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Survival analysis deals with the expected duration of time until one or more events of interest occur. Time to the event of interest
may be unobserved, a phenomenon commonly known as right censoring, which renders the analysis of these data challenging.
Over the years, machine learning algorithms have been developed and adapted to right-censored data. Neural networks have
been repeatedly employed to build clinical prediction models in healthcare with a focus on cancer and cardiology. We present
the first ever attempt at a large-scale review of survival neural networks (SNNs) with prognostic factors for clinical prediction
in medicine. This work provides a comprehensive understanding of the literature (24 studies from 1990 to August 2021, global
search in PubMed). Relevant manuscripts are classified as methodological/technical (novel methodology or new theoretical
model; 13 studies) or applications (11 studies). We investigate how researchers have used neural networks to fit survival data
for prediction. There are two methodological trends: either time is added as part of the input features and a single output node
is specified, or multiple output nodes are defined for each time interval. A critical appraisal of model aspects that should be
designed and reported more carefully is performed. We identify key characteristics of prediction models (i.e., number of
patients/predictors, evaluation measures, calibration), and compare ANN’s predictive performance to the Cox proportional
hazards model. The median sample size is 920 patients, and the median number of predictors is 7. Major findings include poor
reporting (e.g., regarding missing data, hyperparameters) as well as inaccurate model development/validation. Calibration is
neglected in more than half of the studies. Cox models are not developed to their full potential and claims for the performance
of SNNs are exaggerated. Light is shed on the current state of art of SNNs in medicine with prognostic factors.
Recommendations are made for the reporting of clinical prediction models. Limitations are discussed, and future directions are
proposed for researchers who seek to develop existing methodology.

1. Introduction

There is a growing interest by the medical community in
applying machine learning (ML) to predict clinical outcomes
[1]. This interest springs from the collection of large-volume

patient information in electronic health records, and the
growing availability of mixed data, for instance clinical and
molecular. ML techniques are assumption-free and data-
adaptive, making them attractive for modelling complex
data. Artificial neural networks (ANNs) and other ML

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 1176060, 18 pages
https://doi.org/10.1155/2022/1176060

https://orcid.org/0000-0001-8748-3241
https://orcid.org/0000-0002-6923-4388
https://orcid.org/0000-0001-5588-0277
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1176060


techniques have been used in healthcare for clinical diagno-
sis, prediction, and to support decision making, e.g., in the
domains of cancer and cardiology [2, 3].

Survival analysis (also called time-to-event analysis) is
used to estimate the lifespan of a particular population under
study. Survival data are omnipresent in medicine where the
focus is on modelling a particular event of interest (for
example disease-progression or death). This kind of data
are often right-censored; they can be seen as a specific type
of missing data in which time to the event of interest may
be unobserved, either due to subjects being lost to follow-
up, or due to time limitations such as study termination.
The presence of censored observations makes the analysis
of these data and the direct application of ML algorithms
challenging, requiring modifications to the traditional
approaches. As such, prediction of survival outcomes with
ANNs, one of the most popular machine learning techniques
in healthcare—poses unique hurdles with respect to the
development and use of effective algorithms that can deal
with right censoring (main focus here).

The most popular statistical model to analyse time-to-
event data in medical research is the Cox proportional haz-
ards defined as λðtjXÞ = λ0ðtÞ exp ðXTβÞ, where X is the
vector of covariates, and λ0ðtÞ is the baseline hazard func-
tion which is left unspecified. The effect of the covariates
on the hazard is modeled by the parametric part exp ðXTβÞ
leading to the proportional hazard regression model [4]. Pos-
sible alternatives include parametric regression methods
which make strong assumptions about the time distribution
(e.g., exponential, Weibull, or log-normal) and flexible non-
parametric methods that do not make any prior assumptions
regarding the time or the predictors (e.g., Random Survival
Forest and ANNs) [5–7]. A well-known nonparametric
method to estimate the survival function was proposed by
Kaplan-Meier [8]. It is used to estimate the fraction of patients
alive after a specific starting point (for example, start of
treatment).

