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Background. In intensive care, monitoring the depth of anesthesia during surgical procedures is a key element in the success of the
medical operation and postoperative recovery. However, despite the development of anesthesia thanks to technological and
pharmacological advances, its side effects such as underdose or overdose of hypnotics remain a major problem. Observation
and monitoring must combine clinical observations (loss of consciousness and reactivity) with tools for real-time measurement
of changes in the depth of anesthesia. Methodology. In this work, we will develop a noninvasive method for calculating,
monitoring, and controlling the depth of general anesthesia during surgery. The objective is to reduce the effects of
pharmacological usage of hypnotics and to ensure better quality recovery. Thanks to the overall activity of sets of neurons in
the brain, we have developed a BIS technique based on bispectral analysis of the electroencephalographic signal EEG.
Discussion. By collecting the electrical voltages from the brain, we distinguish light sleep from deep sleep according to the
values of the BIS indicator (ranging from 0 : sleep to 100 : wake) and also control it by acting on the dosage of propofol and
sevoflurane. We showed that the BIS value must be maintained during the operation and the anesthesia at a value greater than
60. Conclusion. This study showed that the BIS technology led to an optimization of the anesthetic management, the adequacy
of the hypnotic dosage, and a better postoperative recovery.

1. Introduction

Clinical monitoring is based on the analysis of nervous reac-
tions to stimulation movements such as responsiveness to sur-
gical incision and loss of verbal contact. The consequences of
an unsuitable anesthesia are an increase in morbidity,
overdosage. (hypotension and respiratory depression), or
underdosage (memorization, movement, hypertension, and
bronchospasm) [1].

This makes it essential to evaluate the depth of the anes-
thesia in order to optimize its adequacy to the intensity of
the operative stimuli. Historically, the measurement of the
depth of anesthesia began with the analysis of the relation-
ship between nociceptive stimuli and the presence or
absence of clinical signs such as loss of consciousness, move-
ment, changes in respiratory rate, changes in eye response,
and cardiovascular effects. It was in 1875 that an English

doctor recorded for the first time the electrical potential of
a brain.

In 1929, electroencephalography was invented by a Ger-
man physician called Hans Berger, in order to study the elec-
trical activity of the brain by measuring the electrical
potential. This invention was recognized and completed by
the physician Edger Adrian in 1934 [2].

In fact, the use of anesthesia depth monitoring emerged
following a recommendation from the American Society of
Anesthesiologists (ASA) in 2006, then a Cochrane Library
meta-analysis in 2007 and a formal recommendation from
SFAR experts in 2009. After 2000, two major studies of Liu’s
and Punjasawa Dwong’s were carried out.

(1) The first one includes 1380 patients from 11 outpa-
tient surgery studies. It found a decrease in hyp-
notic’s consumption of 19%

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2021, Article ID 9961998, 13 pages
https://doi.org/10.1155/2021/9961998

https://orcid.org/0000-0002-1192-4511
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9961998


(2) The second one includes 4056 patients from 20 stud-
ies. It found a decrease in propofol consumption of
1.30mg/kg/h and a decrease in halogenated by 0.17
CAM equivalents [3]

Despite the existence of several BIS monitors, several of
them suffer from problems such as low signal-to-noise ratio,
artifacts, interference with EMG signals, and a medium pre-
cision of around 60% to 80%. In order to surmount these
problems, we developed an embedded noninvasive BIS sys-
tem for monitoring and control the depth of anesthesia dur-
ing surgery. The first contribution is that we replaced the
analog filtering, converters, and electrical circuits with pro-
grammable digital filters and embedded algorithms that are
implemented in the Raspberry Pi4 electronic board. This
avoids inaccuracies of the instrumental circuits and reduces
artifact effects. The second contribution is that we succeeded
to estimate from the simulation software the optimal dose of
hypnotics to achieve a well-determined degree of sleep (for
example: BIS = 30%), unlike other BIS monitors which adapt
the anesthesia boluses with the evolution of BIC values.

