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Endometrial carcinoma (EC) is one of the most common gynecological carcinomas. As previously described, ferroptosis was
reported to exhibit a significant association with the development of malignant neoplasms. Nevertheless, there are few studies
towards the association between the implication of ferroptosis-related genes (FRGs) and the prognostic status of patients with
EC. Our study demonstrated that ferroptosis-related genes were evidently differently expressed in EC. Further analysis showed
that SLC7A11, SAT1, CDKN1A, and TP5MC3 expression was linked to the low stage, grade of pTNM, and longer survival
time. Bioinformatics analysis demonstrated that these ferroptosis-related regulators played a crucial role in EC by
modulating multiple biological processes, such as cell cycle, citrate cycle (TCA cycle), metabolism-related pathways, ERK
activation, p53 signaling pathway, cellular senescence, TAp63 pathway, and Notch signaling pathway. Of note, our results
showed that ATP5MC3, CDKN1A, and SLC7A11 expression was dramatically positively related with the tumor mutational
burden (TMB) score in EC. However, we did not observe a significant correlation between SAT1 and the TMB score in
EC. These findings for the first time demonstrated that ferroptosis was displayed crucially in EC progression. We
speculated that our findings offered novel targets and strategies for personalized treatment.

1. Introduction

Uterine corpus endometrial carcinoma (UCEC) is one of the
commonly occurring endometrial carcinomas (EC) [1],
which is a malignant endometrial epithelial carcinoma in
women and accounts for about 80% amid adenocarcinomas
[2]. Endometrioid adenocarcinoma occupied 80% amongst
overall EC and was thought to be estrogen-dependent type
I EC [3]. Serous endometrial carcinomas are generally
referred to be type II of estrogen-independent cancer [4].
As global carcinoma statistics has shown, about 382000
new EC cases were produced worldwide, accompanied with
almost 90000 death tolls in 2018 [5]. In the past five years,
there were several studies showing that EC took up 20%–
30% of female genital tract malignancies and the occurrence
ratio of EC is growing [6, 7]. In the United States, the lethality
ratio of EC is the highest in female and the occurrence pro-
portion of EC is elevating [8]. In 2017, 61380 women in the

United States were diagnosed with EC and 10920 women
died of EC [9]. The five-year cause-specific survival rate for
serous cancer is 43%, while those for endometrioid, mucin-
ous, and clear cell carcinoma are 82%, 71%, and 66% respec-
tively [9]. 20% to 30% of patients with EC are diagnosed with
the advanced stage in the process of surgery. It is estimated
that the five-year survival rate of patients in stage III ranged
from 40% to 70% and was within 0 to 10% in stage IV.
Herein, to determine efficacious biomarkers and therapeutic
targets for predicting and ameliorating the prognostic status
of EC patients is essential.

Ferroptosis, displaying a close relationship with the
metabolism of amino acids, iron, and polyunsaturated fatty
acids and the biosynthesis of glutathione, phospholipids,
and NADPH is a new discovery form of cell death with the
characteristics of iron-dependent lipid peroxidation [10,
11]. Ferroptosis is another type of programmed necrotic cell
death that participates in the process of iron-dependent lipid
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peroxidation [12, 13]. Iron chelator, lipid peroxidation inhib-
itor, and reduced intracellular polyunsaturated fatty acids
can inhibit ferroptosis [14]. There is increasing evidence
showing that a link existed in ferroptosis and the pathophys-
iological development of neurological diseases, comprising
stroke, degenerative diseases, neurotrauma, and carcinoma
[15]. Ferroptosis is related to the treatment of carcinomas
[16]. Initial data suggested that ferroptosis can inhibit the
growth and development of neoplasms and may be beneficial
for the treatment of carcinomas [17]. Among neoplasms, fer-
roptosis facilitates themobility and invasion of tumor cells and
induces the progression andmetastasis of carcinomas, making
them resistive to drugs against neoplasms [18]. Presently, some
reports have revealed that lots of molecular modulators were
associated with ferroptosis and human carcinoma develop-
ment, including EC [19]. For instance, miR-522 secreted by
cancer-associated fibroblasts (CAFs) resulted in a suppression
of ferroptosis but induced acquired chemical resistance in gas-
tric cancer [19, 20]. Cytochrome P450 oxidoreductase (POR),
demonstrating inherent and induced susceptibility to ferropto-
sis, was shown to be essential for ferroptotic cell death in carci-
nomas [20]. CD8+ T cells modulated ferroptosis of neoplasms
in cancer immunotherapy [21]. ALOX12 is necessary for
p53-mediated tumor inhibition by a unique pathway of ferrop-
tosis [22]. However, the expression profile and molecular
ferroptosis regulators in EC remained largely unclear.

