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ADAMS33 is a zinc-dependent metalloprotease of the ADAM family, which plays a vital biological role as an activator of Th,
cytokines and growth factors. Moreover, this protein is crucial for the normal development of the lung in the fetus two months
after gestation leading to determining lung functions all over life. In this regard, mutations in ADAM33 have been linked with
asthma risk factors. Consequently, identifying ADAMS33 pathogenic nonsynonymous single-nucleotide polymorphisms
(nsSNPs) can be very important in asthma treatment. In the present study, 1055 nsSNPs of human ADAM33 were analyzed
using biocomputational software, 31 of which were found to be detrimental mutations. Precise structural and stability analysis
revealed D219V, C669G, and C606S as the most destabilizing SNPs. Furthermore, MD simulations disclosed higher overall
fluctuation and alteration in intramolecular interactions compared with the wild-type structure. Overall, the results suggest
D219V, C669G, and C606S detrimental mutations as a starting point for further case-control studies on the ADAM33 protein
as well as an essential source for future targeted mechanisms.

1. Introduction

Asthma is a multifaceted lifetime pulmonary disease of the
respiratory bronchi, described by fluctuating and repetitive
symptoms, bronchi spasms, and reversible airflow obstruc-
tion [1]. It consists of inflammation and swelling of the
bronchi leading to perpetual scarring/remodeling of the
bronchi. The indications of asthma comprise occurrences
of wheezing, coughing, chest tightness, and breathlessness,
which are a result of alterations in the constitutes of cellular
and extracellular matrix in the small and large airways, apo-

ptosis of epithelial cells, activation of fibroblast, and prolifer-
ation of airway smooth muscle cells [2, 3]. Contingent upon
the patients, the indications of asthma may become severe
by exercise or at night time, exerting a remarkable burden
on life quality, work efficiency, social activity, and healthcare
resource use [4, 5].

Consequently, there has been an increase in prevalence
rates, albeit with a decline in asthma mortality ratios in sev-
eral countries in recent years. For instance, 345 million peo-
ple worldwide had asthma in 2019, compared to 183 million
patients in 1990 [6]. Although numerous therapeutics are
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now extensively utilized owing to their superior efficiency
and fewer side effects in asthma treatment, all of these drugs
are accessible in a prescription manner [7, 8]. Moreover, a
notably high incidence of scantily controlled asthma has
been recognized. For a number of asthmatic patients (5-
10%), the illness is obstinate to corticosteroid healing and
regularly causes hospitalization, thanks to rhinovirus respi-
ratory infection. Furthermore, asthma indications initiated
in adults could have resulted from childhood [9]; however,
if bronchial function no longer reoccurs into the normal sta-
tus when there is no attack, the asthma is eventually catego-
rized as a chronic obstructive pulmonary disease (COPD).
Thus, there is a high-priority requirement to recognize vari-
ous significant biomarkers that can aid in predicting this dis-
order and guide curative policies.

Many genetic investigations have been carried out to
recognize genetic polymorphisms related to asthma vulner-
ability. In this regard, a gene called metalloprotease and
disintegrin 33 (ADAMS33), placed on human chromosome
20pl3, is among the initially recognized asthma nominee
genes. It belongs to the zinc-dependent metalloproteases
of the ADAM family and participates in a vital biological
task as an activator of Th, cytokines and growth factors
[10]. ADAMS33 possesses 22 exons for encoding a catalytic
domain, predomain, signal sequence, cysteine-rich domain,
disintegrin domain, transmembrane domain, cytoplasmic
domain, and EGF domain with a 3'-untranslated region
(UTR) [11]. The mentioned diverse domains provide dis-
tinctive ADAM33 biological functions involving proteoly-
sis, cell activation and fusion, intracellular signaling, and
adhesion [12].

Furthermore, genetic investigations have revealed that
ADAM33 can take part in ascertaining lung function during
life, correlating with the elevated prospect of curative inter-
vention in asthma [13]. Moreover, it is reported that soluble
ADAM33 protein can enhance angiogenesis, which could be
regarded as a “tissue remodeling gene” by affecting lung
functions and obstruction of airflow separately from inflam-
mation [14]. Evidence has demonstrated that ADAM33 can
be a vulnerable target gene in asthma [15] and have a vital
function in the natural history as well as the asthma origins
[16]. In addition, the ADAM33 mRNA that expresses pref-
erentially in myofibroblasts, fibroblasts, and smooth muscles
indicates that its abnormality functions would be possibly
related to airway wall “remodeling” and bronchial hyperre-
sponsiveness (BHR), which leads to the asthma disorder in
the early life of individuals. Furthermore, a superior ADAM33
protein expression was found in asthmatic patients in compar-
ison to the control groups [17].

In compliance with various investigations, single-
nucleotide polymorphisms (SNPs) in the ADAM33 gene
can hinder the physiological functions deployed through
the ADAM33 protein. A current extensive meta-analysis of
populations has indicated the relationship between genetic
variation with asthma progression [18]. In this context, F
+1, T2, and Q1 polymorphisms of the ADAM33 gene may
help to cause asthma risk in Asian populations, while V4
polymorphism usually occurs in Caucasian populations
[18, 19]. Although several reports outline the interrelation
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of the ADAM33 gene with asthma disease, no in-depth
research has been conducted either computationally or
experimentally to inspect the importance of these poly-
morphisms’ structural and functional states. Due to
highly costly and time-consuming in vivo studies, compu-
tational approaches to functional nonsynonymous single-
nucleotide polymorphisms (nsSNPs) have been regarded
as an intelligent, helpful procedure before conducting
empirical research [20]. In this regard, the in silico evalu-
ation of ADAM33 as one of the chief causative parameters
of asthma was undertaken to investigate the potential risk
of ADAM33 polymorphisms from the vast number of
neutral SNPs of the ADAM33 gene in the induction of
asthma disorder according to the available databases as
well as to attain a more dependable outcome.

2. Materials and Methods

The entire approach utilized in the present research is briefly
illustrated in a flowchart (Figure 1).

2.1. ADAM33 Protein Characterization and SNP Data
Retrieval. The protein sequence information of the
ADAMS33 gene (ID: Q9BZ11) was attained from the Uni-
ProtKB database with the address http://www.uniprot.org/
uniprot/. In addition, the information relating to ADAM33
protein was obtained from InterPro databases (database of
protein families, functional sites, and protein domains)
(https://www.ebi.ac.uk/interpro/) [21]. Moreover, the pre-
diction for the property of the ADAM33 structure was car-
ried out by RaptorX property (http://raptorx.uchicago.edu/
StructurePropertyPred/predict/) [22].

The SNP data of the human ADAM33 gene was attained
from dbSNP-NCBI with the address http://www.ncbi.nlm
.nih.gov/SNP/, and the nsSNPs were filtered out for addi-
tional studies.

2.2. Prediction of Deleteriousness of SNPs. The structural and
functional impacts of damaging SNPs of the ADAM33 gene
were analyzed using SIFT, PolyPhen-2, PROVEAN, PAN-
THER, SNAP2, Align GVGD, and PredictSNP online web
tools, sequentially.