ANNs have been widely used for survival data. Two
decades ago, Ripley B. and Ripley R. published an overview
that identifies the most appropriate survival neural networks
(SNNs) for medical applications [9]. In their paper, they
show different ways of adapting classification networks to
survival data and describe the disadvantages of these
methods. An example of a work outside the medical field is
discussed by Baesens et al. [10]; in this work, various SNNs
in context of personal loan data are used where the perfor-
mance is compared to the Cox proportional hazards model
[4]. In a recent comprehensive survey, Wang et al. [11] dis-
cuss conventional and modern methods for survival analysis
with right-censored data. The authors conclude that SNNs
are well-suited to predicting survival and estimating disease
risk and are able to provide personalised treatment recom-
mendations. Nevertheless, despite their nonnegligible devel-
opment in medicine for time-to-event data, a comprehensive
review on SNNs using prognostic factors is missing. Prog-
nostic factors are patient/disease characteristics (such as
age, sex, or disease stage), which can be used to estimate
the impact on survival, disease recurrence, or on others clin-
ical outcomes. Typically prognostic factors do not include

images (pathology images, tumor slices, whole slide images,
etc.) or genetic marker sequences of DNA (variables from
the area of bioinformatics).

In this article, we fill this gap with a structured overview
of SNNs in clinical prediction with prognostic factors which
can be used as a guideline for future research. We aimed at
providing a broad understanding of the literature (1st Janu-
ary 1990-31st August 2021), as part of a growing trend
towards personalised medicine [1]. We discuss how SNNs
are employed in the medical field for prediction and detail
how researchers have tried to adapt a classification method
to right-censored survival data. During the 1990s, there were
several modelling attempts, followed by a stagnation in sci-
entific publications. In the past years, however, the advance-
ment of machine learning has led to an increased interest
from the medical community, where neural networks are
now viewed as a promising modern approach to modelling
medical data. In this review, we distinguish, following a
chronological order, between methodological manuscripts
(novel method or a new theoretical model) or applications
that may build on existing methods to improve or adapt
them based on the data at hand. The major distinctions
between SNNs are 3-fold: (a) data structure: some authors
rely on a long format transformation of the dataset, whereas
others use the original dataset; (b) incorporating time infor-
mation in the SNN: time is either added as part of the input
features of the SNN, while specifying a single output node,
or this step is omitted and multiple output nodes are speci-
fied—one for each time interval; (c) estimation of outcome
(output layer of the networks): some SNNs predict survival
probabilities directly, while others estimate (conditional)
death probabilities (hazard), from which the former can be
calculated.

This work is supplemented with a critical appraisal on
model aspects to be designed and reported more carefully
in future studies. Key characteristics of prediction models
(i.e., number of patients/predictors, evaluation measures,
validation, and calibration) are listed for methodological
papers and applications, and the predictive performance of
SNNs is compared to the Cox proportional hazards model
(if reported in the papers). We conclude with recommenda-
tions on the correct application of SNNs in context of clini-
cal prediction models and discuss limitations and potential
directions of future research. Particular interest is on SNNs
applied to cancer prediction in contrast to other medical
fields.

This manuscript is organised as follows: in section “sec:
conducting-the-review”, we describe our search and review
strategy. Section “sec:methodologies” focuses on the various
SNN approaches identified. We present in a chronological
order: “sec:methodologies-early-methodological-approaches”,
“sec:methodologies-approaches-new-millenium”, and “sec:-
methodologies-modern-methodological-approaches”. Section
“sec:applications” summarizes 11 applications to real or
simulated data. In section “sec:a-critical-perspective”, we
perform a critical appraisal of relevant studies, considering
their “subsec:general_study_characteristics”, “subsec:model_
development” aspects, “subsec:model_validation”, and
“subsec:comparison_with_Cox”. Section “sec:discussion”
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provides a discussion of current limitations and future
directions.

2. Conducting the Review

We searched the Medline biomedical database from 1st Jan-
uary 1990 to 31st August 2021, and identified 261 relevant
studies where survival prediction was estimated using ML
techniques. An additional 15 studies were identified by look-
ing at references of selected papers and a previous literature
overview by Ripley B. and Ripley R. [9]. After removing
duplicates and performing a screening of title and abstract,
a total of 62 articles were considered.

Our search strategy is summarized in Figure 1 as a Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) flow diagram [12]. We identified 24 rel-
evant studies, 13 methodological, and 11 applications. Stud-
ies were considered eligible if they described the
development of an SNN prediction model using prognostic
factors, or its application (may build on an existing method
to improve it to real-word medical data or simulation stud-
ies. We define an SNN prediction model as an ANN adapted
to survival data and capable of making individual patient
predictions with prognostic factors. We excluded studies
that focused on other ML approaches, performed standard
ANN classification/regression, used an ANN as an extension
of Cox regression, or were solely concerned with feature
selection/reduction. Applications involving nonhuman sub-
jects, images (pathology images, magnetic resonance imag-
ing, tumor slices, etc.) and computational biology analysis
(e.g., predictions of gene expression) were disregarded. All
nonoriginal articles (e.g., reviews and tutorials) were
excluded. The reader can find the search string in PubMed
and the detailed list of inclusion/exclusion criteria in the
Supplementary Material (available here).