1.1. Principle of Electroencephalography EEG. Electroenceph-
alography is a recording of electrical activity in the brain. It
represents the trace of temporal variation of electric poten-
tial collected on the cranial box for different points of the
scalp. The EEG acquisition modality facilitates the visualiza-
tion of the functioning of the cerebral process and the
understanding of neurophysiological phenomena. The
acquisition of the EEG signals is carried out from electrodes
brought into contact with the scalp.

As EEG is a measure of brain electrical activity, its real-
ization can occur during sleep or in other areas of activity.
The received signal is very weak (some microvolts). It varies
according to age, sex, the patient state, and alertness.

1.2. Electrical Activity. The brain is a building of a collection
of nerve cells called neurons. They are very numerous,
around tens of millions. They have the role of circulating

nervous messages. Neurons have a long lifespan, and its elec-
trical activity goes through two main phases:

(1) Brain activity to neuron

(2) Surface activity

1.3. Brain-to-Neuron Activity. The electrical activity of neu-
rons depends on the polarization and depolarization of
excitable cells. An action potential is a biphasic wave of a
few milliseconds, which propagates towards all the nerve
cells. It affects human activity such as perception, sleep,
and memorization. The information value of the action
potential is not transmitted by its amplitude but by its fre-
quency. Therefore, with a depolarization above the thresh-
old, the frequency of the action potential is the highest
(Figure 1).

In Figure 1, neuron “ A ” represents the effect of two
microelectrodes placed in the neuron. The first one injects
current and the other records the membrane potential. The
effect of this stimulation is summarized into 4 portions (B,
C, D, and E). Portion B represents a result of a negative cur-
rent, and the neuron is hyperpolarized.

No action potential is produced. Portion C represents a
result of a positive current stimulation, depolarization of
the neuronal membrane takes place but it is not sufficient
to generate an action potential. For portion D, the injected
current depolarizes the membrane to a value greater than
the threshold. An action potential is generated. Finally, the
discharge frequency of the action potentials will be high with
the level of depolarization, proportional to the quantity of
current injected; this is the case of portion E.

1.4. Surface Activity. Between two neurons, the interface
zone is a surface with a porous membrane which allows
the exchange of sodium, chlorine, potassium, and ions. Sub-
sequently, the appearance of an ionic current is observed
which propagates towards various cells with a precise fre-
quency. The efficiency of information transfer from one
region to another brain level depends mainly on the activity
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Figure 1: Principle of the action potential [3].
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level of the cortex. As an action potential propagates along
an axon, Na+ ions enter the cell at the active site through
voltage-gated Na+ channels. On either side of this depolari-
zation front, a flow of K+ ions emerges via channels open at
rest or with delayed opening. As illustrated in Figure 2, this
active axonal portion can be assimilated to a current quadru-
ple (two inverted dipoles) [2].

According to the following Figure 3, the polarization of
the EEG waves in the surface depends on the position of
the synapse in active mode. In fact, the deviation of the
potential upwards indicates a negative potential, and con-
versely, the deviation in the opposite direction indicates a
positive potential.

Any EEG electrical signal is characterized by its fre-
quency and its amplitude: the frequencies are between 0.5
to 40Hz and the amplitude varies from 5 to 250 microvolts.

In general, amplitudes and frequencies are calculated
over a period of 125ms to 20 s.

For example, Figure 4 shows an EEG signal recorded by
electrodes placed on the scalp surface. We obtained a weak
electric field produced mainly by synaptic potentials which
can be classified as synchronized waves (c) or irregular: not
synchronized (b).

2. Materials and Methods

2.1. Description of the Vigilance and Sleep States. Since the
development of exploiting electrical activity, the experimen-
tal approach to sleep has become scientific. Billiard [5] was
the first to identify the state of alertness and sleep during
the night. Each state of vigilance corresponds to a specific
potential and the use of three parameters (waking state, light
and slow sleep state, and slow and deep sleep state). The sig-
nal processing of the EEG signal identified five cerebral
rhythms: Delta, Theta, Alpha, Beta, and Gamma. These
rhythms are classified according to their frequency band
and their amplitude according to Table 1.