The functional influences of nsSNP were predicted by
applying various computational tools. Prediction of the
harmful impacts of nsSNPs (http://sift.jcvi.org/) was carried
out via the Sorting Intolerant from Tolerant (SIFT) online
web server. SIFT employs the sequence homology-based
method to predict an amino acid substitution that impacts
protein function via calculating the amino acid conservation
degree throughout evolution [23]. The SIFT scores ranged
from 0 to 1, in which the value below 0.05 implied the
destructive impact of nsSNPs on protein function or struc-
ture. Another prediction tool exploited to investigate the
functional influences of nsSNPs was PolyPhen-2 with the
address http://genetics.bwh.harvard.edu/pph2, which uti-
lizes a variety of structure- and sequence-based comparisons
for prediction of the consequences of nsSNP on both protein
function and structure [24]. The prediction results were
attained in the type of probability scores categorized into
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FIGURE 1: Schematic representation of the whole analytic procedure of the study.

three categories: “benign,” “possibly damaging,” and “proba-
bly damaging,” and the cutoff value was set for “probably
damaging,” with a score above 0.95.

An online server of PROVEAN with the address http://
provean.jcvi.org/seq_submit.php is based on a sequence
homology approach (using a delta alignment score) for the
prediction of the functional consequence of an amino acid
substitution (including substitutions, deletions, and inser-
tions) [25]. The cutoff value adjusted for the PROVEAN
server is -6.

The PANTHER PSEP (protein analysis through evolu-
tionary relationship-coding SNP) web server with the
address http://pantherdb.org/tools/csnpScoreForm.jsp deter-
mines the effect of nsSNPs on protein function via evolution-
ary conservation. In addition, this server calculates the
alignment of various evolutionarily related proteins to pro-
vide the scoring system based on position-specific evolution-
ary conservation (PSEC) scores provided [26].

The SNAP2 web server (Screening for Nonacceptable
Polymorphisms) with the address https://www.rostlab.org/
services/SNAP/ discriminates neutral and effect variants via

inspecting a range of variants as well as sequence traits,
including secondary structure, evolutionary, annotation
data, and solvent accessibility [27]. The protein sequences
in the FASTA format were incorporated as an input query.

The Align GVGD web server with the address http://
agvgd.hci.utah.edu/ is the basis of biophysical traits of amino
acids and protein multiple sequence alignments for predict-
ing damaging amino acid substitution in proteins. It pro-
vides a variety of sorted variants (C0, C15, C25, C35, C45,
C55, and C65) in which C65 is mainly probable to hamper
function and vice versa [28].

The PredictSNP online tool (https://loschmidt.chemi
.muni.cz/predictsnp1/) gathers the input data from various
tools for estimating the consequence of single amino acid
substitution. This tool offers a consensus prediction with
enhanced efficiency and precision rather than an individual
integrated tool [29].

We established a criterion to narrow the obtained pre-
dictive outcomes of the online tools. Due to the huge nsSNP
input (about 5000 nsSNPs), only the most likely deleterious
or damaging variations (the highest scores) predicted by all


http://provean.jcvi.org/seq_submit.php
http://provean.jcvi.org/seq_submit.php
http://pantherdb.org/tools/csnpScoreForm.jsp
https://www.rostlab.org/services/SNAP/
https://www.rostlab.org/services/SNAP/
http://agvgd.hci.utah.edu/
http://agvgd.hci.utah.edu/
https://loschmidt.chemi.muni.cz/predictsnp1/
https://loschmidt.chemi.muni.cz/predictsnp1/

the used web servers were selected for subsequent analysis
like structure stability changes, energy changes, and surface
accessibility using different tools.

2.3. Prediction of Stability Alteration of the Mutant Protein.
The stability of the mutant protein was verified utilizing five
servers: IMutant2.0, MutPred2, MUpro, NetSurfP.2, and
SNPeffect.-Mutant2.0 with the address http://folding
.biofold.org/i-mutant/i-mutant2.0.html [30]. The conse-
quence of amino acid substitution (AAS) for the prediction
of the functional and structural alterations was assessed by
the MutPred2 server with the address http://mutpred
.mutdb.org/ [31]. MUpro (http://mupro.proteomics.ics.uci
.edu/) is an online software tool used to predict stability
changes of single point mutation based on a method named
support vector machine (SVM) [32]. In order to predict the
secondary structure as well as the surface accessibility of
amino acids, the NetSurfP server (http://www.cbs.dtu.dk/
services/NetSurfP/), which is a neural network-based algo-
rithm, was used accordingly [33]. The SNPeffect 4.0 server
with the address http://snpeffect.switchlab.org/ offers struc-
ture- and sequence-based methods to predict the impact of
nsSNPs on the structure and function of human proteins
[34]. SNP effect utilized four tools, including TANGO
(aggregation prediction), WALTZ (amyloid prediction),
LIMBO (chaperone-binding prediction), and FoldX (protein
stability analysis) for protein structure phenotyping [34].

2.4. Prediction of Ligand-Binding Sites. Ligand-binding sites
of ADAM33 protein were forecasted using the online server
RaptorX binding with the address http://raptorx.uchicago
.edu/BindingSite/. This online tool calculates the pocket
multiplicity along with P value, uSeqID (SeqID), and uGDT
(GDT), which is utilized to conclude the predicted pocket
quality. In this context, the superior score is implied for
the more precise predicted pocket, particularly when the
score reaches over 40 [35].

2.5. Analysis of Gene-Gene Interaction. The gene-gene inter-
actions were performed to highlight nominee genes that
might be related to asthma disease. The GeneMANIA online
tool (http://genemania.org/) can discover other genes related
to a group of input ones via a massive series of functional
association information. Association data comprises genetic
and protein interactions, protein domain similarity, coex-
pression, pathways, and colocalization [36].

2.6. Analysis of Protein-Protein Interaction. The STRING server
with the address https:/string-db.org/cgi/input?sessionld=
bEbFMsdUTTLq&input_page_show_search=on was employed
to analyze the interaction between proteins. This database
provides an imperative evaluation and integration of
protein-protein interaction for easy access to validated
theoretical and experimental interactions of the desired
protein [37].

2.7. 3D Protein Modeling and Quality Evaluation of the
Modeled Proteins. Wild types and mutants recognized by a
superior impact upon point mutation through an upstream
analysis were modeled using trROSETTA. This modeling
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software predicts structures from sequence information
using a deep learning tool via ab initio folding [38].
The obtained top models were subjected to the 3Drefine
server with the address of http://sysbio.rnet.missouri.edu/
3Drefine/ for structure refinement [39].

The quality of the obtained protein models was further
assessed by ProSA-web, (https://prosa.services.came.sbg.ac
.at/prosa.php) [40], PROCHECK (https://servicesn.mbi.ucla
.edu/PROCHECK/) [41], ERRAT (http://servicesn.mbi.ucla
.edu/ERRAT/) [42], and Verify3D (http://servicesn.mbi
.ucla.edu/Verify3D/) [43]. Finally, the TM-align tool
assessed the mutated models with the address https://
zhanglab.decmb.med.umich.edu/TM-align/ to evaluate the
structural deviation degree among natives and mutants
[44]. In this regard, template modeling scores named TM
score and root mean square deviation named RMSD values
were calculated to compare the protein structures on the
basis of the structural superimpositions to discover the
structure’s similarity. TM scores are from 0 to 1, in which
1 indicates a complete match between two structures. A
TM score between 0.0 and 0.30 signifies random structural
similarity, while a TM score between 0.5 and 1.00 signifies
that both structures are in the equal fold [44].

