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This study was aimed at investigating the ultrasound based on deep learning algorithm to evaluate the rehabilitation effect of
transumbilical laparoscopic single-site total hysterectomy on pelvic floor function in patients. The bilinear convolutional neural
network (BCNN) structure was constructed in the ultrasound imaging system. The spatial transformer network (STN) was
used to preserve image information. Two algorithms, BCNN-R and BCNN-S, were proposed to remove sensitive information
after ultrasonic image processing, and then, subtle features of the image were identified and classified. 80 patients undergoing
transumbilical laparoscopic single-site total hysterectomy in hospital were randomly divided into a control group and a
treatment group, with 40 cases in each group. In the control group, conventional ultrasound was used to assess the image of
pelvic floor function in patients undergoing laparoendoscopic single-site surgery (LESS); in the observation group, ultrasound
based on deep learning algorithm was used. The postoperative incision pain score, average postoperative anus exhaust time,
average hospital stay, and postoperative satisfaction of the two groups were evaluated, respectively. The highest accuracy of
constructed network BCNN-S was 88.98%; the highest recall rate of BCNN-R was 88.51%; the highest accuracy rate of BCNN-
R was 97.34%. The operation time, intraoperative blood loss, and exhaust time were similar between the two groups, and the
difference had no statistical significance (P > 0:05). The numerical rating scale (NRS) scores were compared, the observation
group had less pain, the difference between the two groups had statistical significance (P < 0:05), and the postoperative
recovery was good. The BCNN based on deep learning can realize the imaging of the uterus by ultrasound and realize the
evaluation of pelvic floor function, and the probability of pelvic floor dysfunction is small, which is worthy of clinical promotion.

1. Introduction

Pelvic floor disease is a degenerative lesion including urinary
incontinence and pelvic organ prolapse [1]. In the United
States, nearly 400,000 patients undergo surgery due to pelvic
floor dysfunction each year, and 300,000 cases occur during
hospitalization. Each year, 33% of women have different pel-
vic floor dysfunction (PFD) before the age of 60 and require
hysterectomy [2]. Hysterectomy is closely related to PFD,
which can improve the risk of postoperative pelvic floor dys-

function and affect the quality of life of patients [3]. The pel-
vic floor function of normal women mainly relies on intact
muscle strength, nerves, and ligaments. The interaction of
various organs allows the pelvic floor structure to reach a
normal dynamic balance state [4]. The hysterectomy can
damage the neural tissue, impair vascular nutrition, and
severely destroy important supporting structures such as
muscles, ligaments, fascia, and connective tissue [5, 6].
PDF in women is usually judged based on the patient’s clin-
ical symptoms as well as the corresponding examination
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results, and the examinations include finger pressure test,
urodynamic examination, and magnetic resonance imaging,
but these modalities have the disadvantage of poor repro-
ducibility and cannot comprehensively evaluate the pelvic
floor function of the anatomy for dynamic imaging, safety,
and repeated procedures [7, 8]. At present, transperineal pel-
vic floor ultrasound is increasingly loved by researchers to
evaluate the dynamic changes of pelvic floor function. Pelvic
floor ultrasound enables real-time observation of pelvic
anatomy and function and enables dynamic imaging, which
has become a major modality for assessing pelvic floor ultra-
sound [9, 10].

Transumbilical laparoendoscopic single-site surgery (TU-
LESS) is a surgical technique performed using surgical instru-
ments through the pore channel, mainly using the umbilicus
to place multiple operating pore channels as well as the oper-
ating platform of the laparoscope in the abdomen, which can
reduce abdominal infections caused by gastrointestinal tract
as well as transapproach surgery, with the characteristics of
mild pain, rapid recovery, no earthworm-like scar left in the
abdomen, safety, and minimal invasion. In this process, it
can also use the natural wrinkle site of the umbilicus to cover
the surgical incision, which can meet the requirements of
women for abdominal “scarless” cosmetology [11, 12]. Com-
pared with traditional multiport laparoscopy, TU-LESS is eas-
ier to perform in total hysterectomy, can shorten
gastrointestinal recovery time and postoperative ambulation
time, and can remove the uterus through a single port at the
umbilicus and through an approach in a manner similar to
“apple cutting.” “Chopstick effect” between instruments is
one reason for prolonged operation time [13, 14].

