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It is urgent to identify novel biomarkers for prostate cancer (PCa) prognosis and to understand the mechanisms regulating
the tumorigenesis for PCa treatment. In this study, GSE17951 and TCGA were used to identify the differentially expressed
genes (DEGs). Our study demonstrated that 1533 genes with increased expression and 2301 genes with decreased
expression in PCa. Bioinformatics analysis data indicated that these up-regulated genes had an association with the
modulation of mitotic nuclear division, sister chromatid cohesion, cell division, and cell cycle. Additionally, our results
revealed downregulated genes took part in modulating extracellular matrix organization, angiogenesis, signal transduction,
and Ras signaling pathway. Hub upregulated and downregulated PPI networks were identified by protein-protein
interaction (PPI) network analysis and MCODE analysis. Of note, 12 cell cycle regulators, comprising CCNB1, CCNB2,
PLK1, TTK, AURKA, CDC20, BUB1, PTTG1, CDC45, CDC25C, CCNA2, and BUB1B, were demonstrated to function
crucially in PCa development. By detecting their expression in PCa cell lines, we confirmed that these cell cycle regulator
expressions were heightened in PCa cells. GEPIA databases analysis showed that higher expression of these cell cycle
regulators was correlated to shorter disease-free survival (DFS) time in PCa samples. Our findings collectively suggested
targeting cell cycle pathways may offer novel prognosis and treatment biomarkers for PCa.

1. Introduction

Prostate cancer (PCa) ranked second amid the widely
occurred carcinoma [1] and its morbidity in China increased
largely in recent years [2]. In the past decades, numerous reg-
ulators were demonstrated to be associated with PCa devel-
opment. For example, androgen receptor (AR) displayed
importantly in PCa tumorigenesis [3]. Recent studies
revealed that mutation of SPOP participated in drug resis-
tance and cross-talked with the AR pathway [4, 5]. Neverthe-
less, the exact biological mechanism underlying in PCa was
still unknown. Besides, lacking special biomarkers for PCa
prognosis was another confrontation in PCa treatment. To

understand the mechanisms and to seek novel biomarkers
are urgently needed in PCa.

The unmanageable cell cycle progression was one of the
characteristics of carcinomas [6]. Previous studies have dem-
onstrated the dysregulation of cell cycle regulators had an
association with human cancers progression. For instance,
increase expression of CDKN3 could induce cell viability
and cell cycle in PCa [7]. PSCA was increased in advanced
PCa and it could promote cell growth and cell cycle of PCa
via activating c-Myc [8]. AURKA functioned crucially in
the formation of the mitotic spindle [9]. The PLK1-FOXO1
pathway has been found to be a novel therapeutic marker
in advanced PCa [10]. A recent study showed that AURKA

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2021, Article ID 9946015, 13 pages
https://doi.org/10.1155/2021/9946015

https://orcid.org/0000-0002-8557-8973
https://orcid.org/0000-0002-0770-0793
https://orcid.org/0000-0002-4395-2066
https://orcid.org/0000-0002-2434-193X
https://orcid.org/0000-0002-9416-6671
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9946015


expression was induced by androgen and its expression was
correlated to a worse biochemical recurrence (BCR) rate
[11]. AURKA suppression induces PCa cell line DU145 apo-
ptosis [12]. In addition, CCNA2 was identified as a treatment
target of PCa via modulating cell cycle [13]. Investigating the
expression patterns and functions of cell cycle regulators
could be conducive to uncovering novel biomarkers for PCa.

In our literature, TCGA and GSE17951 were applied to
screen the differentially expressed genes (DEGs) in the PCa.
The molecular mechanism underlying PCa tumorigenesis
and progression was further investigated by protein-protein
interaction (PPI) networks. The prognostic value of hub
genes was validated by PPI network analysis. Taken together,
our literature was conduct to understand the hidden mecha-
nism of PCa at the molecular level.