3. Methodologies

In this Section, we present the methodological approaches of
neural networks for survival analysis in chronological order.
The majority of the techniques were developed in the 1990s
or early 2000s, followed by a long period with hardly any
contributions in the field. Recently, the interest in the devel-
opment of new methods has been rekindled, and modern
approaches have been developed in specialized state-of-the-
art software such as keras [13] in Python or R programming
languages, which offer tremendous capabilities in modelling
architecture and optimisers. Available options move beyond
typical Feed Forward ANNs (FFANNs) and include deep
learning and recurrent neural networks (RNNs), which were
originally used only in nonmedical context, for example, for
speech recognition and natural language processing. Table 1
provides notations used in the manuscript.

3.1. Basic Components of Survival Neural Networks. Neural
networks have a layered structure which is based on a collec-
tion of units (also called nodes or neurons) for each layer.
The input layer picks up the signals and passes them to the
next layer which is called “hidden” after the application of

a (usually nonlinear) activation function. SNNs can have
one or multiple hidden layers next to each other that con-
nect with the previous layer. Signals are transmitted towards
the output layer which is the last layer of units where desired
predictions are obtained. For SNNs, the output layer predicts
(conditional) event probabilities or survival probabilities. A
bias unit is an extra node added to each preoutput layer that
stores the value 1 (it allows the activation function to be
shifted to left or right to better fit the data). Bias units are
not connected to any previous layer. Connections between
the artificial units of different layers are called edges. These
have a weight which adjusts through training increasing or
decreasing the strength of each connection’s signal. The sim-
plest type of a neural network is a FFANN where the infor-
mation moves in only one direction—forward: from the
input units to the hidden units (if any) and to the output
units. Recently, more and more researchers build deep neu-
ral networks which are ANNs with multiple hidden layers
between the input and the output layer. Recurrent neural
networks are also a class of FFANNs where connections
between units form a directed or an undirected graph along
a temporal sequence (of time intervals).

There are two basic data formulations for right-censored
survival data which is the main focus here. For some meth-
odologies, the wide data format is sufficient (standard data
format with a single line per patient). However, several
methods require data transformation into a long format
where each patient is replicated multiple times with the sur-
vival times being divided into a set of k nonoverlapping time
intervals indicating months or years. Different terminologies
such as prognostic variables, survival covariates, covariate
vector, prognostic/clinical features, or predictors are used
to denote the input units (features) of SNNs for the purpose
of text enrichment. Note that some of the networks can
include time-varying covariates (variables that change values
over time during the follow-up period) as part of the input
units if a methodology necessitates data transformation into
a long format.

An example of two basic architectures for SNNs is illus-
trated in Figure 2. These are FFANNs with one hidden layer.
The network’s architecture depends on whether the time
(interval) is coded as part of the prognostic variables or not.

3.2. Early Methodological Approaches. The first attempt of
modelling neural networks for censored data was made by
Ravdin and Clark [14]. The authors use a simple 3-layer
FFANN and code time as an additional prognostic variable.
Input features are replicated for several time intervals ½1,⋯,
Tmax� with equal event rates, where Tmax is the maximum
follow-up time (in years). A patient who experienced the
event of interest, is replicated exactly Tmax times, while a
censored patient is replicated only until the time of censor-
ing. The output layer contains a single output unit represent-
ing the survival status and is set to 0 for all time intervals
where the subject is alive and to 1 for the time interval where
the event of interest occurred (and the following intervals up
to Tmax). The hyperbolic tangent activation function is used
for the units in the hidden and output layers. To correct for
the bias introduced by the data transformation in a long
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format (as the number of deaths is over-represented in the
late intervals), a selective sampling approach is performed,
such that the proportion of deaths matches the information
of the Kaplan-Meier [8] estimate. Selective sampling, how-
ever, is not an exact procedure, and weighting cases would
be a preferable approach [9]. The output layer provides
death probabilities and can be seen as a prognostic index.
An advantage of the methodology proposed by Ravdin and
Clark is that time-varying covariates can be included, as sub-
ject entries are duplicated across multiple time periods.