With the advantages of high sensitivity, noninvasion,
easy operation, and low cost of ultrasound imaging, real-
time three-dimensional (four-dimensional) ultrasound
imaging has become an effective diagnostic tool in imaging
systems in the 21st century [15]. Ultrasound is widely used
in obstetrics and gynecology without ionizing radiation,
cost-effective, and easy to approach, for example, abdominal
ultrasound, cardiovascular ultrasound, electrocardiogram,
and prenatal diagnostic ultrasound, but the presence of
pseudonoise in ultrasound imaging causes reduced imaging
quality and is also a challenge in ultrasound; relying only
on the experience of doctors, as well as the proficiency of
operators, there are significant differences in results in differ-
ent institutions as well as different ultrasound systems [16,
17]. This requires the use of advanced intelligent ultrasound
image analysis algorithms to intervene imaging quality.
Deep learning technology has made it successful for natural
image recognition in the construction of large-scale image
datasets, and high-resolution ultrasound imaging equip-
ment has accumulated many ultrasound image data, which
also makes deep learning possible for the auxiliary diagno-
sis of images [18, 19]. The bilinear convolutional neural
network (BCNN) enables a good classification of images
[20]. Yosinski et al. [21] pointed put when learning the
features of the underlying CNN that the CNN network
can get distinct features with increasing depth, and the
closer to the input end, the more specific information
the feature displays.

The ultrasonic transverse section of patients with total
hysterectomy was identified, and the BCNN was used to
identify the ultrasonic transverse section of the uterus.

The innovation is that the intelligent algorithm is used to
identify high resolutely the transverse section, and the
extracted features are fused, which is helpful to retain the
subtle features. It is hoped that it can provide reference for
ultrasound evaluation of pelvic floor function in patients
with transumbilical laparoscopic single-site total hysterec-
tomy and provide theoretical basis for clinical work.

2. Materials and Methods

2.1. Subjects. Eighty patients admitted to hospital from June
2018 to June 2020 who underwent transumbilical laparo-
scopic single-site total hysterectomy were selected. The age
of the study subjects ranged from 32 to 50 years, with an
average of 42:5 ± 3:61 years and BMI of 23:67 ± 1:2 kg/m2.
There were 28 cases of uterine fibroids, 19 cases of endome-
trial lesions, and 33 cases of adenomyosis. The patients were
randomly divided into the control group (n = 40) and the
treatment group (n = 40) by random number table method.
There was no significant difference in basic information
between the two groups (P > 0:05). Preoperative gynecological
examination of the uteri was less than 4 months of gestation
with good range of motion, and the operation was completed
by the same physician. This study had been approved by the
ethics committee of the hospital, and the patients and their
families signed the informed consent form.

Inclusion criteria: patients with uterine fibroids or ade-
nomyosis diagnosed by routine cervical biopsy or cervical
liquid-based cytology before surgery; patients with complete
clinical data; patients without cervical malignant lesions or
uterine prolapse; patients without fertility requirements,
nonpregnant patients; patients without serious medical and
surgical diseases and a history of repeated surgery.

Exclusion criteria: patients who are allergic to the drugs
used; patients who are critically ill and unable to cooperate;
patients with chronic diseases such as heart, brain, liver,
and kidney; patients with mental diseases; patients with sys-
temic infection.