2.8. Prediction of Alterations in Protein Stability and
Interaction upon nsSNPs. Prediction of alterations in the sta-
bility of protein and interaction upon nsSNPs were carried
out using the DynaMut server with the address http://
biosig.unimelb.edu.au/dynamut/. This server performed
prediction by evaluating flexibility analysis and protein
dynamics [45].
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TaBLE 1: Unanimous prediction of deleterious missense SNPs in the ADAM33 protein by different online software.

SNP ID AAS SIFT PolyPhen-2 PANTHER-PSEP ~ SNPs&GO PROVEAN GVGD  PredictSNP
rs773091023 P678L  Deleterious  Probably damaging Probably damaging  Disease Deleterious C65 Disease
rs764301730  C671R  Deleterious  Probably damaging  Probably damaging Disease Deleterious C65 Disease
rs751597707  C669G  Deleterious  Probably damaging  Probably damaging Disease Deleterious C65 Disease
rs368984072  G661R  Deleterious  Probably damaging  Probably damaging Disease Deleterious C65 Disease
rs777553708  C637Y  Deleterious  Probably damaging  Probably damaging Disease Deleterious C65 Disease
rs1334863089  C631F  Deleterious  Probably damaging  Probably damaging  Disease Deleterious C65 Disease
rs754867141 C606S  Deleterious  Probably damaging Probably damaging  Disease Deleterious C65 Disease
rs754867141 C606Y  Deleterious  Probably damaging Probably damaging Disease Deleterious C65 Disease
rs915448220  C573Y  Deleterious  Probably damaging  Probably damaging Disease Deleterious C65 Disease
rs1432549895 C519R  Deleterious  Probably damaging  Probably damaging Disease Deleterious C65 Disease
rs1262246273  Y513C  Deleterious  Probably damaging  Probably damaging Disease Deleterious C65 Disease
rs1203116461  P496L  Deleterious Probably damaging Probably damaging  Disease Deleterious C65 Disease
rs757567846 ~ D483A  Deleterious Probably damaging Probably damaging Disease Deleterious C65 Disease
rs1424975479  C482F  Deleterious  Probably damaging Probably damaging Disease Deleterious C65 Disease
rs1165412077  C482S  Deleterious Probably damaging Probably damaging Disease Deleterious C65 Disease
rs779669835  R476C  Deleterious  Probably damaging Probably damaging Disease Deleterious C65 Disease
rs748720838  C475G  Deleterious  Probably damaging Probably damaging Disease Deleterious C65 Disease
rs528261077 G472V Deleterious  Probably damaging  Probably damaging Disease Deleterious C65 Disease
rs1378161696 C463Y  Deleterious Probably damaging Probably damaging Disease Deleterious C65 Disease
rs768654352  G460R  Deleterious  Probably damaging Probably damaging Disease Deleterious C65 Disease
rs1192357091  C444S  Deleterious  Probably damaging Probably damaging Disease Deleterious C65 Disease
rs1192357091 C444Y  Deleterious Probably damaging Probably damaging Disease Deleterious C65 Disease
rs777252478  C439Y  Deleterious  Probably damaging Probably damaging Disease Deleterious C65 Disease
rs1321728445 C431S  Deleterious Probably damaging Probably damaging Disease Deleterious C65 Disease
rs747255442  G428C  Deleterious  Probably damaging Probably damaging Disease Deleterious C65 Disease
rs776082098  C420Y  Deleterious Probably damaging Probably damaging Disease Deleterious C65 Disease
rs751613984  C388Y  Deleterious Probably damaging Probably damaging Disease Deleterious C65 Disease
rs1313175203 C371Y  Deleterious Probably damaging Probably damaging Disease Deleterious C65 Disease
rs764090883  C371R  Deleterious Probably damaging Probably damaging Disease Deleterious C65 Disease
rs1297854732  C360R  Deleterious  Probably damaging Probably damaging Disease Deleterious C65 Disease
rs1351880201 D219V Deleterious  Probably damaging Probably damaging  Disease Deleterious C65 Disease

2.9. Normal Mode Analysis. Normal mode analysis was car-
ried out through the iMOD server (iMODs) (http://imods
.chaconlab.org), in which the preset values of variables were
utilized. This online tool is a rapid and user-friendly molec-
ular dynamic simulation software program that can swiftly
characterize potential conformational alterations [46].

2.10. Molecular Dynamic (MD) Simulation. Molecular
dynamic simulation of the best models attained by valida-
tion web tools was subjected to the dynamic stability analysis
of the wild and mutated proteins using the UNRES online
server with the address http://unres-server.chem.ug.edu.pl/
[47, 48]. This server predicts the thermodynamics and
dynamic of proteins on the basis of physics-based coarse-
grained simulations. Moreover, it can be applied to forecast
dynamics, interactions, and protein structure with superb
precision at larger times [49-51]. The coarse-grain-based
MD approach was run using the default values of parame-

ters. MD runs were executed to predict fluctuation, potential
energy, and the radius of gyration.

2.11. Ethical Approval. All authors declared that no human
or animal study was included throughout this study. This
study was approved by the bioinformatic grant committee
of Shiraz University of Medical Sciences, Shiraz, Iran.

3. Results

3.1. ADAM33 Protein Characterization and SNP Data
Retrieval. The human ADAM33 gene contains 23,575 kbp,
and its protein consists of 813 amino acids. The existence
of functional domains in ADAM33 protein including Pepti-
dase_M12b_N (56-152), Reprolysin (210-409), Disintegrin_
dom (417-503), ADAM-Cys_rich (502-645), EGF-like_dom
(649-681), signal peptide (1-27), and cytoplasmic domains
(726-813) was investigated in InterPro and UniProtKB
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TaBLE 2: Structural evaluations of detrimental mutants of ADAM33 protein by different online software.

SNP ID AAS MutPred2 Score’ S tablﬂi/[yUTANTz'O R Stability MuPro 4G
rs773091023 P678L 0.64 Decreased 5 Increased 0.11

rs764301730 C671R 0.93 Decreased 5 Decreased -1

rs751597707 C669G 0.89 Decreased 8 Decreased -2.02
rs368984072 G661R 0.84 Decreased 7 Decreased -0.62
rs777553708 C637Y 0.62 Decreased 3 Decreased -0.65
rs1334863089 C631F 0.91 Decreased 3 Decreased -0.06
rs754867141 C606S 0.93 Decreased 7 Decreased -1.47
rs754867141 C606Y 0.93 Decreased 3 Decreased -1

rs915448220 C573Y 0.93 Increased 1 Decreased -0.75
rs1432549895 C519R 0.93 Decreased 2 Decreased -0.93
rs1262246273 Y513C 0.93 Decreased 6 Decreased -1.14
rs1203116461 P496L 0.84 Decreased 8 Decreased -0.23
1s757567846 D483A 0.84 Decreased 4 Decreased -1.01
rs1424975479 C482F 0.93 Decreased 5 Decreased -0.51
rs1165412077 C482S 0.93 Decreased 6 Decreased -1.22
1s779669835 R476C 0.92 Decreased 4 Decreased -0.33
rs748720838 C475G 0.92 Decreased 7 Decreased -1.66
rs528261077 G472V 0.92 Decreased 3 Decreased -0.07
rs1378161696 C463Y 0.92 Decreased 2 Decreased -0.77
rs768654352 G460R 0.87 Decreased 7 Decreased -0.63
rs1192357091 C444S 0.92 Decreased 6 Decreased -1.29
rs1192357091 C444Y 0.90 Decreased 4 Decreased -0.84
rs777252478 C439Y 0.92 Decreased 2 Decreased -0.56
rs1321728445 C431S 0.92 Decreased 5 Decreased -1.46
rs747255442 G428C 0.92 Decreased 4 Decreased -0.12
rs776082098 C420Y 0.93 Decreased 3 Decreased -1.05
rs751613984 C388Y 0.93 Decreased 4 Decreased -0.95
rs1313175203 C371Y 0.64 Decreased 0 Decreased -0.83
rs764090883 C371R 0.78 Decreased 2 Decreased -0.8

rs1297854732 C360R 0.91 Decreased 5 Decreased -1.06
rs1351880201 D219V 0.92 Decreased 3 Decreased -0.62