Nevertheless, little is known about the relationship
between the signification of ferroptosis-associated genes
(FRGs) and the prognostic status of patients with EC. Herein,
our study here systematically explored the relationship utiliz-
ing The Cancer Genome Atlas (TCGA) database. Our find-
ings were conducive to better evaluate patients’ prognosis
and offered a new perspective for the treatment of individu-
alized EC patients.

2. Materials and Methods

2.1. Clinical Information and mRNA Expression Dataset of
Patients. Ferroptosis-related genes were obtained from The
Human Genome Database (https://www.genecards.org/) by
searching the keywords “Ferroptosis” and other related liter-
atures [11, 23]. The mRNA expression profiles of 543 EC
samples and 23 normal samples from TCGA were extracted.
The clinical information of EC patients was comprised of age,
grade, AJCC stage, histologic type, overall survival (OS), and
disease-free survival (DFS).

2.2. To Identify and Analyze the Differentially Expressed FRGs
(DEFRGs). The limma package [24] was employed to deter-
mine the DEFRGs in 1184 FRGs between EC tissues and nor-
mal tissues and visualize their expression by volcano plots
and heatmaps. The significant threshold indicated a false dis-
covery rate < 0:05 and ∣logFC ∣ >1. Then, based on the
selected DEFRGs, we conducted Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analyses. What is more, the STRING data-
base was employed to establish a protein–protein
interaction (PPI) network among the selected genes and fur-
ther validate the association between the DEFRGs. The min-

imum required interaction indicated score was 0.4. The hub
genes indicated the genes with a node degree > 15.

2.3. To Construct and Analyze the Implication of Prognosis.
Univariate Cox regression analysis was conducted to define
the prognostic value of the DEFRGs and verify the OS, PFS,
and DFS in EC patients with these DEFRGs. In order to pre-
vent collinearity, LASSO analysis was employed [25]. To
explore the prognostic implication of FRG, multivariable
Cox analysis was taken.

On the basis of the average risk score, we separated EC
patients into two groups: high- and low-risk groups. For
comparison of the prognostic differences existing in two dif-
ferent groups, we conducted Kaplan–Meier (K-M) survival
curves and the log-rank test. Besides, we counted receiver
operating characteristic (ROC) curves to assess the difference
of the prognostic model.

2.4. Bioinformatics Analysis. The raw number of RNA-
sequencing data (level 3) and corresponding clinical infor-
mation from XX were acquired from TCGA dataset
(https://portal.gdc.cancer.gov/) in January 2020. The acquisi-
tion and application of all methods were in line with the pro-
tocol and principles.

Sanguini diagram was built based on the R software pack-
age ggalluvial. All the above analysis methods and R package
were implemented by R foundation for statistical computing
(2019), version 4.0.3, P < 0:05.

The R software package ConsensusClusterPlus (v1.54.0)
was applied for consistency analysis [26]. The maximum
number of clusters is 6, and 80% of the total sample is drawn
100 times, clusterAlg = “hc,” innerLinkage = “ward:D2:” Use
the R software package pheatmap (v1.0.12) for clustering
heat maps. The gene expression heatmap retains genes with
SD > 0:1. If the number of input genes is more than 1000, it
will extract the top 25% genes after sorting the SD.