2.2. Treatment Methods. Ultrasonic diagnostic apparatus
was used. The intestinal tract of the patient with the probe
frequency of 4-8H was emptied, the patient laid on the
examination bed, and the probe coated with coupling agent
and covered with disposable film gloves was placed at the
perineum to clearly show the uterine condition. In the Val-
salva state and at rest, distance from the bladder neck to
the posteroinferior border of the pubic symphysis (BNSD),
distance from the external cervical orifice to the posteroin-
ferior border of the pubic symphysis (CSD), posterior ure-
throvesical angle (PUA), and bladder neck mobility and
the difference in the distance from the bladder neck to the
posteroinferior border of the pubic symphysis (BND) under
the maximum Valsalva state and at rest were compared
between two groups. For measurements in both states, all
data were measured in triplicate by 3 examining physicians
and then averaged.
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The patient was anesthetized by endotracheal intubation.
The bladder lithotomy position was taken, and the uterine
lifting device was placed. The patient’s posture was low head
and high foot. The longitudinal incision (about 10mm) was
made from the center of the umbilical to the lower edge of
the umbilical wheel, and then, the self-made operation plat-
form was implanted through the umbilicus. The external
diameter of 10mm and 5mm instruments and camera lens
were implanted at the finger end of the glove. After success-
fully entering the abdominal cavity, the pneumoperitoneum
was established, the pressure was 12-14 (mmHg), the
patient’s body position was adjusted to 30°, the head was
low, and the hip was high, so as to use the uterine lifting
device. The pelvic cavity was evaluated by laparoscopy.
Bipolar electrocoagulation was used to shorten the isthmus
of the fallopian tube, the round ligament of the uterus, and
the inherent ligament of the ovary, and then, the broad liga-
ments in the anterior and posterior parts and the peritoneal
reflection of the bladder were opened, respectively. Bipolar
electrocoagulation of bilateral uterine arteries and veins
was performed. The cervical stump 1-10# absorption suture
was selected to stop bleeding, and the uterus was removed at
vertebral body and parallelly at the isthmus above the uter-
ine vascular suture. After cervical reduction, the tract
mucosa and pelvic peritoneum were sutured. Before the
end of the operation, the pelvic wound was examined, and
repeated washing was performed to stop bleeding. After
incision suture, the operation ended.

Hardware platform: Ubuntu 16.04 operating system,
deep learning framework is Pytorch-1.2.0. Python 3.6 is the
development language, memory 128GB, central processor
is IntelXeon (R) Silver 4110CPU@2.10GHz×32, and image
processor is NVIDIA 1080Ti.

2.3. Observation Indicators. The intraoperative blood loss,
postoperative pain score, postoperative fever, postoperative
exhaust time, conversion operation, and operation time were
recorded.

Pain degree: numerical rating scale (NRS) score was used
(Table 1).

2.4. BCNN Structure. The BCNN structure is shown in
Figure 1. In this algorithm, after optimizing the minimum
loss, the two networks supervised each other, and it did
not require a lot of time to adjust the parameters. Finally,
the accurate recognition results were obtained. The parallel
network of CNN Stream A and CNN Stream B extracted
the cross-sectional features with high recognition in the
input network image. The features extracted by CNN Stream
A and CNN Stream B were fused, which helped to identify
subtle features.

The image processing technology of deep learning used
superimposing multiple convolutions to obtain image char-
acteristics and then used multilayer perceptron to classify
them. In clinical practice, the standard constrained deep net-
work was used to realize the transverse section of ultrasound
imaging. The doctor needed to spend a lot of experience in
finding the horizontal transverse section during the exami-
nation, which was particularly important to have a standard

access that can accurately identify the transverse section of
the uterus. BCNN-S and BCNN-R were proposed to identify
the transverse section of uterine ultrasound. First, image
processing was performed, then the high transverse section
was identified, and finally the features were fused. After
obtaining the subtle features, the identification and classifi-
cation were performed, and finally, the accurate identifica-
tion of the horizontal direction of the transverse section of
uterus was obtained.

The algorithm was optimized. The initial learning effi-
ciency was set to 1, the weight attenuation was set to 1e − 5
, the momentum attenuation was set to 0.9, and the learning
rate of each epoch was multiplied by 0.1. The gradient was
updated after algorithm optimization, which was more sta-
ble and smoother. The default parameters can make the
model reach a stable level (Table 2).