'Scores higher than 0.5 indicate pathogenicity. *RI stands for reliability index of prediction. *delG values under zero designate protein destabilization.

databases. The structural information obtained from the
UniProtKB database demonstrated distinctive parts involv-
ing an extracellular domain (30-701), a transmembrane
domain with helical structure (702-722), and a cytoplasmic
domain (723-813).

The RaptorX server predicted 15% a-helix, 17% f-sheet,
and 67% coil for the ADAM33 protein. Moreover, there
were three states of residue-relevant solvent accessibility, i.e.,
exposed, medium, and buried, which comprised 51%, 28%,
and 20% of the ADAM33 protein, respectively. Moreover, a
total of 188 residues (22%) were predicted as disordered.

A total of 7522 SNPs for the ADAM33 protein were
achieved from the dbSNP database in which nonredundant
SNPs were only considered. The recognized SNPs were cat-
egorized into various functional classes involving inframe
deletion [13], inframe indel [9], inframe insertion [13], initi-

ator codon variant [7], intron (4791), missense (1055), non-
coding transcript variant (1772), and synonymous (558)
SNPs. Most SNPs belonged to intronic SNP, followed by
the noncoding transcript variant and missense SNPs. The
distribution of SNPs is illustrated in Figure 2. In this
research, only nonsynonymous SNPs were regarded for
additional investigations.

3.2. Prediction of Deleterious SNPs. Seven tools, including
SIFT, PolyPhen-2, PROVEAN, PANTHER, SNAP2, Align
GVGD, and PredictSNP, were recruited for pathogenicity
or deleterious prediction of nsSNPs by setting limitation cri-
teria for all of the abovementioned tools due to the large
number of nsSNPs. Accordingly, 31 nsSNPs among 1055
were forecasted unanimously to be deleterious nsSNPs in
all bioinformatic tools (Table 1).
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TABLE 3: Structural evaluations of detrimental mutants of ADAM33 protein by SNPeffect 4.0 web server.

SNP ID AAS TANGO WALTS LIMBO FoldX
rs773091023 P678L No effect No effect No effect Not available
rs764301730 C671R No effect No effect No effect Not available
rs751597707 C669G No effect No effect No effect Not available
rs368984072 G661R No effect No effect No effect Not available
rs777553708 C637Y No effect No effect No effect Not available
rs1334863089 C631F No effect No effect No effect Not available
rs754867141 C606S No effect No effect No effect Not available
rs754867141 C606Y No effect No effect No effect Not available
rs915448220 C573Y No effect No effect No effect Not available
rs1432549895 C519R No effect No effect No effect Not available
rs1262246273 Y513C No effect No effect No effect Not available
rs1203116461 P496L No effect No effect No effect Not available
rs757567846 D483A No effect No effect No effect Not available
rs1424975479 C482F No effect No effect No effect Not available
rs1165412077 C482S No effect No effect No effect Not available
1rs779669835 R476C No effect No effect No effect Not available
rs748720838 C475G No effect No effect No effect Not available
rs528261077 G472V No effect No effect No effect Not available
rs1378161696 C463Y No effect No effect No effect Not available
rs768654352 G460R No effect No effect No effect Not available
rs1192357091 C444S No effect No effect No effect Not available
rs1192357091 C444Y No effect Increases amyloid propensity ~ No effect Not available
1s777252478 C439Y No effect No effect No effect Not available
rs747255442 G428C No effect No effect No effect Not available
rs747255442 G428C No effect No effect No effect Not available
rs776082098 C420Y No effect No effect No effect Not available
rs751613984 C388Y No effect Increases amyloid propensity ~ No effect Reduce stability
rs1313175203 C371Y No effect No effect No effect  Severely reduce stability
rs764090883 C371R No effect No effect No effect  Severely reduce stability
rs1297854732  C360R No effect No effect No effect Reduce stability
rs1351880201 D219V Increased aggregation tendency =~ Decreases amyloid propensity ~ No effect  Severely reduce stability

3.3. Prediction of Stability Alteration of the Mutant Protein.
For forecasting the alterations in the stability of ADAM33
protein, the 31 mutants were selected from the previous step
and subjected to structural evaluation using five distinctive
web server tools. The obtained outcomes are tabulated in
Table 2.

3.4. SNPeffect 4.0. The outcome of SNPeffect 4.0 was
obtained from 4 different structure- and sequence-based
bioinformatic tools comprising TANGO, WALTZ, LIMBO,
and FoldX. TANGO predicted the tendency for protein
aggregation (Table 3). In this study, only one mutation
(D219V) was classified to increase protein aggregation, and
the rest did not alter the protein aggregation from the
wild-type one. WALTZ predicted the amyloid propensity
of protein, which is more accurate and specific than the
TANGO algorithm. Only two mutations (C444Y and
C388Y) were responsible for rising amyloid tendency, while
one mutation (D219V) resulted in its decrease. On the other

hand, no mutation was classified as inducing alterations in
chaperone binding compared to the wild-type ADAM33.
FoldX estimates the discrepancy in each mutation’s free
energy (ddG). Any rise in the ddG value implies destabiliza-
tion of the ADAM33 protein and vice versa upon mutation.
In this regard, only five mutations were accountable for
reducing protein stability. The rest of the mutations did
not lead to protein stability change due to a lack of reliable
structural information.

3.5. MUpro2 and IMutant2.0. MUpro and IMutant2.0 pre-
dicted any stability change in the ADAM33 protein, where
all nsSNPs decreased the stability of the ADAMS33 protein.
In contrast, only P678L and C573Y SNPs were predicted to
increase stability, as identified by MUpro2 and IMutant2.0
software programs (Table 2).