3. Results

3.1. Gene Expression of Ferroptosis Modulators in the
Development of EC. We evaluated the transcriptome profile
of ferroptosis modulators in details. We downloaded RNA-
Seq data from TCGA-UCEC cohorts, containing the data of
carcinoma tissue (n = 499) and paracarcinoma tissue
(n = 52). The detail of ferroptosis modulators was picked up
and used for the DEG analysis. Figure 1 shows that all the fer-
roptosis modulators were differently expressed in UCEC
samples compared to those in normal tissues. Among them,
HSPA5, HSPB1, CS, CARS, EMC2, TFRC, NCOA4, ACSL4,
RPL8, GPX4, CDKN1A, LPCAT3, NFE2L2, CISD1, SLC1A5,
SAT1, FDFT1, and MT1G were significantly overexpressed
in grades 1 to 3 of tumor samples compared to normal tis-
sues. However, FANCD2, SLC7A11, GLS2, DPP4, and
ALOX15 were obviously suppressed in grades 1–3 of tumor
samples compared to normal tissues.

3.2. Identification of Interaction among Ferroptosis-Related
Regulators in EC Development. In order to explore the interac-
tion among ferroptosis-related regulators in EC, we calculated
the correlation among them. Figure 2(a) revealed that most of
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ferroptosis modulators displayed an association with each
other. Our data suggested that HSPB1, CS, CARS, EMC2,
NCOA4, ACSL4, GPX4, CDKN1A, LPCAT3, NFE2L2,
CISD1, SLC1A5, FDFT1, MT1G, FANCD2, SLC7A11, GLS2,
DPP4, and ALOX15 expression exhibited a positive correla-
tion with other modulators. The opposite correlation was

demonstrated between HSPA5 and ATP5MC3 and other
modulators. Meanwhile, some regulators such as TFRC,
SAT1, and RPL8 exhibited a poor association with others.

The PPI network of ferroptosis modulators showed that
GLS2, SLC1A5, SLC7A11, GPX4, ALOX15, NFE2L2,
CDKN1A, SAT1, ACSL4, and LPCAT3 had the potential to
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Figure 1: Gene expression of ferroptosis modulators in the development of EC. (a) The expression levels of HSPA, FANCD2, HSPB, CS,
CARS, EMC2, TFRC, and SLC7A1 in grade 1, grade 2, and grade 3 EC and normal samples were shown. (b) The expression levels of
NCOA4, GLS2, ACSL4, RPL8, GPX4, CDKN1A, LPCAT3, and NFE2L2 in grade 1, grade 2, and grade 3 EC and normal samples were
shown. (c) The expression levels of DPP4, CISD1, SLC1A5, ALOX15, SAT1, FDFT1, and MT1G in grade 1, grade 2, and grade 3 EC and
normal samples were shown. ∗∗∗P < 0:001 and ∗∗P < 0:01.
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Figure 2: Identification of interaction among ferroptosis-related regulators in EC development. (a) The correlation among the expression
levels of ferroptosis-related regulators in EC were analyzed using TCGA database. (b) The PPI network of ferroptosis modulators was
constructed using the STRING database. ∗∗∗P < 0:001, ∗∗P < 0:01, and ∗P < 0:05.
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Figure 3: Continued.
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interplay with each other (Figure 2(b)). Meanwhile, EMC2,
ATP5MC3, RPL8, CARS, TFRC, and DPP4 formed a PPI
network and HSPB1, CS, and HSPA5 formed a PPI network
(Figure 2(b)). Notably, no connection was shown between
CISD1, FANCD2, FDFT1, LPCAT3, MT1G, and NCOA4
and other modulators (Figure 2(b)).

3.3. Identification of DEFRGs Associated with Prognosis in EC
Development. Then, we assessed whether ferroptosis-related
regulator expression exhibited a relationship with EC prog-
nosis. Figure 3 suggested that a higher expression level of
CDKN1A (Figure 3(a)), SLC7A11 (Figure 3(b)), and SAT1
(Figure 3(c)) displayed a positive relationship with longer
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Figure 3: Identification of DEFRGs associated with prognosis in EC development. (a–d) Higher expression levels of CDKN1A, SLC7A11, and
SAT1 and lower expression of ATP5MC3 were related to longer DFS time. Nevertheless, highly expressed ATP5MC3 led to shorter DFS time
in EC.
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Figure 4: Continued.
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DFS time. Nevertheless, highly expressed ATP5MC3 led to
shorter DFS time in EC (Figure 3(d)).