2.5. Space Conversion Module. Through the attention mech-
anism, the space transformer networks (STN) can convert
the spatial information in the original image to another
space to retain key information. The spatial transformer
(ST) was proposed. The spatial domain information in the
image is transformed to extract key information. The trained
STN can find out the areas that need to be concerned in the
image information. ST has the function of scaling and rota-
tion. The local information of the image can be extracted by
transformation. ST module is input to the existing network
structure. The model input equation is shown as follows.

Q ∈ RH×W×C: ð1Þ

W represents the width, H represents the height of the
output tensor of the upper layer, and C represents the chan-
nel. Different convolution kernels and basic three channels
of the image produce different channel information. The
input image enters the double-stream route, and the trans-
formed image is obtained through matrix change.

V ′ ∈ RH×W×C: ð2Þ

V ′ represents the transformed image features, and the
positioning network learns a set of parameters ϴ. This
parameter generates a sampling signal through the parame-
ters of the grid generator, which is essentially the transfor-
mation of the matrix image.

The sampling matrix generated by STN can extract the
key information in the original image. One is the sampling
matrix for scaling and rotation transformation, and the

Table 1: NRS.

Score Symptoms

0 Painless

1-3 Mild pain, sleep unaffected

4-6 Moderate pain, sleep affected

7-10 Severe pain, sleep affected seriously
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other is the unit matrix, which is expressed as follows.
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ϴ matrix is the corresponding sampling matrix. This
module can identify the key information of the module on
the upper layer. It is also a matrix that can be differentiated.
It uses the kernel function to represent the complex change
information.
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T is the conversion kernel function, B represents the
information before conversion, and V represents the infor-
mation after conversion.

Classification network has strong feature representation
ability and good recognition ability for conventional images.
In target recognition, the difference between different targets
is very small, but it is not ideal to classify directly in conven-
tional images. In the debugging of fine-grained classification
network, the loss measurement function is introduced.
There will be three weight shared networks q, m, and s when
three samples are input each time. The accumulated three
network outputs obtain the loss, and in addition to the use
of softmax loss function, the three characteristic outputs
constitute the Triplet loss.

F = λsFs qð Þ + 1 − qð ÞFt q,m, sð Þ: ð5Þ

FsðqÞ represents the loss obtained by the softmax loss
function, which represents the overall category information
of the image so that the network can be optimized to the real
category. Ftðq,m, sÞ belongs to the Triplet error of three sub
networks f qs, f ms, f ss with shared parameters. In order to
increase the recognition ability of the same category and dif-
ferent samples of the network, the distance between classes is

Linear classifyPreprocess

Input

Feature fusion

CNN stream B

CNN stream A

Figure 1: BCNN structure.

Table 2: BCNN parameters.

Layer name Kernel Layer name Kernel

BCNN-R BCNN-S

Conv 1 7 × 7, 64, stride 2 Conv 1

Block 1

1 × 1, 64

Fire 1-3

1 × 1, 3 × 3, 64
3 × 3, 64 1 × 1, 3 × 3, 64
1 × 1,256 1 × 1, 3 × 3, 256

Block 2

1 × 1,128

Fire 4-7

1 × 1, 3 × 3, 256
3 × 3,128 1 × 1, 3 × 3, 384
1 × 1,512 1 × 1, 3 × 3, 512

Block 3

1 × 1,256
1 × 1, 3 × 3, 5123 × 3,256

1 × 1, 1024

Block 4

1 × 1,512

Fire 8

2 × 2, maxpool, stride 2

3 × 3,512 1 × 1, 3 × 3,512
1 × 1, 2048

Pool Outer product
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calculated. The two loss functions restrict each other, and
the performance of the model is significantly improved.

When detecting the target, CNN can train through the
object frame and component annotation in the fine-
grained training image, including object head detection,
fine-grained object level detection, and trunk detection. Ideal
object detection results can be obtained by using position
geometric constraints.

After the residual attention module can strengthen the
attention and image features, the features are input into
the next module at the same time. The Wi, cðxÞ function
represents different functions and has different attention
domains. The equation is as follows.