2. Materials and Methods

2.1. Microarray Data and Data Preprocessing. In order to
identify differentially expressed genes in PCa, we screened
public datasets with the GEO database and TCGA database.
The database with sample counts >100 was selected for fur-
ther analysis. Finally, two datasets were used in this study,
including GSE17951 and TCGA. The normalization of
GSE17951 and TCGA datasets was completed by a robust
multiarray average (RMA) method under the R 2.6.2 statisti-
cal software with an affy package from BioConductor’s affy
[14]. Both of them were applied to define the differentially
expressed mRNAs. LCM and homogenized tissue datasets
were, respectively, applied to obtain the final normalization.
Log2-transformed values analyzed by RMA represented rela-
tive gene expression level. DEGs were defined as the indi-
cated genes with fold changes (FC) ≥2 and P values < 0.05.

Cluster 3.0 with average linkage was used to achieve the
hierarchical analysis and visualized via the Java TreeView
1.0.5 software.

2.2. PPI Network and Module Analysis. The Cytoscape soft-
ware was carried out to establish PPI network. The STRING
database was used to validate PPI information [15, 16]. The
DEGs were mapped to STRING and then were evaluated
the interplay between these genes. The comprehensive score
>0.4 verified by experiments represented two proteins pos-
sessed obvious interaction. Besides, the Cytoscape software
[17] version 3.6.0 was conducted to visualize the PPI net-
works. MCODEtool was performed to screen the PPI net-
work module. P < 0:05 indicated a significant statistical
difference.

2.3. Quantitative Real-Time PCR (qRT-PCR). Whole RNA
was isolated utilizing TransZol Up Plus RNA Kit (TransGen
BioTech, China). qRT-PCR was conducted using Talent
qPCR PreMix (TIANGEN, China) on a ABI7900 (Thermo
Fisher Scientific) system as manual instructed. The primers
(forward and reverse) specific for genes were listed below:

CCNB2, 5′-CCGACGGTGTCCAGTGATTT-3′ and 5′-
TGTTGTTTTGGTGGGTTGAACT-3′CCNB1, 5′- CATG
GTGCACTTTCCTCCTT-3′ and 5′-AGGTAATGTTG

TAGAGTTGGTGTCC-3′PLK1,5′-CACAGTGTCAATGC
CTCCA-3′ and 5′-TTGCTGACCCAGAAGATGG-3′

TTK, 5′-GTGGAGCAGTACCACTAGAAATG-3 and
5′-CCCAAGTGAACCGGAAAATGA 3′;

CDC20, 5′-GCACAGTTCGCGTTCGAGA-3′ and 5′-
CTGGATTTGCCAGGAGTTCGG-3′BUB1, 5′-GGAGAA
CGCTCTGTCAGCA-3′ and 5′-TCCAAAAACTCTTCAG
CATGAG-3′PTTG1, 5′-GCCTCTCATGATCCTTGACG-3
and 5′-GCTTGAAGGAGACTGCAACA-3′

CDC45, 5′-GAAGCGCACACGGTTAGAA-3′ and 5′-
GTTCACTCCCAGAGCCACTC-3′BUB1B,5′-CAGTCA
GACTCTCAGCATCAAGA-3′ and 5′-CGAGGCAGAAG
AACCAGAGA-3′

CDC25C, 5′-TGGGCAAATTTCTTGGTGA-3′ and 5′-
AAGATCGAGGCAACGTTTTG-3′CCNA2, 5′-GGTACT
GAAGTCCGGGAACC-3′ and 5′-GAAGATCCTTAAGG
GGTGCAA-3′AURKA, 5′-CGCCCTGTAGGATACTGCT
T-3′ and 5′-CAAATATCCCCGCACTCTG 3′

Actin, 5′-GAGCTACGAGCTGCCTGACG-3′ and 5′-
CCTAGAAGCATTTGCGGTGG-3.