3.6. MutPred2. The results of selected nsSNPs by MutPred
software demonstrated the probability of damaging the
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TaBLE 4: Structural evaluations of detrimental mutants of ADAM33 protein by NetSurfP.2 web server.
NetSurfP.2
SNP ID AAS Wild class Mutant class
RSA ASA (A%) Class alignment Class alignment RSA ASA (A%)
rs773091023 P678L 24 33 Buried Exposed 29 54
rs764301730 C671R 12 16 Buried Buried 20 47
rs751597707 C669G 7 10 Buried Buried 8 6
rs368984072 G661R 6 5 Buried Buried 16 36
rs777553708 C637Y 3 4 Buried Buried 4 9
rs1334863089 C631F 6 9 Buried Buried 6 12
rs754867141 C606S 1 1 Buried Buried 1 1
rs754867141 C606Y 1 1 Buried Buried 1 3
rs915448220 C573Y 8 11 Buried Buried 14 30
rs1432549895 C519R 12 17 Buried Buried 20 47
rs1262246273 Y513C 24 51 Buried Buried 16 22
rs1203116461 P496L 13 18 Buried Buried 19 29
1s757567846 D483A 23 33 Buried Buried 17 19
rs1424975479 C482F 10 14 Buried Buried 14 28
rs1165412077 C482S 10 14 Buried Buried 19 22
rs779669835 R476C 23 52 Buried Buried 18 25
rs748720838 C475G 7 10 Buried Buried 13 10
rs528261077 G472V 51 40 Exposed Exposed 48 74
rs1378161696 C463Y 11 15 Buried Buried 16 35
rs768654352 G460R 30 23 Exposed Exposed 42 97
rs1192357091 C444S 8 11 Buried Buried 17 20
rs1192357091 C444Y 8 11 Buried Buried 11 23
1s777252478 C439Y 7 10 Buried Buried 13 27
rs1321728445 C431S 5 7 Buried Buried 8 10
rs747255442 G428C 70 55 Exposed Exposed 61 85
rs776082098 C420Y 3 5 Buried Buried 7 15
rs751613984 C388Y 8 12 Buried Buried 11 24
rs1313175203 C371Y Buried Buried 9 19
rs764090883 C371R 4 Buried Buried 12 28
rs1297854732 C360R 15 21 Buried Exposed 50 113
rs1351880201 D219V 7 10 Buried Buried 5 7

RSA stands for relative solvent accessibility. ASA stands for absolute solvent accessibility.

protein and possibly altering protein function. It was found
that all mutations were damaging for ADAM33 protein with
a score of more than 0.5 (0.62-0.93) as well as P value below
0.05. In this regard, the scores with P < 0.05 and g > 0.5 des-
ignate an actionable hypothesis, the scores with P < 0.05 and
g>0.75 designate a confident hypothesis, and the scores
with P<0.01 and g>0.75 designate a very confident
hypothesis due to the nonsynonymous mutation on the basis
of the mechanistic disruption. Therefore, all selected nsSNPs
were regarded as a very confident hypothesis except for only
the two mutations of C637Y and C371Y, which were consid-
ered a confident hypothesis. In addition, various molecular
mechanism alterations were discovered, including altered
transmembrane protein, altered metal binding, loss of cata-
Iytic site, and loss of disulfide linkage (Supplementary
Table S1).

3.7. NetSurfP. NetSurfP online software was used for the sol-
vent accessibility of the ADAM33 protein. In this regard, the
class changes from the exposed state to the buried one and
the buried state to the exposed one were provided. The
results showed that only the two mutations, including
P678L and C360R, took part in class alignment change from
the buried state to the exposed state with increasing RSA
value, implying an increase in solvent accessibility (Table 4).

3.8. Ligand-Binding Site Prediction. The RaptorX server was
employed to predict ligand-binding sites of ADAM33 pro-
tein, followed by an investigation of any mutation within
the recognized ligand-binding sites. The results showed that
four distinct domains were predicted in the ADAM33 pro-
tein (Table 5). The results were provided as four values:
uGDT (GDT), uSeqID (SeqID), P value, and multiplicity.
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TaBLE 5: Ligand-binding site prediction of ADAM33 protein, obtained from RaptorX binding server.

Domain P value El(?l?"l:l; Fsi:%{id) Pocket Multiplicity Ligand Binding residues
150 7N A309 T310 V311 G312 L313 T342 H345 E346
1 (residues 199-414) 4.79¢—-09 4.79¢-09 205 (95) H349 H355 A374 A375 A376 T377
2 71 CA E213 D296 N407
1 PO4 E170 Q171 L172 L173 T174
2 KDO L172 L173 T174 W175 K176
6 FIT G135 S137 Y149 R151 E165 F167 M169 E170
2 (residues 69-198) 7.79¢—03 52 (40) 9 (7) Q171
4 6 FTT W127 S137 S147 Y149 M169 L172
5 OES P99 Q102 P103 Q117 R119
6 3 OES R121 P124 D125 S143
3 (residues 1-68)  2.69¢—02 23 (34) 5 (7) 1 1 70D L15 L19 T41 P42
1 16 CA 1484 E486 D498 V499
4 (residues 415-690) 7.54e—21 182 (66) 97 (35) 2 15 CA L1419 N422 F424 E426 E429 D432
3 5 MAN G480 D481

ZN: zinc ion; CA: calcium ion; PO,: phosphate ion; KDO: 3-deoxy-alpha-D-manno-oct-2-ulopyranosonic acid; FT'T: 3-hydroxy-tetradecanoic acid; OES: N-
octyl-2-hydroxyethyl sulfoxide; 70D: (2E,5R)-5-hydroxy-2-methylhept-2-enoic acid; MAN: alpha-D-mannopyranose.

The threshold for acceptance of the predicted model(s) for
each value is as follows: uGDT (GDT) > 50, uSeqID (SeqID
) 230%, P value < 107, and multiplicity > 40. Accordingly,
only domain 1 met all the abovementioned criteria and
was predicted as a good model. However, domain 4 could
be considered a relatively good model despite its lower mul-
tiplicity value. Other predicted domains cannot be regarded
as correct models due to not passing the criteria mentioned
above (except multiplicity). The location of domain 1 is
within residues 199-414, which consists of 2 pockets, and
the following residues might be prone to mutations: T310,
1313, T342, H345, H355, A374, A375, and D296. A similar
pattern was also observed for the following residues: 1484,
E486, D498, V499, 1419, N422, E426, E429, D432, and
D481. However, no deleterious mutation was observed by
our defined restriction criteria.

3.9. Prediction of Posttranslational Modification (PTM) Sites.
The possible occurrence of posttranslational modification in
ADAM33 protein was evaluated using various servers for
ubiquitination, glycation, phosphorylation, and sumoylation
sites. The BDM-PUB server revealed that 13 residues were
predicted to be ubiquitinated (Table S2). However, the
upstream analysis reported no mutation in the predicted
ubiquitination sites of ADAM33 protein.

The probability of the presence of phosphorylation sites
in the protein sequence was evaluated for Thr, Tyr, and Ser
residues. The scores above 0.9 were generally regarded as
“very probable” to be correct phosphorylation sites. In this
regard, 13 out of 93 identified residues were recognized as
phosphorylation sites in the ADAM33 protein (Table S3).

GlycoEP predicts N-linked glycosylation, O-linked gly-
cosylation, and C-linked glycosylation for a given protein
sequence. This server predicted 5, 13, and 0 sites of N-

linked glycosylation, O-linked glycosylation, and C-linked
glycosylation, respectively (please refer to Table S4 as a
supplementary file).

SUMOs fundamentally regulate different biological pro-
cesses by adding SUMO-interaction motifs (SIMs) or
SUMOylation sites in proteins. Accordingly, no SUMOyla-
tion site was predicted by adjusting the threshold to medium
and high values by the GPS-SUMO 2.0 online server. How-
ever, by adjusting the threshold to the low value, some pre-
dicted SUMOylation sites with a P value lower than 0.05,
implying insignificant or low confidence results (data not
shown).