W1 xi,cð Þ = 1
1 + exp −xi,cð Þ , ð6Þ

W2 xi,cð Þ = xi,c
xik k , ð7Þ

W3 xi,cð Þ = 1
1 + exp − xi,c −meancð Þ/stdcð Þ : ð8Þ

W1 indicates that the Sigmoid function directly activates
the image feature tensor,W2 indicates that the image feature
tensor is globally averaged and pooled to obtain channel
domain attention, and W3 indicates the average number of
Sigmoid functions activating the image feature tensor to
obtain spatial domain attention.

2.6. Performance Evaluation Indicators. Reasonable evalua-
tion of performance indicators can effectively evaluate the
performance of the algorithm. The cross section of ultra-
sonic image is evaluated as a binary classification problem.
The prediction category and real category of the model are
divided into true negative (TN), false positive (FP), true pos-
itive (TP), and false negative (FN).

The accuracy calculation is shown in Equation (9). The
higher the accuracy of classification, the better the perfor-
mance of the algorithm. Precision refers to the proportion
of TP in all samples predicted to be positive. Recall indicates
the proportion of samples predicted to be positive in positive
samples. When the recall rate and accuracy rate are high, the
average will be higher. If one of them is low, it will lower the
average, and its value will be close to the low number, as
shown in Equation (12).

Accuracy = TP + FN
TP + FP + TN + FN

, ð9Þ

Precision =
TP

TP + FP
, ð10Þ

Recall =
TP

TP + FN
, ð11Þ

F1 =
2PR
P + R

: ð12Þ

It is required to make evaluation on the overall mean
Intersection over Union (mIoU) and mean Dice of graph.

mIoU predicts the intersection of the target area and the real
target area. The higher the value of mIoU, the higher the
correlation. mDICE is used to calculate the similarity
between two samples. It is a geometric similarity measure-
ment function. GT in Equation (14) denotes the true region,
and Pre denotes the predicted region.

IOU =
GT ∩ Pre
GT + Pre

, ð13Þ

DICE =
2 GT ∩ Prej j
GTj j + Prej j : ð14Þ

The experimental environment hardware: platform
memory (RAM) is 128GB, the image processor (GPU) is
NVIDIA 1080Ti ×2, the central processing unit (CPU) is
Intel Xeon®Silver4110 CPU@2.10GHz ×32, and the operat-
ing system is Ubuntu 16.04. The deep learning framework is
Pytorch1.2.2, and Python 3.6 is selected as the development
language.

2.7. Statistical Methods. The database of all data was estab-
lished by Excel, and SPSS 19.0 statistical software was
adopted. Measurement data were expressed as mean ±
standard deviation (�x ± s), enumeration data were analyzed
by the χ2 test, and enumeration data were expressed as per-
centage (%). P < 0:05 was considered to indicate a significant
difference.

3. Results

3.1. Training and Test Data Results. In this study, 3619 ultra-
sound images were obtained from the public dataset HC18
and the self-built dataset JFU19 after preprocessing, which
were divided into training set and data set according to a
certain proportion, and a certain number of training sets
were drawn to evaluate the model, it was shown the model
had a good recognition effect, and the three positions of hor-
izontal, vertical, and right-angle lines were trained, respec-
tively, and the results are shown in Figure 2. The test of
the training set revealed that the model showed a good
performance.

3.2. Parameter Information of BCNN. In this study, BCNN-R
and BCNN-S feature images were extracted to analyze the
performance of the algorithm. The resulting feature is shown
in Figure 3. The feature image has distinct activation regions,
which also indicates that there are many features that can be
used for network identification and classification. Compared
with BCNN-S B, BCNN-R A has more activated regions,
which also obtains more identification ability. The ultrasound
image in Figure 3(c) has more noise and reverberation than
that in Figure 3(d). BCNN-R has a more complex structure
and is inevitably subjected to a lot of noise.