We calculated each patient’s risk score. Through the
“survminer” R package, we obtained the median cutoff points
of ATP5MC3, SAT1, SLC7A11, and CDKN1A and classified
patients into the high-risk group (n = 176) and low-risk
group (n = 177) (Figures 4(a)–4(d)). The KM survival curves

further confirmed that highly expressed ATP5MC3 gave rise
to shorter DFS time in EC (Figure 4(e)). In addition, higher
expression levels of CDKN1A, SLC7A11, and SAT1 were
positively related to longer DFS time (Figures 4(f)–4(h)).
To evaluate the predictive efficiency of CDKN1A, SLC7A11,
SAT1, and ATP5MC3 in the 1-, 3-, and 5-year survival ratio,
we carried out a ROC curve analysis. The area under the
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Figure 4: DEFRGs associated with DFS in EC development. (a–d) The median cutoff point of ATP5MC3, SAT1, SLC7A11, and CDKN1A,
which was used to divide patients into the high-risk group and low-risk group. (e-h) The KM survival curves further showed the correlation
between the expression levels of ATP5MC3, SAT1, SLC7A11, and CDKN1A and DFS time. (i–l) The area under the ROC curve (AUC)
showed the predictive efficiency of CDKN1A, SLC7A11, SAT1, and ATP5MC3 in the 1-, 3-, and 5-year DFS.
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Figure 5: Continued.
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ROC curve (AUC) of ATP5MC3 was 0.655 at 1 year, 0.672 at
3 years, and 0.668 at 5 years (Figures 4(i)–4(l)). The area
under the ROC curve (AUC) of SAT1 was 0.684 at 1 year,
0.674 at 3 years, and 0.627 at 5 years, individually. The area
under the ROC curve (AUC) of SLC7A11 was 0.539 at 1 year,
0.574 at 3 years, 0.579 at 5 years, and that of CDKN1A was
0.69 at 1 year, 0.625 at 3 years, and 0.59 at 5 years
(Figures 4(i)–4(l)).

We next calculated the correlation between FRGs’ expres-
sion and overall survival time by dividing EC patients into
ATP5MC3, SAT1, SLC7A11, and CDKN1A high and low
groups (Figures 5(a)–5(d)). The higher expression levels of
CDKN1A, SLC7A11, and SAT1 and lower expression of
ATP5MC3 were positively related to longer DFS time
(Figures 5(f)–5(h)). The KM survival curves further confirmed
this finding. To evaluate the predictive efficiency of CDKN1A,
SLC7A11, SAT1, and ATP5MC3 in the 1-, 3-, and 5-year OS
ratio, we carried out a ROC curve analysis. The areas under
the ROC curve (AUC) of ATP5MC3, SAT1, SLC7A11, and
CDKN1A were also determined (Figures 5(i)–5(l)).

3.4. The expression of ferroptosis-related regulators was
differently expressed in the development of EC. We further
confirmed the expression levels of SLC7A11, SAT1,
CDKN1A, and TP5MC3 in EC and normal samples by com-
bining the TCGA database and GTEX database with GEPIA.
Our results demonstrated that SLC7A11, SAT1, and
TP5MC3 were also upregulated in EC compared to normal
samples. However, CDKN1A was deceased in EC compared
to normal samples (Figures 6(a)–6(d)). Then, we determined
ferroptosis-related regulator expression and clinical charac-

teristics in EC development, including the pTNM_stage,
grade, and survival status. We found that high expression
of SLC7A11 (Figure 6(e)), CDKN1A (Figure 6(f)), and
SAT1 (Figure 6(h)) was linked to low pTNM_stage, grade,
and longer survival time. However, overexpression of
TP53MC3 was associated with advanced pTNM_stage,
grade, and shorter survival time in EC (Figure 6(g)). All the
results were in line with the above analysis and indicated that
SLC7A11, SAT1, and CDKN1Amay serve as tumor suppres-
sors and TP53MC3 was a probable oncogene in EC.