The temporal waveforms of brain waves are illustrated in
Figure 5.

2.1.1. Standby State. It is the stage which characterizes the
discontinuous emission of alpha wave. We therefore observe
a reduction in amplitude which results in the alpha wave
flattening.

There are two standby states:

(1) The first is active awakening characterized by the
appearance of low amplitudes between 5 and 20
microvolts with a rapid frequency. We are talking
about beta wave
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Figure 2: Action potential propagation diagram [2].
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Figure 3: The principle of EEG registration [3].
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Figure 4: EEG signals related to synaptic activity [4].

Table 1: Characteristics of brain waves.

Wave Physio/psycho Frequency (Hz) Amplitude (μV)

Delta
-Deep sleep

Eye movement: abnormal
0-4 300

Theta
-Light sleep
-Eyes closed

4-8 50-100

Alpha
-Mental calm

Receptivity, relaxation
-Eyes closed

8-12 30-50

Beta

-Paradoxical sleep
-Rational thinking

-Eyes open
-Vigilance

12-30 10

Gamma
-Simultaneous information from different sectors

-Problem resolution
>30 —
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(2) However, the second state is calm awakening which
corresponds to the alpha wave

2.1.2. Slow and Light Sleep State (Figure 6). It is characterized
by a slowing of brain waves with an increase in amplitude,
and it breaks down into four stages of increasing depth:

(i) Stage 1. Is a stage between wakefulness and sleep
corresponding to theta wave: 10% of sleep in young
adults

(ii) Stage 2. Is a confirmed sleep exhibiting the charac-
teristics of a slow theta wave by breaking down into
two types of waves. The first is a sleep spindle wave
at a fast (12 to 16Hz) and short-term (1 to 2 s) fre-
quency. The second is characterized by the slow
wave and appears in a transient and cyclical way

(iii) Stage 3 and 4. The two stages are deep sleep. It
presents the characteristic of slow wave delta with
higher amplitude than 75 microvolts and a fre-
quency range between 0.5 and 4Hz

2.1.3. Slow and Deep Sleep State (Figure 7). An essential stage
in children because it is the period of secretion of growth
hormone which activates all the synthesis processes from
the early morning, in particular the protein. The paradoxical
slow sleep presents an active center of the hypnogram. It is

with the paradoxical sleep that one obtains the expression
of the regenerative functions of dream and sleep.

2.1.4. REM Sleep State (Figure 8). This stage of sleep is slow
and paradoxical (also called PMO stage, eye movement
phase, or REM). This state is shorter with an intensive brain
activity. This period is accompanied by rapid eye movement
caused by brain waves, which is related to dreams. This hard
sleep is between 15 to 20 minutes. It is characterized by low
amplitude and rapid pace. It appears for a movement
ordered but not realized and louse thought lively, strange,
and illogical [8].

2.2. Registration Procedure by Electrodes. For EEG signal
acquisition, the sensors are electrodes which record the var-
iations in electrical potential which are a few millimeters in
radius. The electrodes are inserted in an elastic cap. The
bonnet that is placed on the head of a patient is decomposed
of a tissue and electrodes. The electrodes are of the “Gray-
Walter” type which consists of a silver rod covered with a
tissue plug inhibited by a saline solution. They are fixed in
a stabilizing support which allows them to stand upright
on the scalp. They are held by a small hook which is a net
made in the crisscrossed rubber strap that is fixed on the sub-
ject’s head in order to keep the electrodes in suitable places. As
illustrated in Figure 9, each letter indicated on the electrodes a
specified region. Even numbers indicate the right side and the
odd numbers indicate the left dimension.

0 1 2 3 4
Beta

Alpha

Theta

Delta

Figure 5: Illustration of brain waves [6].