3.10. Conservation Analysis. The comprehensive study of
evolutionary conservation analysis of 31 nsSNPs using the
ConSurf server showed that out of 31 nsSNPs, 17 mutants
had a conservation score of 9 (highly conserved residues).
The remaining mutants (12 residues) had a conservation
score of 8 (relatively highly conserved residues), followed
by 2 mutants (conservation score of 7) that were predicted
to be moderately conserved. Moreover, ConSurf provided
prediction for functional or structural on the basis of solvent
accessibility and conservation for amino acid residues.
Among these 17 highly conserved residues, 14 mutations
were predicted to be structural and buried, and the rest (3
mutations) were predicted to be functional and exposed
(Table 6).

3.11. Prediction of Gene-Gene and Protein-Protein Interaction.
The GeneMANIA tool was used to analyze the gene-gene
interaction of the ADAMS33 protein. Results showed that
the ADAM33 gene has interacted with a number of ADAM
families along with DGCR2, CTSK, and CTSV genes. More-
over, the coexpression genes and any contribution to
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TaBLE 6: Prediction of phylogenetic conservation in ADAM33 protein using ConSurf server.

SNP ID AAS Conservation score Buried/exposed Structural/functional
rs773091023 P678L 7 Exposed —
rs764301730 C671R 8 Buried —
rs751597707 C669G 8 Buried —
rs368984072 G661R 8 Exposed Functional
rs777553708 C637Y 8 Buried —
rs1334863089 C631F 8 Exposed Functional
rs754867141 C606S 8 Buried —
rs754867141 C606Y 8 Buried —
rs915448220 C573Y 9 Buried Structural
rs1432549895 C519R 9 Buried Structural
rs1262246273 Y513C 7 Exposed —
rs1203116461 P496L 8 Exposed Functional
rs757567846 D483A 9 Exposed Functional
rs1424975479 C482F 9 Buried Structural
rs1165412077 C482S 9 Buried Structural
rs779669835 R476C 9 Exposed Functional
rs748720838 C475G 9 Buried Structural
rs528261077 G472V 8 Exposed Functional
rs1378161696 C463Y 9 Buried Structural
rs768654352 G460R 8 Exposed Functional
rs1192357091 C444S 9 Buried Structural
rs1192357091 C444Y 9 Buried Structural
1777252478 C439Y 9 Buried Structural
rs1321728445 C431S 9 Buried Structural
rs747255442 G428C 8 Exposed Functional
rs776082098 C420Y 8 Buried —
rs751613984 C388Y 9 Buried Structural
rs1313175203 C371Y 9 Buried Structural
rs764090883 C371R 9 Buried Structural
rs1297854732 C360R 9 Buried Structural
rs1351880201 D219V 9 Exposed Functional

“b” indicates buried residue, “e” indicates exposed residue, “f” indicates functional residue (highly conserved and exposed), and “s” indicates structural residue

(highly conserved and buried).

attaining similar functions or sharing similar protein
domains are shown in Figure 3.

String revealed that ADAM33 protein has interacted
with FCER1« (high-affinity immunoglobulin epsilon recep-
tor subunit alpha), MS4A2 (high-affinity immunoglobulin
epsilon receptor subunit ), GSDMB (Gasdermin-B), and
PHF11 (PHD finger protein 11) proteins which take part
in immune system functions. Other interactions with pro-
teins are illustrated in Figure 4.

3.12. 3D Protein Modeling and Quality Evaluation of
Modeled Proteins. In order to determine which of the poten-
tial asthma deriver nsSNPs should be subordinated to
homology modeling, all evaluation tools were used with a
stringent threshold of deleteriousness/effectiveness (elevated
dWALTZ, dTANGO, or dLIMBO scores, decreased stability

by FoldX evaluation, decreased stability by IMutant and
MUpro analysis with RI>5, a MutPred score of above
0.68, and class alignment changes by NetSurfP analysis) for
building a 3D model. In this context, the mutations of
D219V, C388Y, C444Y, C475G, C606G, and C669G were
analyzed.

Due to the not availability of the 3D structure of full-
length ADAM protein in the protein data bank, the FASTA
amino acid sequences, as well as mutated protein sequences,
were submitted to the trROSETTA server to model the 3D
structure of ADAM33 protein. The server provided 5 top
models, from which model 1 underwent a structure refine-
ment by the 3Drefine server. The same procedure was done
for all mutated proteins. Additional evaluations were per-
formed using PROCHECK, Verify3D, ERRAT, and ProSA
programs to calculate the quality of the model, which
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TaBLE 7: Validation results of 3D modeled ADAM33 protein and its variants using different tools.

Verify3D residues . PROCHECK
Model name Przoii‘::b with 3D-1D ERRg"lC"tg;lallty Most favored Additional Generously Disallowed
score>0.2 regions allowed regions allowed regions regions
ADAM33 -9.53 97.59% 95.09 86.0% 12.8% 0.5% 0.7%
D219V -9.43 97.99% 93.03 88.2% 10.1% 0.7% 1.0%
C388Y -9.54 95.98% 91.83 86.0% 12.0% 1.0% 1.0%
C444Y -9.40 95.18% 88.13 83.8% 12.5% 2.0% 1.7%
C475G -9.77 95.18% 93.87 87.9% 11.3% 0.5% 0.2%
C606S -9.53 98.19% 92.85 86.5% 11.8% 0.7% 1.0%
C669G -9.31 92.77% 92.54 86.5% 11.1% 0.5% 2.0%

revealed good results for model 1 (Table 7 and Figure 5).
Then, the TM score and RMSD were calculated as standards
to determine the structural similarity between the two struc-
tures (Table 8). All the predicted mutated models possessed
TM scores above 0.5. Moreover, the RMSD measurement
was performed to evaluate the variation in the mutant struc-
ture compared to the wild-type protein, in which the higher
values signify more deviation from the wild-type protein.
C669G, followed by C444Y and C475G, had the maximum
RMSD values, which signify the significant structural stabil-
ity of high-risk nsSNPs.

3.13. Prediction of Alterations in Stability of Protein and
Interaction upon nsSNPs. The DynaMut server was used
to calculate general dynamic traits of the highest deleterious
nsSNPs selected from the previous analysis steps, including
D219V, (C444Y, C388Y, C669G, C475G, and C606S
mutants. DynaMut portrayed the predictions for A entropy
energy and AAG by ENCoM among the wild-type and
mutant ADAM33 protein. The C669G, C475G, and
C606S mutants showed a decrease in the AAG ENCoM
value compared to the wild-type SHANK3. On the other
hand, the AAS ENCoM value decreased in D219V,
C444Y, and C388Y mutants compared to the wild-type
protein. Moreover, DynaMut predicted the decrease in AA
G for D219V, C669G, C475G, and C606S, implying desta-
bilization (Table 9). Inspection of interatomic interactions
was conducted to discover the reasons behind the destabili-
zation of mutant proteins. In this context, the type and the
number of interactions changed and decreased, respectively
(Figure 6).

3.14. Normal Mode Analysis (NMA). Normal mode analysis
was carried out to explain the protein stability and their
large-scale mobility. The iMODs tool provided the complete
analysis comprising eigenvalues, profiles of mobility (B-fac-
tors), deformability, covariance map, and linking matrix.
The eigenvalue indicates the total mean square fluctuations,
which are straightly associated with the energy needed for
the deformation of the structure and signify the stiffness of
motion. In this regard, the lower eigenvalue implies easier
deformation. The outcomes of the iMOD server disclosed
that the eigenvalues of D219V, C669G, C388Y, and C606S
were lower than wild-type proteins, which points out the

distinct behavior of wild-type and mutant proteins (pro-
vided as supplementary file in Figures S1-S7).