De Laurentiis and Ravdin proposed two alternative
FFANNs [15]. The first is very similar to Ravdin and Clark’s

approach and also specifies the time interval as an additional
input variable. In this model, the distinct time intervals are
selected such that each interval reflects a constant increase
in event probability. Again, no data is present for censored
cases after the last interval on study. Bias is controlled in a
similar fashion, by obtaining the same frequency of censor-
ing and events. The second FFANN proposed by De Lauren-
tiis and Ravdin is a multiple time point model. This network
does not require any modification of the wide data format
and can accommodate only baseline characteristics and no
time-varying covariates. The output layer is a vector with
multiple output units (nodes) of Ik nonoverlapping ordered
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a) ANN for classification (16)
b) Other ML techniques for survival
analysis (7)
c) Bioinformatics – computational
biology analysis (4)
d) Dynamic survival analysis (2)
e) Extended Cox regression (2)
f) No prediction (2)
g) ANN based on a form of response
transformation (1)
h) ANN built for time distribution (1)
i) Feature selection only (1)
j) Literature review (1)
k) Unsupervisedlearning (1)

Studies included in review
(n = 24)

Extra records retrieved from the
literature
(n = 15)

Methodological/Technical
(n = 13)
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Figure 1: Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart. Reasons for exclusion of the 214 studies
in screening step 1 were: ML techniques for classification (n = 98), predictions based on individual’s images (n = 25), models with focus on
feature selection (n = 18), bioinformatics/computational biology analysis only (n = 15), other ML techniques for survival analysis (n = 15),
unsupervised learning (n = 10), other reasons (n = 33) including ML techniques for risk group stratification (n = 6), systematic/literature
review (n = 6), new prediction tool (n = 5), ML techniques for regression (n = 4), ensemble of different ML techniques (n = 3), no
prediction (n = 3), letter to the editor (n = 2), model for nonhumans (n = 2), models with focus on feature reduction (n = 1), and tutorial/
case study (n = 1).
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intervals and estimates event (death) probabilities. In the
training, data censored cases can be imputed at given times
of follow-up (e.g., by Cox regression) or, alternatively, these
output units can be deactivated. This approach mimics a k
-class classification problem.

In the same year, Liestol et al. proposed ANN generaliza-
tions of standard regression models used for survival analy-

sis [16]. They constructed ANNs comparable to the 2nd
network proposed by De Laurentiis and Ravdin, with and
without the hidden layer. These networks have k output
units estimating hazard scores and are denoted as chain-
binomial models. In principle, these networks can be viewed
as a modification of Cox regression models, where the time
axis has been partitioned into a number of disjoint intervals

Table 1: Notations used in this review.

Notation Description

T Survival time

Tmax Maximum follow-up time (in years)

qk Conditional survival probability in (output) unit k

pk Conditional event probability in (output) unit k, with pk = 1 − qk
Ok Output unit k

w Connection weight matrix

β Vector of regression coefficients

x Covariate matrix

xi Vector of p covariates for individual i

Yki Observed outcome of individual i in unit k

ϕh Activation function for the hidden layer

ϕo Activation function for the output layer

α Bias unit (node)

E Error (loss) function for the ANN

δik Event indicator of individual i for time interval k = 1,⋯, K
pki Probability that patient i relapses in time period (interval) k

γk Cumulative event probability in (output) unit k

Prognostic variables Time (interval) 

ptime

Input layer

Hidden layer

Output layer

(a)

Prognostic variables

Input layer

Hidden layer

Output layer

ptime1 ptime2 ptime3 ptime4 ptime5

(b)

Figure 2: Two basic architectures of survival neural networks. (a) A network where time (interval) is coded as a prognostic variable (input
feature). Data transformation into a long format is required for each patient. The output layer makes predictions in a given time interval. (b)
A network where time (interval) is not coded as part of the prognostic variables. The wide data format is adequate for each patient. The
output layer makes predictions at multiple sequential (nonoverlapping) time intervals.