Figure 6: EEG waveforms of the slow and light sleep stage [7]. (1):
EEG signal, (2): left eye, (3) right eye, (4) EMG.

Figure 7: Profile of the GET step of slow and deep sleep [7].

Figure 8: Profile GET step of REM sleep [7].
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2.2.1. Rhythmic Activity. The form and intensity of EEG
electrical activity depend on the position of the recording
electrodes and on brain activity (Figure 10). They depend
on the location of the electrodes, their impedances, and the
state of sleep. Electroencephalography (EEG) is used to
record the rhythmic activities of the cerebral cortex,
classified into five waves: Delta, Theta, Alpha, Beta, and
Gamma [9].

2.3. The BIS Procedure. The study of the energy spectrum of
cortical signals shows the existence of frequency bands that
are related to behavioral observations. The frequency waves
are divided as follows [10]:

(1) Delta band (0 to 4Hz)

(2) Theta band (4 to 8Hz)

(3) Alpha band (8 to 12Hz)

(4) Beta band (12 to 25Hz)

(5) Gamma band (>30Hz)

Power spectral analysis gives information on amplitude
and frequency but does not take into account the phase
between the components of different frequencies. The first-
order statistics lose all phase information. In order to
retrieve the statistical information, we introduce the bispec-
tral analysis [11].

2.4. Bispectral Analysis

2.4.1. Quadratic Phase Coupling (QPC). To be able to quan-
tify the quadratic phase coupling between pairs of frequen-
cies, it is necessary to calculate from bispectrum. The

(a) (b)

Figure 9: Localization of EEG electrodes [7]. F: frontal; Fp: polar front; A: earlobe; C: central; O: occipital; T: temporal; Z: central axis; P:
parietal.

Figure 10: EEG measuring system during eye movements [6] (closed, opened).
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interaction of two wave trains of frequencies f 1 and f 2 can
generate two interaction waves of frequencies ð f1 + f2Þ and
ð f1 − f2Þ.

The frequency components can therefore interact and
produce other mixed frequency components whose wave
numbers and frequencies are formed from the sum or the
difference of these primary components. The frequencies
f1, f2, and f3 can be related by a quadratic nonlinear inter-
action if the following equation is satisfied [12]:

f1 ± f2 ± f3 = 0: ð1Þ

In general, if we have a signal which is composed of
three sinusoids with frequencies and phases (ω1, ϕ1),
(ω2, ϕ2), and (ω3, ϕ3), the sinusoids 1 and 2 are said to
be quadratically coupled in phase (QPC) if and only if [13]:

ω1 ± ω2 ± ω3 = 0, ð2Þ

φ1 ± φ2 ± φ3 = 0 ð3Þ
2.5. Bispectrum and Bicoherence. The bispectrum is a com-
plex quantity that measures nonlinear interactions in a pro-
cess that generates a signal and the correlation between the
phases of a signal at different Fourier frequencies. So the
analysis bispectral is defined as a FFT-2D, and bispectrum

is the Fourier transform of the sequence of third order
cumulate of a random process.

Despite its capacity for calculation, the bispectrum
remains complex to understand it. It is for this reason one
calls upon the bicoherence [11]. This index varies between
0% and 100%.

2.5.1. Calculation of the Bispectrum. To compute the bispec-
trum, EEG signals are first divided into a series of epochs.
Then, Fourier transform Xjð f Þ of each epoch is computed.
The bispectrum Bð f1, f2Þ is calculated from the following
equations:

TP j f1, f2ð Þ = Xj f1ð Þ:Xj f2ð Þ:X∗
j f1 + f2ð Þ, ð4Þ

B f1, f2ð Þ = 〠
j

TPj f 1, f 2ð Þ
�
�
�
�
�

�
�
�
�
�
, ð5Þ

where TPj is the spectral triple product. Xð f1Þ, Xð f2Þ,
and Xð f1 + f2Þ are complex values calculated from Fourier
transform.