3.15. Molecular Dynamic (MD) Simulation. The highest det-
rimental mutations and wild-type protein models were
incorporated into the MD simulation. The consensus results
of DynaMut and iMOD servers (D219V, C669G, and
C606S) were selected for MD simulation. By recruiting
coarse-grained (CG) models, additional information was
obtained concerning the conformational structure of wild-
type ADAM protein and alterations due to the abovemen-
tioned mutations in a 2000 ps time frame. Results showed
that only the wild-type and C606S substitution demon-
strated a small phase of constant decline in the UNRES
(united residue) potential energy followed by a palpable
steady state, which stayed up to the end of the simulation
(Figure 7). However, the rest of the mutations portrayed a
steady decline in the UNRES (united residue) potential
energy.

On the other hand, the radius of gyration plots which
computes protein compactness exhibited that only mutants
C669G had an extremely high radius of gyration in compar-
ison to the wild-type protein. Nevertheless, D219V and
C606S substitutions had a relatively higher degree of gyra-
tion radius than the wild-type protein (Figure 7). Similar
patterns were also observed for fluctuation plots for mutated
proteins (Figure 7). Moreover, the analysis of atomic fluctu-
ations showed that the overall residue-based flexibility of the
mutants’ system was elevated compared to the wild-type sys-
tem (Figure 7). All mutations seemed to modify the intermo-
lecular interactions, which could impair ADAM33 protein
function.

4. Discussion

Although the ADAM33 protein has been recognized as an
asthma vulnerability gene, its function in the progression
and pathogenesis of the asthma disorder has not been
completely known. ADAM33 is mainly expressed in mesen-
chymal origin cells, chiefly fibroblasts, myofibroblasts, and
smooth muscle cells, signifying a probable function in air-
way remodeling [52].

In recent years, the existence of detrimental SNPs in a
number of asthma-associated genes [15, 18] has led to in
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Plot statistics
Residues in most favoured regions [A, B, L] 357 87.9%
Residues in additional allowed regions [a, b, 1, p] 46 11.3%
Residues in generously allowed regions [~a, ~b, ~1, ~p] 2 0.5%
Residues in disallowed regions 1 0.2%
Number of non-glycine and non-proline residues 406 100.0%
Number of end-residues (excl. Gly and Pro) 2
Number of glycine residues (shown as triangles) 56
Number of proline residues 34
Total number of residues 498

Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms
and R-factor no greater than 20%, a good quality model would be expected
to have over 90% in the most favoured regions.
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FiGure 5: Continued.
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Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms
and R-factor no greater than 20%, a good quality model would be expected
to have over 90% in the most favoured regions.
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FIGURE 5: Ramachandran plots of variants generated by PROCHECK. The most favored regions are colored red; additional allowed,
generously allowed, and disallowed regions are indicated as yellow, light yellow, and white fields.

TaBLE 8: TM-alignment: TM score and RMSD (A) value for the silico inspection of harmful SNPs from huge datasets. In
high-risk nsSNPs in ADAM33 protein calculated using a TM- this context, genome sequencing investigations have
align calculator. detailed numerous genetic variants related to ADAM33;
however, there are no comprehensive investigations for

ASA TM score RMSD (8) identifying damaging mutations beyond the huge pool of
D219V 0.979 1.30 variant databases. Meta-analysis of ADAM33 mutation in
C388Y 0.971 1.43 asthma by Li et al. has been the sole systematic study car-
C444Y 0.565 221 ried out in recent years [18]. In that research, only F +1
C475G 0.569 2.00 (rs511898), Q1 (rs612709), and T2 (rs2280090) polymor-
C606S 0.970 168 phisms had. confirmed functional influences in case-

control studies. However, some reported polymorphisms
C669G 0.586 3.00

vary from one population to another [11, 17].
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TaBLE 9: Prediction of changes in protein stability by DynaMut server.

# AA from AA to Position Prediction AAG ENCoM AAS ENCoM AAG DynaMut
1 C S 606 -0.322 kcal/mol 0.402 kcal- mol 'K -0.571 kcal/mol
2 C G 475 -0.416 kcal/mol 0.519 kcal-mol -K! -0.457 kcal/mol
3 C Y 444 0.202 kcal/mol -0.252 keal-mol .K! 0.645 kcal/mol
4 C G 669 -0.67 kcal/mol 0.838 kcal-mol *-K! -0.948 kcal/mol
5 C Y 388 0.341 kcal/mol -0.426 kcal-mol *-K! 0.299 kcal/mol
6 C R 360 0.383 kcal/mol -0.478 keal-mol *-K! 0.574 kcal/mol
7 D \ 219 0.07 kcal/mol -0.088 kcal-mol ".K™! -0.457 kcal/mol

Nevertheless, the probable consequences of numerous
other mutations have stayed obscure. In general, genetic
investigations are labor-intensive, time-consuming, and
costly, while bioinformatic studies offer superior intuition
into the right pathway of empirical research and consider-
ably diminish expense and time [53]. Therefore, the present
research tried to recognize functionally imperative nsSNPs
in ADAM33 proteins using a variety of bioinformatic tools.

The prediction and further validation of the most
damaging SNPs can be performed by merging various
biocomputational-based procedures. In the present research,
the scrutiny with seven prediction tools named SIFT, Poly-
Phen-2, PROVEAN, PANTHER, SNAP2, Align GVGD,
and PredictSNP was carried out to get a blueprint of patho-
genic nsSNPs of the ADAM33 gene. Due to the dependency
of every algorithm on discrete parameters, 31 nsSNPs were
selected (Table 1) as highly hazardous, which were predicted
by all SNP prediction tools for further evaluation.

In general, a protein’s activity, regulation, and function
considerably rely on the stability of the protein molecule struc-
ture. Therefore, a reduction in the stability of protein leads to
misfolding, degradation, and aggregation of proteins, resulting
in posterior malfunction [54, 55]. For determination of the
mentioned 31 deleterious nsSNPs’ consequence on the
ADAM33 protein stability, five online servers, including IMu-
tant2.0, MutPred2, MUpro, NetSurfP.2, and SNPeffect, were
used. Furthermore, SNPeffect, primarily the FoldX integrated
tool with MutPred2 and MUpro, demonstrated a destabilizing
impact upon mutations. At the same time, MutPred2 and Net-
SurfP.2 showed the effect of mutations on the function and
structure of the desired protein. Therefore, the six SNPs lead-
ing to the reduction of protein stability, out of the 31 nsSNPs,
could affect protein malfunction by consistency in the imple-
mented tools.

The profile of evolutionary conservation of a protein
contributes to ascertaining the harshness of a damaging
mutation. The location of mutations in highly conserved
regions is more likely to be harmful than mutations posi-
tioned in variable regions [56]. The ConSurf online tool
was utilized to investigate the possible impacts of the 31
most detrimental nsSNPs (Table 6). This server provides
data on evolutionary conservation along with predictions
of solvent accessibility for locating putative functional and
structural sites [57]. In addition, depending upon their loca-
tion associated with the protein core or surface, extremely
conserved residues are subordinated to be functional or

structural, respectively [58]. Consistent with ConSurf, 17
damaging nsSNPs out of 31 possessed high conservation
scores. Among these 17 highly conserved nsSNPs, 14 were
forecasted as structural (buried), while the remaining were
forecasted to be functional (exposed).