Actin was selected as internal reference. All the data was
calculated by 2-ΔΔt method.

2.4. Statistical Analysis. SPSS16.0 (SPSS, Chicago, Illinois,
USA) was applied to analyze the derived data. All representa-
tive data were shown as the average value ± standard
deviation from three separate experiments in triplicate. Com-
parisons between groups were analyzed by students’ T-test or
Mann–Whitney U-test. The overall survival rate (OS) was
evaluated by the Kaplan-Meier method. Cox proportional
hazards model and positive stepwise procedure were applied
to perform univariate and multivariate survival analysis. Log-
rank test was applied to analyze the survival difference. P <
0:05 (∗∗) means significant difference with a 95% confidence
level.

3. Results

3.1. Screening DEGs in PCa. In this section, two generally
used datasets, GSE17951 and TCGA, were applied to screen
gene expression and identify the DEGs in PCa. TCGA analy-
sis data illustrated that 3416 increase expression of mRNAs
and 4749 decrease expression of mRNAs (Figure 1(a)).
Meanwhile, GSE17951 dataset analysis suggested that 3894
upregulated mRNAs and 3981 down-regulated mRNAs
(Figure 1(b)). By combining these analyses, our study dem-
onstrated 1533 increase expression of genes and 2301
decrease expression of genes in PCa (Figures 1(c) and 1(d)).
The DEGs in PCa were further displayed by Hierarchical
clustering analysis.

3.2. Bioinformatics Analysis of DEGs in PCa. The unknown
functions of these DEGs in PCa were forecasted by bioinfor-
matics analysis. Figures 2(a) and 2(b) indicated that upregu-
lated genes had an association with the modulation of mitotic
nuclear division, sister chromatid cohesion, cell division,
tRNA aminoacylation for protein translation, translation,
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Metabolic pathways, N-Glycan biosynthesis, RNA transport,
biosynthesis of antibiotics, and cell cycle. Additionally, our
results revealed downregulated genes took part in modulat-
ing extracellular matrix organization, angiogenesis, signal
transduction, heart development, cell adhesion, positive reg-
ulation of GTPase activity, axon guidance, regulation of tran-
scription, Focal adhesion, pathways in cancer, Proteoglycans
in cancer, and Ras signaling pathway (Figures 2(c) and 2(d)).

3.3. Identification of Key Genes in PCa. To identify key genes
in PCa, the STRING database was conducted to establish PPI
networks. The Cytoscape software was carried out to perform
MCODE plug-in analysis. 57 DEGs plus 1451 edges and 56
DEGs with 543 edges were separately demonstrated in the
top upregulated and downregulated PPI networks
(Figures 3(a) and 3(b)).

Then, the potential roles of these key modules were pre-
dicted by the ClueGO plug-in of the Cytoscape software.
Figure 4(a) shown that the upregulated PPI network exhibited

an association with the regulation of p53 signaling, Oocyte
meiosis, and cell cycle. Figure 4(b) revealed that the downreg-
ulated PPI network was associated with the modulation of the
Calcium signaling pathway, and Neuroactive ligand-receptor
interaction. The uncontrolled cell cycle progression had been
regarded as a characteristic of human cancer. 12 cell cycle reg-
ulators were revealed to function crucially in PCa progression,
including CCNB1, CCNB2, PLK1, TTK, AURKA, CDC20,
BUB1, PTTG1, CDC45, CDC25C, CCNA2, and BUB1B.