X ∗ ð f Þ is the conjugate of Xð f Þ.
For real processes, there are 12 areas of symmetry in the

bispectrum [14]. The bicoherence BIC is defined as the
degree of standardized BIS (between 0% and 100%). The
normalized value of the bispectrum is called bicoherence
BICð f1, f2Þ. It is calculated from the following equation [15]:

BIC f1, f2ð Þ = B f1, f2ð Þ
∑j TPj f1, f2ð Þj j :100, ð6Þ

The numerator is different from the denominator
because:

〠TPj

�
�
�

�
�
� ≤〠 TPjj j: ð7Þ

This expression can be expressed in function of the
power spectral density Pð f Þ as:

BIC f1, f2ð Þ = B f1, f2ð Þ
∑ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pj f1ð Þ:Pj f2ð Þ:Pj f1 + f2ð Þp :100: ð8Þ

The last formula can be deduced as:

TP j f1, f2ð Þ�
�

�
�
2 = Xj f1ð Þ�

�
�
�
2
:Xj f2ð Þ��2: X∗

j f1 + f2ð Þ
�
�
�

�
�
�

2

= Pj f1ð Þ:Pj f2ð Þ:Pj f1 + f2ð Þ:
ð9Þ

Then

TPj f1, f2ð Þ�
�

�
� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P1 f1ð Þ:Pj f2ð Þ:Pj f1 + f2ð Þ
q

: ð10Þ

With the power spectral density Pjð f Þ = jXjð f Þj2.

Waves extraction:
alpha, beta, gamma, 

delta, théta

Read the EEG file 
eeg_name.edf

Choose the sampling
frequency
F = 500 Hz

Windowing with 
frames = 512 samples
+ artefacts filtering 

EEG decomposition 
into 5 neuronal waves 

FFT transform
power spectral density

Figure 11: Wave extraction algorithm.
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Figure 13: The theta wave: light sleep.
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3. Results and Discussion

Figure 11 illustrates the principle of the EEG segmentation
and wave’s discrimination. We start by reading the data
from the EEG recordings which are saved in a called “file_
name.edf”.

Then, the EEG signal is into frames of 512 points with a
sampling frequency of 500Hz. We thus obtain the cerebral
rhythms (Alpha, Beta, Theta, Delta, and Gamma). Finally,
we apply the fast Fourier transform (FFT) in order to separate
and to identify the 5 waves: Delta (0-4Hz), Theta (4 to 8Hz),
Alpha (8-12Hz), Beta (12 to 30Hz), and Gamma (>30Hz).

3.1. Simulation. The following Figures 12–16 represent the
results of the spectral analysis of the EEG signals, called
the brain waves. Every one of these five signals represents a
specific state of the patient.

Figure 17 shows the spectral density of the EEG signal.
The beta wave portion is characterized by a peak, observed
at 30Hz. The beta brain wave appears in a patient with open
eyes and for a frequency of 12 to 30Hz. The obtained results
show that from calculation of the spectral density of the sig-
nal, it is possible to identify the patient case where it is not
always sufficient.
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3.2. Database and Experiment Protocols. In section, we will
study two different signals in order to detect quadratic phase
coupling:

(i) The first signal processed is an EEG examination
result for a healthy patient (male, 25 years old: not
affected by neurological diseases such as epilepsy),
calm with open eyes

(ii) The second signal processed from a patient (26-year-
old woman) under anesthesia (with 2.6% sevoflurane)

The protocol for the measurements is as follows:

(i) EEG signals are collected from electrodes placed at
defined locations on the scalp. The placement of
the electrodes is defined according to Figure 9

(ii) We used the 10-20 system because it identifies the
same relative position on the scalp regardless of head
size. It is based on meridians crossing the scalp into
landmarks such as nasion, inion, left, and right audi-
tory tragus

The “10-20” refers to the fact that actual distances
between adjacent electrodes are either 10% or 20% of the
total front-back or right-left distance of the skull
(Figure 9). Each electrode placement site has a letter to iden-
tify the lobe, or area of the brain: the standard positions and
areas are classified as illustrated in Figure 18: prefrontal (Fp),
frontal (F), temporal (T), parietal (P), occipital (O), and cen-
tral (C). There are also (Z) sites for electrodes placed on the
midline sagittal plane of the skull, (Fz, Cz, Pz, and Oz) which
are present mostly for reference-measurement points. Even-
numbered electrodes refer to electrode placement on the
right side of the head, whereas odd number electrodes refer
to the left side.