Prediction of structural and functional consequences of
mutations on ADAM33 protein made up the central part
of the present research; however, probing for the existence
of damaging nsSNPs in the PTM and binding sites improves
the heftiness of the obtained conclusion for the significance
of that specific mutation. Various approaches have been
employed to forecast ligand-binding sites, including struc-
tural templates, evolutionary data, and sequence conserva-
tion [59]. In the current research, the RaptorX server was
recruited to predict the ligand-binding site of the desired
protein sequence [35]. The domains recognized by RaptorX
were in vote with those recognized by the InterPro server.
The altered PTMs via SNPs may influence the protein struc-
ture and function; therefore, they can be considered bio-
marker nominees and drug targets for curative reasons [60].

Moreover, several researchers have reported that these
alterations could considerably modify the protein’s function
by changing its stability, location, or interprotein interac-
tions [7, 18, 61, 62]. A variety of PTMs were recognized
based on the consensus motifs or chemical traits of amino
acids. In this regard, all the software programs unanimously
detected no mutation for the identified PTM sites.

Owing to the lack of human ADAMS33 protein struc-
ture at the protein data bank, a protein modeling tool
was applied to determine the 3D protein structure. The
automated protein modeling tool called trROSETTA was
used in which the whole protein FASTA sequence was
an input file. The server offered five 5 top final structural
models. The generated models demonstrated that D219V,
C444Y, C388Y, C669G, C475G, and C606S mutants might
result in noteworthy stereochemical aberration. Moreover,
the quality of the forecasted models was validated via
PROCHECK, Verify3D, ERRAT, and ProSAweb. Based
on the default score of all validation tools, model 1 was
chosen as the best tentative structure of the ADAM33 pro-
tein (Table 7). Finally, the TM-align tool was recruited for
structural comparison among mutant and wild-type struc-
tures. High RMSD and low TM score values designated
structural dissimilarity through C669G mutation, which
showed a high RMSD value (3.0) and a relatively low
TM score (0.586) [28, 55].
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FiGUurg 6: Comparison of interatomic interaction of mutant ADAM33 with the wild-type protein, shown by DynaMut in (a) D219V, (b)
C475G, (c) C606S, and (d) C669G. Each section is right and left pictures to demonstrate the mutant and wild-type interactions and

represents the color code of interactions.

Before running the MD simulation, a preliminary analy-
sis of structural stability alterations was performed using
DynaMut and iMOD servers due to their advantages over
other tools for stability change prediction. DynaMut identi-
fied D219V, C669G, C475G, and C606S as the most destabi-
lizing mutations, whereas NMA results showed that only
C475G and C444Y might cause structural stability in anal-
ogy to the wild-type protein. Therefore, the mutants
D219V, C669G, and C606S were selected for MD simulation
to detect the most deleterious mutations better. Literature
research connected the stability of proteins with related
atom fluctuations [63, 64]. In the current research, the
coarse-grained (CG) simulation was carried out to deter-
mine its stability through the UNRES server. The analysis
demonstrated that at a higher level of the radius of gyration,
a decline in potential energy plot along with superior fluctu-
ations was observed in all mutants in analogy to the wild-
type protein (Figure 7). Therefore, it could be suggested that
the mutations impact the stability and flexibility of the

ADAM33 structure, perhaps thanks to global and local
intramolecular perturbations. The findings of the dynamic
simulations performed in this research agree with the proto-
col and results followed by Rodriguez-Garcia et al. to evalu-
ate the stability of the variations [65].

It has become imperative to perform gene prediction
with particular DNA sequence polymorphisms by combin-
ing variant alleles and wild-type genotypes that influence
vulnerability to a disease chiefly via interactions with envi-
ronmental and genetic parameters [66]. In this context, Gen-
eMANIA builds a complex gene-gene functional interaction
network of the ADAM33 gene (Figure 3). The ADAM33
gene interaction network demonstrates that this gene has
interacted most with other ADAM gene families. Moreover,
ADAM33 has directly interacted with DGCR2, which
encodes a new putative adhesion receptor protein that may
have a function in neural crest cell migration [67]. On the
other hand, ADAM33 interacts with CTSK and CTSV genes,
phagosomal cathepsin genes, being related to lung diseases.
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FIGURE 7: Molecular dynamic simulation analysis of the wild-type and mutant (C669G, C606S, and D219V) variants in a 2000 ps simulation.
Plots of potential energy (kcal/mol) for wild type (a), C669G (e), C606S (i), and D219V (m). Plots of the radius of gyration (A) for wild type
(b), C669G (f), C606S (j), and D219V (n). Cartoon putty demonstrations of ADAM33 structures: wild type (c), C669G (g), C606S (k), and
D219V (o). Blue signifies the lowest value for B-factor, and red is for the highest value. The size of the tube mirrors the value of the B-factor
(i.e., the thicker the tube is, the greater the B-factor). A plot of the residue-based fluctuations (A): wild type (d), C669G (h), C606S (1), and

D219V (p).

These enzymes were reported to have a role in allergic airway
inflammation [68, 69]. Therefore, damaging SNPs of the
ADAM33 gene may influence the functioning and interaction
of other genes involved in the gene-gene interaction network.

Furthermore, protein-protein interaction was also car-
ried out using the STRING server to apprehend the func-
tional interaction blueprint of the ADAM33 protein with
other proteins within a cell. The findings demonstrated a
strong interaction network with FCER1A, GSDMB,
PHF11, NPSRI1, and MS4A2 proteins involved in immune
regulation and asthma disease [70-73]. Thus, the protein-
protein interaction network of ADAM33 portrays attention
to the influences of ADAM33 mutations which could impact
other proteins implicated in asthma disease.

5. Conclusion

The exact biological role of ADAM33 protein has not been
well understood; however, it has been proposed that the
ADAM33 protein may have a potential role in the remodel-
ing of the airway owing to its expression in myofibroblasts,
epithelium, and ASMCs as well as its function in furthering
stimulation of cell differentiation and proliferation along
with angiogenesis. Moreover, ADAM33 may intervene in
airway inflammation induced by environmental exposure
and remodeling, likely via the TGFp signaling and various
central receptors (AhR, TLRs, and CLRs). Hence, ADAM33
delineates a candidate target for asthma, and nsSNPs of this
protein may influence asthma susceptibility. In the present
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research, 31 of 1055 nsSNPs of the human ADAM33 gene
were forecasted as deleterious mutations using diverse
computational software programs. More structural analysis
disclosed that 6 SNPs, including D219V, C444Y, C388Y,
C669G, C475G, and C606S, considerably influence
ADAM33 protein stability. In additional evaluations using
DynaMut and iMOD servers, D219V, C669G, and C606S
were the most destabilizing SNPs between the six recognized
mutations. Coarse-grained (CG) MD simulations were also
carried out to explore how these mutations impact the pro-
tein structure. Simulation findings disclosed various consid-
erable structural modifications, principally for the C669G
variant, which significantly leads to the loss of hydrogen
and disulfide bonds in the EGF-like domain.

Interestingly, this is the first systematic study of in silico
evaluation of functional and structural nsSNPs in the
ADAM33 protein. However, more clinical studies in various
ethnic populations should be inspected in the future to con-
firm the outcomes of this evaluation. Furthermore, func-
tional and structural inspections are also required to be
performed in order to clarify the plausible mechanisms
underlying the relation between nsSNPs and susceptibility
to asthma disease.
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