0@ 1A p h−1ð Þ
� �z h−1ð Þ

j 1 − p h−1ð Þ
� �3−z h−1ð Þ

j ·

24 ·e−λ h−1ð Þxj 1 − e−λ
h−1ð Þxj 1 + λ h−1ð Þxj

� �� �z h−1ð Þ
j −1

#
:

ð21Þ
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characterize the MaxErlB distribution, when the parame-
ters k and n are known.

5. Application

We will now consider a dataset which represents the remis-
sion times (in months) of a random sample of 128 bladder

cancer patients. The dataset itself has previously been used
in [16–18]. It is summarized as follows: 0.08, 2.09, 3.48,
4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97,
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Figure 1: Histograms of relative frequencies of samples size m = 1000,10000,100000,1000000 and probability density function of the
simulated values that are governed by the MaxErlBð2,10,3, 0:2Þ distribution.

Table 3: The estimate of the parameter vector Ψ = ðλ, pÞ of MaxErlBð2, λ, 3, pÞ distribution by bΨ = ðbλ , p̂Þ.
Sample size (λ, p) bλ p̂ h

100

(1, 0.5)

1.017 0.494 134

1000 1.030 0.518 144

10000 0.999 0.496 152

100000 0.999 0.503 150

1000000 0.998 0.497 152
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34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05,
2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26,
5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25,
17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02,
4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98,
19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51,
6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07,
3.36, 6.93, 8.65, 12.63, and 22.69.

Figure 2 provides the histogram of relative frequencies of
a sample size which characterizes the remission times of
bladder cancer, where the curve represents the pdf of the
random variable UErlB ~ MaxErlBð2,10,3, 0:2Þ distribution
defined by Equation (3).

6. Conclusion

The conclusions revealed by the present research are related
to the study of power series distributions type of a maximum
of a sequence of iid random variables which are found in a
random number.

Also, the distribution of a maximum number of iid
random variables through the PSD family, characterized by
the number of the random variable in the sequence, was
presented in a compact, coherent approach.

For this purpose, programs for the statistical simulation
of the MaxErlB power series distributions type were devel-
oped. The validity of the maximum distributions was per-
formed using Pearson’s test of consistency and is reflected
in Table 2. Describing the EM algorithm implemented in
the GUI Octave 1.5.4 programming environment to
estimate the parameters of the MaxErlB distribution is
presented in Table 3.

A real data sequence on bladder cancer remission times
was used to illustrate and compare the histogram of the
relative frequencies of remission times and the probability
density function plot of the remission time values that are
governed by the MaxErlB distribution (Figure 2).
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