EEG
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Figure 19: Filterbank decomposition of EEG signals.
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Bi-coherence BIC

Read data from EEG file
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Quadratic phase 
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Figure 20: BIS and BIC algorithm of an EEG signal.
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(i) Electrode-gels are used. They act as a malleable
extension of the electrode, so that the movement of
the cables is less likely to produce artifacts. The gel
maximizes skin contact and allows for a low-
resistance recording through the skin

(ii) To eliminate the offsets, the voltage is defined as the
potential difference between 2 electrodes, grouped by
2. Among the 20 sensors, four electrodes were
selected: Fp1-Fp2 and T3-T4

This choice is justified by the ease of access to contact
points and the symmetry with respect to the middle head.

The impedance of each electrode is in the order of 1000
ohms.

(i) For signal amplification, we used differential ampli-
fiers. They magnify the difference between two
channels or electrodes. The advantage is that, an
unwanted signal which is common to the two inputs
will be subtracted

(ii) Many signals present on the scalp, include power
line interference at 50Hz and the electromyogram
EMG, which may extend above 100Hz. To prevent
aliasing distortion of the EEG signal, we adopt a
sample rate above 250Hz (Fs = 500Hz in our case).
The filtering is based on a second-order band pass
I.I.R digital filter [1Hz; 75Hz] to respond to the
Nyquist frequency Fn = Fs/2 (Fn = 250Hz) and to
restore alpha, beta waves, gamma, delta waves, and
also to eliminate artifacts and network harmonics
(Figure 19).

The filter bank is based on a decomposition into five IIR
bandpass filters (BPF) related to the EEG waves (delta,
theta, alpha, beta, and gamma) followed by a downloading
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Figure 21: Bispectrum with open eyes.
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Figure 22: Bispectrum of a patient under anesthesia (2.6% sevoflurane).

Table 2: Comparison table between the value of BIS and the value
found.

Patient state
Theoretical BIS value in

%
Real value in

%

Patient under awake
state

100 92.2

Patient under
anesthesia

0 3.1

Table 3: Identification rate table between the two patient cases.

Patient condition Awake Under anesthesia

Identification ratio (%) 90.4 96.6
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step by a factor 2. The five output signals are applied to a
preprocessing step constituted by a deconvolution of arti-
facts/EEG and EMG/EEG by using the cepstral method.
Finally, we can restore the enhanced EEG signals by low-
pass filters (LPF).

3.3. Algorithm of the BIS Application on the EEG Signal.
After the first step of reading data from EEG, the output
signals are saved as “∗.edf” file. Then, the EEG file is seg-
mented into 512 points per frame with a sampling fre-
quency of 500Hz. The estimation of HOS is computed
by the bispectrum analysis in order to detect the phase
of quadratic coupling between the various components of
EEG signal. Finally, the normalization of the bicoherence
of the bispectrum result was calculated, between 0 and
100%.

This algorithm is similar to PLE (phase lag entropy)
that uses four-channel EEG to measure the temporal pat-
tern diversity in the phase relationship of frequency brain
signals [16, 17].

Figure 20 illustrates the principle of the BIC algorithm.
We begin with the analysis of the EEG signal of the patient
with open eyes by reading the signal with a sampling fre-
quency Fs = 500Hz and a frame length = 512 samples. Note
that when we calculated the spectral power of an awake
subject, it is found a peak of 30Hz corresponding to the
beta brain rhythms. Our aim in this section is to count
the quadratic phase coupling QPC. This function detects
the quadratically coupled harmonics in phase using the
TOR method (third-order recursion) and calculates the bis-
pectrum value of the coupled components. The following
figure shows the EEG signal bispectrum of an awake breast
subject.