5Computational and Mathematical Methods in Medicine



(grouped survival data). Such a model for the observed data
may be specified via the conditional survival probability qk
= PðT ≥ tkjT ≥ tk−1Þ, with k = 1,⋯, K . To implement it in
a shallow network (no hidden layers) with K output nodes,
the following parametrisation w1j =w2j =⋯ =wKj = βj and
j = 1,⋯, p can be applied, where wkj is the weight assigned
to the connection between input node j and output node K
. This implies that all connections arising from the same
input node j have the same weight. Then, for the output
nodes, the following function will be computed:

Ok x ; β,wk0ð Þ = g βTx +wk0
� �

, ð1Þ

with x as the input variable, β = ðβ1,⋯,βpÞT , and wk0 as the
weight from the bias node of the input layer. By applying a
sigmoidal (logistic) activation function gðxÞ = exp ðxÞ/1 +
exp ðxÞ, we obtain an output Ok, which corresponds to the
event (death) probabilities pk of the grouped version of the
Cox model [4]. Applying the activation function gðxÞ = 1
− exp ð−exp ðxÞÞ, ensures estimation of event probabilities
as in the grouped version of the Prentice and Gloeckler
model [17]. The log-likelihood function of such a model cor-
responds to the negative error (loss) function:

E = −〠
i

〠
k

Yki log Ok xi ;wð Þð Þ + 1 − Ykið Þ log 1 −Ok xi ;wð Þð Þf g,

ð2Þ

for an individual i = 1,⋯, n of output unit k = 1,⋯, K hav-
ing covariate vector xi, and observed responses (target
values) Yki. This loss function is minimized with respect to
w, the connection weight matrix, using a back-propagation
algorithm. Liestol et al. suggested extensions to nonlinear
and nonproportional ANNs, which would require dropping
the weight constraint and adding a hidden layer to the pre-
vious shallow network. This would lead to an increase in
the number of parameters. A nonlinear and nonpropor-
tional ANN introduced in this way could be more appropri-
ate in dealing with prognostic factors of nonlinear and time-
dependent effects.

Another attempt at adapting ANNs to survival data was
made by Lapuerta et al.’s study [18]. Here, the output vari-
able of the FFANN represents the time of occurrence of clin-
ical coronary events. Time is divided into three 40-month
periods plus an additional period in which no event
occurred during the 120 months. The initial values for the
output vectors denote event (1), no event (0), or censorship
(as an unknown outcome with the symbol ?). To improve
predictive ability, two separate networks are used to impute
missing outcomes of early censored cases in each training set
for the second period (40-79 months) and third period (80-
120 months). Imputations are not performed in the test data.
The authors create a predictor network where the output
neuron with the highest value indicates the most likely out-
come between four different classes. This approach might
become cumbersome in terms of computational cost as it
requires the use of multiple ANNs.

Street used a standard FFANN with the hyperbolic tan-
gent activation function for the units in the hidden and out-
put layers [19]. The output layer consists of 11 ordered
categories, ð0, 1�, ð1, 2�,⋯ð9, 10� years, plus a final category
denoting time of more than 10 years (in which the event
did not occur). The network estimates the probability of
disease-free survival up to a particular year, learning multi-
ple classes in parallel. The output node is +1 as long as an
individual is recurrence-free and -1 thereafter. Censored
cases are incorporated directly in the training set using the
probability that a patient will have disease recurrence before
a certain time. The probability is obtained by employing a
variation of the standard Kaplan-Meier method. Hereto,
each censored individual may relapse at time t, given that
no relapse has occurred at t − 1, and the disease-free survival
time is used as the starting time (instead of time 0). Street
uses the probabilities generated by the ANN to separate
cases into those with “good” and “bad” prognosis and to
estimate survival curves for individual patients. The author
scales the probabilities to the range of the activation function
by using activation = 2 ∗ probabilities − 1 and specifying the
relative entropy error function. Street’s approach cannot be
considered as a classification problem because of the many
incomplete data cases (it is unknown whether an individual
is recurrence-free for these instances).

Biganzoli et al. introduced the partial logistic ANN
(PLANN) [20]. This is a variation of the network proposed
by Ravdin and Clark [14]. It has a single hidden layer, one
unit (node) in the output layer, and uses the time indicator
as an additional input variable. Each prognostic variable is
replicated for the number of intervals until death or end of
follow-up. A major difference from Ravdin and Clark’s
approach is that here patients are not included after the time
interval of death. Figure 3 shows a visual illustration of
Biganzoli’s PLANN. Nodes are represented by circles and
the connections between them by dashed lines. The weights
for the connection of the bias node with the hidden layer
and the output layer are denoted by αh and αk, respectively.
The weights for the connections between input and hidden
nodes and hidden and output nodes are denoted wjh and
whK , respectively. The input layer consists of J nodes, given
by the covariates, the time indicator, and a single bias node
(0). The hidden layer consists of H nodes and one bias node
(0). There is a single output unit (node) (K = 1) which com-
putes conditional failure probabilities.