3.3. Algorithm Performance Comparison. Comparing the
algorithm performance of BCNN-R and BCNN-S with that
in References [22–24], the highest accuracy of BCNN-S
was 88.98%, followed by 85.62% of BCNN-R. BCNN-R
had the highest recall rate of 88.51%, followed by BCNN-S
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of 87.54%; the highest accuracy of BCNN-R was 97.34%,
followed by 91.67% of BCNN-S (Figure 4).

3.4. Experimental Results of Semantic Segmentation. In order
to explore the change of the algorithm with epoch and the
performance of the algorithm in ultrasonic image segmenta-
tion, the mIoU and mDICE evaluation indexes were ana-
lyzed. The results were as follows. Compared with mIoU
and mDICE in Reference [24], mIoU and mDICE in BCNN
had higher convergence performance, which can increase
the robustness of the network to a certain extent and inhibit
overfitting (Figure 5).

3.5. Ultrasound Results. The ultrasound parameters BNSD,
CSD, PUA, bladder neck mobility, and BND under the max-
imum Valsalva state and at rest were compared between the
two groups. It had a reduced BNSD under Valsalva state
compared with that under at rest (Table 3).

3.6. Comparison of Surgical Conditions. The operation time,
NRS score, intraoperative blood loss, and exhaust time of the
two groups were compared. The operation time, intraoper-
ative blood loss, and exhaust time of the two groups were

similar, and the difference was not statistically significant
(P > 0:05). In the NRS score, the pain of the observation
group was mild, and the difference was significant
(P < 0:05) (Table 4).

3.7. Comparison of Hospitalization Time and Satisfaction.
The satisfaction score of the observation group was 5:32 ±
0:16, and that of the control group was 4:96 ± 0:21. The hos-
pitalization time of the observation group was 6:72 ± 2:32
days, and that of the control group was 8:13 ± 2:18 days.
The difference between the groups was statistically signifi-
cant (P < 0:05) (Figure 6).

3.8. Postoperative Comparison. Abdominal infection, hema-
toma, incision bleeding, and incision infection did not occur
in both groups after operation, and the patients recovered
well. However, in the control group, one patient had active
bleeding in the umbilical region after operation, and the
dressing became dry after hemostasis with pressurized sand.
The incidence of fever in the observation group was 1 case
(2.5%), and that in the control group was 3 cases (7.5%).
The fever rate in the control group was significantly higher
than that in the observation group (P < 0:05) (Figure 7).
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Figure 2: The comparison results between training set and test set. (a) The processing results of the public dataset HC8 for ultrasonic
images. (b) The processing results of JFU19 for ultrasonic images.

BCNN-R

BCNN-S

A C

B D

Figure 3: BCNN-R and BCNN-S feature images. (a) The activation region shown in the BCNN-R feature image. (b) The activation region
shown in the BCNN-S feature image. (c) The activation process of region classification by BCNN-R feature map. (d) The activation process
of region classification by BCNN-S feature image.
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Figure 4: Performance comparison of algorithms. (a) Comparison results of four algorithms in accuracy. (b) Comparison results of four
algorithms in recall. (c) Comparison results of four algorithms in precision.
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Figure 5: Performance comparison of algorithms. (a) The comparison between BCNN and UnetcsE algorithm in mDICE. (b) The
comparison between BCNN and UnetcsE algorithm in mIoU.

Table 3: Result comparison between the two groups under at rest and Valsalva state.

Group Number BNSD CSD PUA BND

Observation group At rest 25:34 ± 3:12 31:87 ± 2:31 101:3 ± 8:41 7:12 ± 3:8

Valsalva state 19:87 ± 4:5 32:7 ± 3:18 121:87 ± 12:6 8:7 ± 1:31

Control group At rest 22:87 ± 2:8 31:87 ± 2:31 98:5 ± 7:86 6:1 ± 4:3

Valsalva state 18:17 ± 2:31 30:87 ± 3:17 119:7 ± 9:38 8:67 ± 2:2
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4. Discussion