3.5. The Expression of Ferroptosis-Related Regulators
Presented an Association with the TMB Score in EC
Development. Previous studies demonstrated that mutational
load of neoplasm provided a prediction of survival after
immunotherapy across multiple types of carcinoma [27–
29]. Here, our study attempted to determine the correlation
between ferroptosis-related regulators and TMB score in
EC. The results showed that ATP5MC3 (Figure 7(a)),
CDKN1A (Figure 7(b)), and SLC7A11 (Figure 7(c)) were sig-
nificantly positively associated with the TMB score in EC.
However, we did not observe a significant correlation
between SAT1 and the TMB score in EC (Figure 7(d)). These
results suggest that ATP5MC3, CDKN1A, and SLC7A11
may serve as a predictive marker of immunotherapy in EC.

3.6. Bioinformatics Analysis of Ferroptosis-Associated
Regulators in EC. For in-depth analysis of the functions and
pathways of SLC7A11, SAT1, CDKN1A, and ATP5MC3,
we conducted GO analysis and KEGG pathway enrichment
analysis accordingly. Our results showed that ATP5MC3
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Figure 5: DEFRGs associated with OS in EC development. (a–d) The median cutoff point of ATP5MC3, SAT1, SLC7A11, and CDKN1A,
which was used to divide patients into the high-risk group and low-risk group. (e–h) The KM survival curves further showed the
correlation between the expression levels of ATP5MC3, SAT1, SLC7A11, and CDKN1A and OS time. (i–l) The area under the ROC curve
(AUC) showed the predictive efficiency of CDKN1A, SLC7A11, SAT1, and ATP5MC3 in the 1-, 3-, and 5-year OS.

14 Computational and Mathematical Methods in Medicine



6

5

4

3

2

1

0

UCEC Normal

Re
lat

iv
e e

xp
re

sio
n 

of
 S

LC
7A

11

(a)

10

8

6

4

0

UCEC Normal

Re
lat

iv
e e

xp
re

sio
n 

of
 C

D
KN

1A
(b)

10

9

8

6

7

4

5

3

UCEC Normal

Re
lat

iv
e e

xp
re

sio
n 

of
 A

TP
5M

C3

(c)

12

11

9

10

8

6

7

UCEC Normal

Re
lat

iv
e e

xp
re

sio
n 

of
 S

AT
1

(d)

II

I

III

IV

pTNM_stage Grade SLC7A11 Status

G3

G2

G1

High
exp

Alive

Dead

Low
exp

(e)

Figure 6: Continued.

15Computational and Mathematical Methods in Medicine



was related to regulate spliceosome, proteasome, cell cycle,
and citrate cycle (TCA cycle) (Figure 8(a)). SLC7A11 was
found to be related to multiple metabolism-related pathways
(such as sodium-coupled phosphate cotransporters, chondroi-
tin sulfate/dermatan sulfate metabolism, chondroitin sulfate
biosynthesis, glyoxylate metabolism, serotonin, andmelatonin
biosynthesis) and ERK activation (Figure 8(b)). CDKN1A was

involved in regulating the p53 signaling pathway, cellular
senescence, and VEGF signaling pathway (Figure 8(c)). In
addition, our results showed SAT1 was related to the activa-
tion of multiple signaling, such as AKT phosphorylation of
cytosolic targets, TP53 network, TAp63 pathway, hypoxia,
and p53 in the cardiovascular system, cell cycle: G2/M check-
point, and Notch signaling pathway (Figure 8(d)).
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Figure 6: The expression of ferroptosis-related regulators were related clinical characteristics in EC development. (a–d) SLC7A11, SAT1,
CDKN1A, and TP53MC3 expression was differently expressed in EC compared to normal samples using GEPIA database. (a–d) We
determined SLC7A11, SAT1, CDKN1A, and TP53MC3 expression and clinical characteristics in EC development, including the pTNM_
stage, grade, and survival status.
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Figure 7: The expression of ferroptosis-related regulators presented an association with TMB score in EC development. (a–d) The results
showed the correlation between ATP5MC3, CDKN1A, SLC7A11, and SAT1 expression and TMB score in EC.
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4. Discussion