The output byk of a PLANN with a single hidden layer for
an individual i can be defined as:

byk xi,wð Þ = ϕo αk + 〠
H

h=1
whkϕh αh + 〠

J

j=1
wjhxij

 ! !
, ð3Þ

for j = 1,⋯, J input nodes; k = 1 unique output node; ϕo and
ϕh are the activation functions of the output and the hidden
layer, respectively; xij represent the input value for an indi-
vidual i and covariate j; αh and αk are the constant bias
nodes for the input and the hidden layers, respectively. In
general, ϕo will depend on the specified regression problem.
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For this SNN, Biganzoli et al. used the logistic activation
function for both the hidden and output layer. FFANNs with
logistic outputs (such as PLANN) can be regarded as flexible
regression models for conditional probability estimation [21,
22].

To enable inclusion of covariates, Cox proposed the pro-
portional odds model [4] for grouped survival times. The
formula below shows that discrete hazard rates can be mod-
elled using a logistic regression model:

hl xið Þ =
exp θl + βTxi

� �

1 + exp θl + βTxi
� � , ð4Þ

where θl = log ðhlð0Þ/1 − hlð0ÞÞ of l = 1, 2,⋯, L disjoint
intervals Al = ðtl−1, tl� with t0 = 0 and li the interval of obser-
vation for the ith subject.

PLANN is a generalization of partial logistic regression.
The output values provide smoothed estimates of discrete
hazards hlðxi, alÞ for the midpoint al of the time interval Al
. The survival is estimated as SðtlÞ =

QL
l=1ð1 − hlðxi, alÞÞ.

The error function of the model, for a given individual, i,
is defined as:

E xi, alð Þ = −〠
n

i=1
〠
li

l=1
δil log hl xi, alð Þð Þ + 1 − δilð Þ log 1 − hl xi, alð Þð Þf g,

ð5Þ

with δil as the event indicator (1 at the interval of the event
of interest and 0 otherwise). This error function is equivalent
to the cross-entropy error function and to Equation (2). A
weight decay penalty term is added to the weights in
Equation (5) to avoid overfitting (E∗ = E + λ∑w2, regulari-
sation L2) .

Biganzoli et al. used PLANN for flexible modeling of the
hazard function of different cancer datasets, in an explana-
tory analysis. This approach has several favourable charac-
teristics, including the presence of an analytical
mathematical formulation, monotonicity of the survival
curves, and the option to include time-varying covariates,
as the neural network is fitted to data that has been trans-
formed to long format.

3.3. Approaches at the Beginning of New Millennium. Lisboa
et al. extended the PLANN approach in 2003 by introducing
a Bayesian framework with automatic relevance determina-
tion (ARD) [23]. This approach, called the PLANN-ARD,
was inspired by David Mackay’s review of Bayesian super-
vised ANNs [24]. PLANN-ARD is robust in estimating
weight parameters and carries out model selection, via regu-
larization included within a Bayesian framework which con-
sists of a sequential 3-step approach:

(1) A penalty term, Lðw, kÞ, is added to the objective
function in Equation (5) (similar to weight decay)
where k is a set of Bayesian regularization parame-
ters. The penalized objective function is Sðw, kÞ = E
+ Lðw, kÞ

(2) Regularization parameters are estimated to control
the penalty term

(3) Model selection is performed by interpreting the evi-
dence in favor of candidate networks (hyperpara-
meter selection)

For tuning the hyperparameters, the empirical Bayes
approach is preferable to cross-validation, as the latter is fre-
quently very computationally intensive. PLANN-ARD soft-
prunes irrelevant variables to carry out model selection (as
part of the Bayesian framework). The authors suggest that

0

0

1 j J

1 h H

K = 1

Input layer

Hidden layer

Output layerConditional failure
probability

𝛼1 𝛼h 𝛼H

𝜔H,K𝜔h,K𝜔1,K

𝜔1,1 𝜔1,h 𝜔1,H 𝜔j,1 𝜔j,H 𝜔J,1 𝜔J,h 𝜔J,H
𝜔j,h

𝛼K

Time Covariates

Figure 3: Visualization of the PLANN by Biganzoli et al. [20].
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this methodology can be more efficient in the allocation of
patients into prognostic groups compared to the Cox model.