3.4. Increase Expression of Cell Cycle Regulators Was Shown
in PCa Cell Lines. Next, we evaluated cell cycle regulators’
expression patterns in normal prostate cell line WPMY-1
and 4 PCa cell lines LNCaP, 22Rv1, PC-3, and DU145. Our
data suggested that CCNB2, CCNB1, PLK1, TTK, CDC20,
BUB1, PTTG1, CDC45, BUB1B, CDC25C, CCNA2, and
AURKA were remarkably upregulated in PCa cell lines rela-
tive to that in normal prostate cell line WPMY-1. Interest-
ingly, our data revealed that CCNB1, PLK1, BUB1, and
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Figure 1: The DEGs in PCa. (a) 3416 increase expression of mRNAs and 4749 decrease expression of mRNAs were in TCGA. (b) 3894
increase expression of mRNAs and 3981 decrease expression of mRNAs were in GSE17951 dataset. 1533 increase expression of mRNAs
(c) and 2301 decrease expression of mRNAs (d) were both in TCGA and GSE17951 dataset.
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Figure 2: Continued.
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CDC25C were increased up to 10 folds in LNCaP, PC-3, and
DU145 cells relative to that in the WPMY-1 cell line
(Figure 5).

3.5. The Dysregulation of Cell Cycle Regulators Was
Correlated to DFS Time in PCa. TCGA dataset was further
conducted to assess the association between DFS time of
PCa patients and cell cycle regulators expression. Figure 6
displayed that highly expressed CCNB1, PLK1, CDC20,

BUB1, PTTG1, CDC45, BUB1B, CDC25C, CCNA2, and
AURKA gave rise to the shorter time of DFS in PCa, suggest-
ing that cell cycle regulators could be regarded as prospective
biomarkers for PCa.

4. Discussion

In our literature, 1533 genes with increase expression and
2301 genes with decreased expression in PCa were assessed
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Figure 2: The bioinformatics analysis of the DEGs in PCa. (a, b) The increased expression of genes was related with the modulation of mitotic
nuclear division, sister chromatid cohesion, cell division, tRNA aminoacylation for protein translation, translation, Metabolic pathways, N-
Glycan biosynthesis, RNA transport, biosynthesis of antibiotics, and cell cycle. (c, d) The downregulated genes were involved in regulating
extracellular matrix organization, angiogenesis, signal transduction, heart development, cell adhesion, positive regulation of GTPase
activity, axon guidance, regulation of transcription, Focal adhesion, pathways in cancer, Proteoglycans in cancer, and Ras signaling pathway.
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using public datasets. We identified key DEGs in PCa after
constructing PPI networks and revealed that the upregulated
PPI network had an association with p53 signaling and cell

cycle regulation, and the downregulated PPI network was
linked to the modulation of the Calcium signaling pathway,
and Neuroactive ligand-receptor interaction. Here, we
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Figure 3: The PPI networks of key genes in PCa. (a) The top key up-regulated PPI network comprised 57 DEGs and 1451 edges. (b) The top
key down-regulated PPI network comprised 56 DEGs and 543 edges.
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Figure 5: Continued.
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focused on uncovering the expression feature and prognostic
significance of cell cycle regulators in PCa. Our data revealed
that the cell cycle regulators were obviously upregulated and
correlated to a shorter time of DFS in PCa.

Accompanied by the occurrence of high throughput data
analysis, several researches revealed some regulators partici-

pated in PCa progression. For instance, Ye et al. constructed
dysregulated mRNA-, miRNA-, lncRNA-, and TF-mediated
regulatory networks in PCa [18]. Fang et al. found that
BMP2, PPARG, and PRKAR2B were probable biomarkers
for the prognosis of PCa [19]. Here, 1533 genes with
increased expression and 2301 genes with decreased
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Figure 5: The cell cycle regulators were upregulated in PCa cell lines and tissues. (a–l) CCNB2 (a), CCNB1 (b), PLK1 (c), TTK (d), CDC20
(e), BUB1 (f), PTTG1 (g), CDC45 (h), BUB1B (i), CDC25C (j), CCNA2 (k), and AURKA (l) were remarkably upregulated in PCa cell lines
compared to normal prostate cell line WPMY-1. Significance is defined as P < :05 (∗P < :05; ∗∗P < :01; ∗∗∗P < :001).
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Figure 6: Continued.
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expression were identified by GSE17951 and TCGA in PCa.
Bioinformatics analysis showed the DEGs in PCa were
greatly related with mitotic nuclear division, cell cycle, angio-
genesis, signal transduction, cell adhesion, and Ras signaling
pathway regulation. Additionally, the identification of key
regulators in PCa was also analyzed by PPI networks. Our
data arrived at conclusions that the pivotal genes with
increase expression took part in p53 signaling and cell cycle
modulation, and the primary genes with downregulation
participated in the modulation of the Calcium signaling
pathway, and Neuroactive ligand-receptor interaction.