3.4. Simulation Results. The parametric estimation of the bis-
pectrum shows the presence of weak phase coupling (blue
outline in Figure 21) between the different components of
the EEG signal of the awake patient with a maximum of
bispectrum located at the point B (0.0976, 0.0117). The bis-
pectrum result should be normalized across the bicoher-
ence or bispectrum normalized through the BIC equation:
BIC = 92:2%.

Subsequently, we are interested in analyzing the EEG
signal of the patient under anesthesia (2.6% sevoflurane
[18]) by reading the signal which is normalized at the same
conditions. Note also when we calculated the spectral power
of subjects under anesthesia, we found a peak of 2Hz corre-
sponds to the cerebral rhythm delta. The following Figure 21
shows the bispectrum of the EEG signal of a patient under
anesthesia (2.6% sevoflurane).

The parametric estimation of the bispectrum shows the
presence of a strong phase coupling (presence of red outline
in Figure 22) between the different components of the EEG
signal of the awake patient with maximum of bispectrum,
located at B (0.49609, 0.24609), and the presence of other
value is given by B (0.1312, 0.1351), (0.2385, 0.1487), B
(0.2502, 02460). The bicoherence or normalized bispectrum
is BIC = 3:1%. We notice in last Figures 21 and 22 the
absence of quadratic coupling for the awake breast patient
with a normalized value of BIC = 92:2% (Figure 21) and a
strong presence of coupling in the patient under anesthesia
of a value of BIC = 3:1% (Figure 22).

Table 2 summarizes the obtained values and results.
The identification ratio of our tests is summarized in the

following Table 3.
We can interpret that going towards the value 100% the

marked subject awake with an absence of phase coupling
and going towards 0% the subject marked under anesthesia
with a strong presence of coupling. The absence of coupling
computed by the bispectrum signifies patient awareness, and
the strong presence of coupling signifies the vigilance of the
patient. Finally, with our strategy, we obtained an accuracy
of 92% which is very promising and interesting, one com-
pared with other industrial BIS or entropy monitors.

3.5. Comparison with Other Studies. In Table 4, we com-
pared our results with three similar bibliographic studies
using as judgment parameters, the sedation-awakening
period, the percentage of morphine or sevoflurane, the BIC
error, and the number of doses taken during anesthesia.
We notice that we obtained similar results to Zhao’s study
with a decrease in error and consciousness recovery time.

4. Conclusion

The study of EEG signals is very complex because it requires
the knowledge of biological brain signals and the technolo-
gies relating to its components. The aim of this study is to
develop a noninvasive method for computing and monitor-
ing in real time the degree of general anesthesia by applying
the bispectral analysis of the EEG signal. We developed a
methodology of EEG signal segmentation and bispectral
analysis in order to extract the five brain waves.

We demonstrated that every wave corresponds to a spe-
cific state of the patient. In order to identify the patient state,
during and after anesthesia, we computed the synchroniza-
tion between the components of the spectrum by using the
quadratic phase coupling (QPC) strategy. The obtained
values of the bispectrum and bicoherence index allowed us
to classify and then to recognize the patient state and the

Table 4: Comparison with similar BIS studies.

Reference study Average propofol dose (mg/kg/hour) Time to consciousness (minutes) Average number of boluses Mean error

Inaba et al. [19] 5.3 5.7 2.3 0.2

Weatherburn et al. [20] 18.4 14.6 — 0.67

Zhao et al. [21] 0.95 15 — 0.09

Lamia (our study) 2.6 3.2 1 0.03
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anesthesia evolution. These results are very interesting
because they can assist medical staff to better control and
monitoring the anesthesia during surgery operations, reduce
the use of hypnotics, and contribute to a better postoperative
recovery.
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