Given that enough hidden units are specified, ANNs can
approximate any functional relationships (i.e, interactions
between covariates) [25, 26]. Ripley R. et al. proposed two
more discrete-time FFANNs [27]. Here, time is split into five
nonoverlapping time periods (I1 : ð0, 1�, I2 : ½1, 2Þ, I3 : ½2, 3Þ,
I4 : ½3, 5Þ, and I5 : ½5,∞Þ). No multiple records (repeated
entries of the same individual in the data) are needed for
these approaches.

For the first network, the likelihood is calculated byQN
i=1∑

li
k=mi+1pki, where mi is the last time period the ith

patient is known to have survived without relapse, li is the
final time period during which the patient may have
relapsed, and pki is the probability that the ith patient
relapses in time period k. Ignoring the ordering of time
periods, the model can be estimated as:

log pkð Þ − log p1ð Þ = ηk xð Þ k = 2, 3, 4, 5ð Þ, ð6Þ

with ηkðxÞ = yk − y1 using an ANN with the softmax activa-
tion function for the units of the output layer. The probabil-
ities are computed as pk = exp ðykÞ/∑l exp ðylÞ (softmax
formula) where yk are outputs of the network.

The second network relies on more complex methodol-
ogy which incorporates ordinal outcomes. This ANN has a
single output unit to model the function η, which is now
independent of the output class k. The cumulative event
probabilities, γk = FðtkjxÞ, are modelled as:

log γk
1 − γk

� �
= tk − η xð Þ k = 1, 2, 3, 4ð Þ, ð7Þ

where tk indicates the end of the kth time period. Constraints
on tk : t1 ≤ t2 ≤ t3 ≤ t4 are set to ensure that γk are increasing
(ordinality of outcomes).

3.4. Modern Methodological Approaches. Deep learning
ANNs are frequently used for prediction of output features,
especially in the context of image classification [28, 29].
Applying deep learning methodology to medical survival
data, however, poses the risk of overfitting, as the available
sample sizes are typically small. Matsuo et al. predicted sur-
vival by using a deep neural network (DNN) with a hierar-
chical structure and FFANNs in the first layers of the
model [30]. The DNN contains 2 subnetworks with fully
connected layers to jointly optimize the C-index and Mean
Absolute Error (MAE). For each subnetwork, the optimiza-
tion is performed separately. The C-index quantifies the
probability that the predicted event times of two randomly
selected individuals have the same order as their true event
times. Due to the presence of censored data, not all pairs
can be compared; this implies that a pair of subjects are
comparable if the earliest time is an event or both are events.
The C-index is a measure of probability of concordance
between the observed and the predicted survival. The MAE
is defined as the absolute difference between the observed
survival time and the survival time predicted by the subnet-

work. The authors found that the DNN performance
improved on inclusion of more clinical features (input vari-
ables). A drawback of DNNs is that they are frequently com-
putationally intensive and can be too complex for clinical
insights.

Bora et al. developed time-binned neural networks to
predict recurrence-free survival of non-small-cell lung can-
cer after surgery, using 30 clinico-pathological features
[31]. The authors present one supervised learning binned-
time survival analysis model (called su-DeepBTS) and one
semi-unsupervised learning model (called su-DeepBTS).
Here, we focus only on the supervised learning model su-
DeepBTS. This is a shallow network where the output layer
provides the survival probability in each predefined time
interval (recurrence-free survival in months). The output
value, yj, is 1 when a patient is alive without relapse at the

beginning of the jth time interval I j, and 0 after relapse.
For censored patients, yj is 1 until a patient is lost to
follow-up and

Q
i=ti≤I jð1 − di/niÞ after censoring occurs

(Kaplan-Meier survival probability), where ni is the total
number of samples without recurrence at the beginning of
the jth time interval, and di is the number of events. The acti-
vation function of the output layer is the sigmoid (logistic).
The root mean squared error (RMSE) between the true yj
and the predicted ŷ j is used as loss function.