Recently, there is growing evidence showing that ferroptosis
exhibited a close relationship with the development, metasta-
sis, and drug resistance of carcinoma [30, 31]. Several studies
had revealed that the differently expressed genes were corre-
lated with the prognosis of human cancers. For example,
ACSL4 is a predictive biomarker of sorafenib sensitivity in
hepatocellular carcinoma [32]. ACSL4 suppresses glioma cell
proliferation via activating ferroptosis [33]. GLS2 is protu-
morigenic in breast cancers [34]. GPX4 and GPX7 were over-
expressed in the tissues of human hepatocellular carcinoma
[35]. Hypermethylation of MT1G is associated with the
higher stage of tumor in EC [36]. NFE2L2 is reported to be
a prospective biomarker for prognosis and is shown to be
related with immune infiltration in brain lower-grade glioma
[37]. Mutations of NFE2L2/KEAP1 was correlated with
higher TMB value/PD-L1 expression and powerfully amelio-
rated clinical outcome with the use of immunotherapy [38].
Moreover, the signature of FRG could indicate cell death of
glioma and the progression of glioma patients [39] and the
OS in hepatocellular cancer patients [40]. However, the
expression profile and molecular ferroptosis regulators in
EC remained largely unclear. The present study for the first
time showed that all of ferroptosis regulators were differently
expressed in UCEC samples compared to normal tissues.
Further analysis showed that ferroptosis-related regulators
were positively correlated with other regulators. Bioinfor-
matics analysis demonstrated that these ferroptosis-related
regulators played a crucial role in EC by modulating multiple
biological processes, such as cell cycle, citrate cycle (TCA
cycle), metabolism-related pathways, ERK activation, p53
signaling pathway, cellular senescence, TP53 network,
TAp63 pathway, and Notch signaling pathway.

Over the past decades, emerging studies demonstrated
that the regulation of multiple biological processes such as

biological signal transmission, gene expression regulation,
energy and material metabolism, and cell cycle regulation
depends on protein-protein networks, not a single protein
[41, 42]. In this study, we calculated the correlation among
FRGs to explore the interaction among ferroptosis-related
regulators in EC. We found that most of ferroptosis modula-
tors displayed an association with each other. And the PPI
network analysis showed that GLS2, SLC1A5, SLC7A11,
GPX4, ALOX15, NFE2L2, CDKN1A, SAT1, ACSL4, and
LPCAT3 had the potential to interplay with each other.
These results indicated that these proteins potentially played
their functions together and had similar functions in EC.
Moreover, according to our analysis, we found that the
expression levels of ATP5MC3, CDKN1A, SLC7A11, and
SAT1 were related to the prognosis of EC. The higher expres-
sion level of CDKN1A, SLC7A11, and SAT1 resulted in lon-
ger DFS time. Nevertheless, highly expressed ATP5MC3
contributed to shorter DFS time in EC. Furthermore, our
data suggested that high expression of SLC7A11, SAT1, and
CDKN1A was linked to low the pTNM_stage, grade, and
longer survival time. However, overexpression of TP53MC3
was linked to the advanced pTNM_stage, grade, and shorter
survival time in EC. All the above-mentioned findings were
in accordance with our previous analysis and indicated that
SLC7A11, SAT1, and CDKN1Amay serve as tumor suppres-
sors and TP53MC3 may serve as an oncogene in EC.