Total hysterectomy is a relatively common gynecological
surgery. After hysterectomy, the whole physiological state
and overall structure of pelvic floor will change, which may
produce PDF. Female pelvic floor is intricate, and it is
important to find a noninvasive, reproducible, and simple
diagnostic method for assessing pelvic floor function. With
the rapid development of surgical abdominal surgery, LESS,
with the natural approach, is widely used in clinical practice
and is easier to understand and accept for some gynecologi-
cal patients who meet the surgical criteria [25]. Compared
with traditional hysterectomy, laparoendoscopic single-site
total hysterectomy reduced hospital stay and postoperative

blood loss, the two groups of patients had similar operation
time, intraoperative blood loss, and exhaust time, and the
difference had no statistical significance (P > 0:05); in the
NRS score, the pain of the observation group was mild,
and the difference had statistical significance (P < 0:05).
Chung [26] compared single-site laparoscopic total hysterec-
tomy with conventional laparoscopic total hysterectomy,
there was no difference in pain scores between the two
groups, and the operation time was significantly longer in
single-site laparoscopic total hysterectomy group. In the
observation group, intelligent algorithm was added in the
ultrasound imaging, and there was no significant difference
in the operation time. One patient had active bleeding at
the umbilicus after surgery, and the dressing became dry
after hemostasis with pressurized sand.

Ultrasonic technique of the BCNN model based on deep
learning is accurate for evaluating pelvic floor function. Yu
et al. [27] evaluated the effect of laparoscopic hysterectomy
based on artificial intelligence imaging; ultrasound imaging
based on ISCB algorithm can high-quality display the pelvic
floor structure of patients undergoing total laparoscopic hys-
terectomy, improve the diagnostic rate of doctors, accelerate
postoperative rehabilitation of patients, reduce postoperative
pain, and improve patient satisfaction. In this experiment,
BCNN-S had the highest accuracy of 88.98%; BCNN-R
had the highest recall of 88.51%; and BCNN-R had the high-
est precision of 97.34%. The proposed algorithm shows high
convergence performance in ultrasonic image segmentation.
This experiment also shows that the intelligent algorithm of
deep learning can effectively improve the efficacy of hyster-
ectomy patients. Compared with mIoU and mDICE in

Table 4: Comparison of surgical conditions.

Group Number Operation time (min) NRS cores Exhaust time (h) Intraoperative blood loss (ml)

Observation group 40 87:4 ± 9:76 1:87 ± 0:31∗ 30:3 ± 2:41 112:1 ± 10:8

Control group 40 80:1 ± 8:3 2:29 ± 0:15 32:5 ± 1:86 153:1 ± 18:3
P >0.05 <0.05 >0.05 >0.05
Note: ∗compared with the control group, P < 0:05.
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Figure 6: Comparison of hospitalization time and satisfaction between the two groups. (a) Comparison result of hospitalization time
between the two groups. (b) Satisfaction score of two groups. ∗Compared with the control group, P < 0:05.
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Figure 7: Comparison of postoperative fever rate. ∗Compared with
the control group, P < 0:05.
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Reference [24], mIoU and mDICE in BCNN had higher
convergence performance, which can increase the robust-
ness of the network to a certain extent and inhibit
overfitting.

5. Conclusion

Eighty patients undergoing transumbilical single-site laparo-
scopic total hysterectomy in hospital were randomly divided
into the treatment group and the control group to investi-
gate the efficacy and safety of ultrasound based on deep
learning for pelvic floor function in patients undergoing
LESS. Ultrasound technology can be used to dynamically
observe the anatomy of female pelvic floor organs; ultra-
sound technology of BCNN model based on deep learning
has no significant toxic and side effects, with higher accuracy
for evaluating the pelvic floor function. The incidence of pel-
vic floor dysfunction after hysterectomy is small, and atten-
tion should be paid to pelvic floor disorders and the image of
sexual function during surgery, which is more conducive to
the recovery of physical and mental health and normal life
of patients. There are some shortcomings, due to the limita-
tion of time, there is a lack of long-term follow-up, so long-
term follow-up to patients is needed at a later stage to fur-
ther verify the long-term efficacy. It is believed that it can
provide some ideas and experimental support for the recov-
ery of pelvic floor function in patients undergoing LESS.
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