The unrestrained cell cycle progression had been
regarded as a feature of human cancer. Interestingly, we
found multiple cell cycle regulators were up-regulated in
PCa, including CCNB1, CCNB2, PLK1, TTK, AURKA,
CDC20, BUB1, PTTG1, CDC45, CDC25C, CCNA2, and
BUB1B [20–26]. Previous studies had shown that these genes
functioned crucially in cell cycle progression and were dys-

regulated in human cancers. For example, CCNB1 and
CCNB2 are the crucial regulators of mitosis initiation and
interplayed with CDK1 to further adjust the G2/M phases
[27]. CCNB1 and CCNB2 were overexpressed in multiple
human cancers. BUB1 and BUB1B were reported to be
involved in the process of directing kinetochore localization
[28]. The PLK1 functioned importantly in modulating
mitotic entry, the G2/M checkpoint, spindle assembly, and
chromosome segregation and was a mitotic regulator [29].
TTK is the core spindle assembly checkpoint (SAC) kinase
and regulates the recruitment of SAC proteins to unattached
kinetochores [30]. Among these regulators, AURKA, BUB1,
and PTTG1 were demonstrated to be implicated in PCa
development. AURKA and PTTG1 were androgen-
responsive genes and crucial for PCa viability and cell cycle.

PSA was the clinical biomarker for PCa prognosis [31].
Nevertheless, due to low specificity, PSA testing was still a
problem in clinical practice. A few novel biomarkers, such
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Figure 6: The dysregulation of cell cycle regulators had association with DFS time in PCa. (a–j) The higher expression of CCNB1 (a), PLK1
(b), CDC20 (c), BUB1 (d), PTTG1 (e), CDC45 (f), BUB1B (g), CDC25C (h), CCNA2 (i), and AURKA (j) were significantly linked with
shorter DFS time in PCa after TCGA dataset analysis.
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as PCA3 [32], had also been identified recently. Our study
revealed cell cycle regulators, including CCNB1, CCNB2,
PLK1, TTK, AURKA, CDC20, BUB1, PTTG1, CDC45,
CDC25C, CCNA2, and BUB1B were overexpressed in PCa
cell lines and tissues. What is more, highly expressed CCNB1,
PLK1, CDC20, BUB1, PTTG1, CDC45, BUB1B, CDC25C,
CCNA2, and AURKA were greatly related to the shorter time
of DFS in PCa. Our literature implied that these genes could
be indicated as newly generated and promising biomarkers
for PCa.

5. Conclusions

Conclusively, we identified DEGs in PCa were associated
with p53 signaling, cell cycle, Calcium signaling pathway,
and Neuroactive ligand-receptor interaction. Additionally,
we found cell cycle regulators, containing CCNB2, CCNB1,
PLK1, TTK, CDC20, BUB1, PTTG1, CDC45, BUB1B,
CDC25C, CCNA2, and AURKA, were apparently overex-
pressed and had a correlation with shorter time of DFS in
PCa. These analyses supply innovative clues to uncover cell
cycle regulators as potential biomarkers in PCa.

Data Availability

Previously reported lncRNAs data were used to support this
study and are available at [doi:10.1158/0008-5472.CAN-10-
2585]. These datasets are cited at relevant places within the
text as references.
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