These genes had been demonstrated as key regulators of
ferroptosis and to function crucially in the development of
carcinoma. SLC7A11 was firstly identified in 1980 by Bannai
and Kitamura [43]. There has been a surge of reports demon-
strating its pervasive expression in various cancers and mul-
tiple effects on cancer growth, invasion, metastasis, and
unfavorable prognosis [43, 44]. For example, the progression
of colorectal cancer stem cells could be specifically sup-
pressed upon targeting SLC7A11, followed by inducing fer-
roptosis [45]. SLC7A11 was reported to confer resistance to
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Figure 8: Bioinformatics analysis of ferroptosis-associated regulators in EC. (a–d) Bioinformatics analysis of ATP5MC3, SLC7A11,
CDKN1A, and SAT1 in EC patients.
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ferroptosis in cancer cells and is adaptively expressed to
reduce ferroptosis and buffer irradiation damages in lung
cancer cells [46]. Overexpressing SLC7A11 promotes radio-
resistance in lung cancer cells through inhibiting
irradiation-induced ferroptosis [47]. Suppressing the
SLC7A11/glutathione axis resulted in synthetic lethality in
lung adenocarcinoma with mutated KRAS [48]. The progres-
sion of non-small cell lung cancer was promoted by xCT-
(SLC7A11-) mediated metabolic reprogramming. In this
study, we found that SLC7A11, an attracting oncogene and
an indication of an unsatisfactory prognostic status of liver
cancer, was significantly downregulated in EC. Bioinformat-
ics analysis showed that SLC7A11 was related to the regula-
tion of multiple metabolism-related pathways and ERK
activation. Overexpression of SAT1 brought about lipid per-
oxidation and ferroptosis under ROS stress [49]. SAT1 is a
transcriptional target of p53 in human melanoma and lung
carcinoma cell lines. Depleting SAT1 would hinder ferropto-
sis induced by p53 and p533KR. The polyamine catabolic
enzyme SAT1 was responsible for the regulation of GBM
tumorigenesis and the response to radiation [50]. Overex-
pressing SAT1 caused the apoptosis mediated by mitochon-
dria in mammalian cells [51]. Here, our data suggested that
EC highly expressed SAT1. Bioinformatics analysis showed
that SLC7A11 was related to the regulation of multiple sig-
naling, such as AKT phosphorylation of cytosolic targets,
TP53 network, TAp63 pathway, hypoxia, and p53 in the car-
diovascular system, cell cycle: G2/M checkpoint, and Notch
signaling pathway, which demonstrated that this gene played
a crucial role in EC progression.

Despite that immune checkpoint inhibitor (ICI) therapy
has benefited some metastatic carcinoma patients, bio-
markers needed for prediction are essential [52]. Some evi-
dence from selected types of carcinomas suggested that
TMB could be a predictor of clinical response to ICI [52].
Here, our study also aimed at evaluating the correlation
between ferroptosis-related regulators and the TMB score
in EC. The results depicted that ATP5MC3, CDKN1A, and
SLC7A11 were significantly positively associated with the
TMB score in EC. However, we did not observe a significant
correlation between ferroptosis-related regulators and the
TMB score in EC. These results implied that TP5MC3,
CDKN1A, and SLC7A11 might serve as predictive markers
of EC immunotherapy.

Also, we should point out several limitations of this
study. First, most of the conclusions of this study were
obtained using a single database, TCGA. Thus, more public
datasets and clinical samples should be collected to further
confirm our findings in this study. Second, the molecular
functions of FRGs in EC remained to be further explored
using gain or loss of function assay with siRNAs. Finally, only
limited clinical information was available for us to perform
bioinformatics analysis.

5. Conclusion

In brief, we identified that FRGs were significantly differently
expressed in EC. Further analysis showed that SLC7A11,
SAT1, CDKN1A, and TP5MC3 expression presented a nega-

tive relationship with the pTNM_stage, grade, and survival
time. Bioinformatics analysis revealed that these genes partic-
ipated in the regulation of cell cycle, citrate cycle (TCA cycle),
metabolism-related pathways, ERK activation, p53 signaling
pathway, cellular senescence, and Notch signaling pathway.
It is worth noting that our data suggested that ATP5MC3,
CDKN1A, and SLC7A11 were largely positively associated
with the TMB score in EC. These findings for the first time
showed that ferroptosis played a crucial role in EC.
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