3.4.1. Survival Recurrent Networks. Oh et al. use a survival
recurrent network to train time-sequential outcome data
for gastric cancer patients [32]. Their model is a DNN con-
taining four recurrent neural network (RNN) layers in a
total of seven layers, with the number of nodes gradually
reduced across hidden layers. This network takes as inputs
patient prognostic features and the survival probability of
the previous year. In the following year, a comparison is per-
formed between the predicted and observed survival proba-
bilities. Survival for each time interval is denoted as either 1
(alive), 0 (dead) at the time of observation, or, for censored
cases, as a ranking score in between 0 and 1. The predicted
survival probability is updated every year with a weight,
which is a tuneable parameter. The input layer consists of
25 prognostic features plus two survival features. The output
layer consists of two nodes and is activated with the softmax
function. As part of the procedure, variables of an individual
are embedded (categorical variables are mapped to a vector
of continuous numbers) for purposes of dimensionality
reduction. This ANN approach to modelling survival data
is complex which means it could lead to a poor generaliz-
ability on new data (overfitting training data) and/or a less
intuitive interpretability of results.

A comparable learning algorithm was developed by Han
et al. [33]. Han et al. describe a deep learning based survival
model that can analyze patients lost to follow-up in a
sequential manner (Figure 4). The network contains an
input layer, 3 hidden layers with the number of nodes
reduced across the layers, and an output layer. Information
is updated every year. It is composed of three learning sys-
tems: nine clinical features x, the survival probability pt−1
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for the previous time of follow-up sequentially updated (10th
input feature), and nonparametric ranking scores 0 < r < 1
for censored cases. Each time the ANN predicts the survival
probability for the following year pt . The recurrent loop
reinforces training of the network sequentially, updating
the residuals λ between the real outcome Y (1 = alive and 0
= dead) and the probability Ŷ , predicted by the SNN. A
modulating parameter connects the residuals with the sur-
vival probabilities. As in Oh et al.’s network, the output layer
contains two nodes that are activated with the softmax func-
tion, which represent the predicted alive/death probability.
This DNN might be biased because individuals who survive
longer will be used more times for retraining, resulting in
connection weight matrix, w, optimized for longer survivors.

Sung et al. developed RNNs with long short-term mem-
ory (RNN-LSTM), with the purpose of performing a risk
classification for the prevention of cardiovascular disease,
using national time-series health examination data [34]. This
model includes a large number of patients (361239), ran-
domly sampled in South Korea. The authors transform the
binary output variable into multiple time-point output vec-
tors for specific time-point analysis. The output layer
includes yearly intervals from 2 to 10 years. The RNN-
LSTM estimates the probability of survival for each interval.
To take into account censored individuals, the probability of
disease is estimated using Kaplan-Meier methodology. This
network can incorporate time-varying covariates, and, in
this application, provides more accurate predictions than
the Cox model, suggesting such an approach may be well-
suited to time-series data in particular.

4. Applications

In our search, we identified eleven applications, of which
eight used real data and three used simulated data to inves-
tigate model behaviour in different scenarios. In some of
these studies, the original methods were modified to
improve prediction. Furthermore, as interpretability of
results is crucial for clinical decision making, some studies
focused on extracting interpretations from the ANNs (often
called “black boxes” as they do not provide insights on the
structure of the function they approximate). The applica-
tions make use of different performance measures, which is
likely due to the dynamic evolution of the field over the last
decades.

Xiang et al. [35] compared three different approaches in
a simulation study. Nine data designs were simulated with 2
or 4 covariates, various censoring patterns, interaction
between covariates, as well as proportional or nonpropor-
tional hazards. Survival times were generated using inverse
probability transformations (details in the paper). For the
purposes of this review, we only consider the SNN developed
by Liestol et al. [16] as the other two networks do not meet
our search inclusion criteria. Time was divided into three
distinct intervals, in which the hazard was assumed to be
constant. The authors chose the general form of the method
(no proportional hazards, dropping the weight constraint:
see Section “sec:methodologies-early-methodological-
approaches”). A simple FFANN with one input, one hidden,
and one output layer was developed. The quasi-Newton
algorithm was used to minimize the negative log-
likelihood. The performance of the SNN varied according
to 9 underlying data designs, but none outperformed the
Cox regression model. Kattan [36] applied the same meth-
odology to 3 large urological datasets. For this study, the
author preserved proportional hazards for the network (by
applying weight constraints). The author claims that,
although theoretically attractive, ML techniques often do
not result in an improved prediction accuracy.

Chi et al. [37] applied the SNN developed by Street [19]
to two breast cancer datasets. The FFANN had three layers
with sigmoid activation functions. It predicted the disease-
free survival probability for each time unit. A slight modifi-
cation was made to the labelling of the output vectors, using
+1 up to recurrence time and 0 thereafter. The authors con-
cluded that ANNs can successfully predict the probability of
disease recurrence.

The PLANN-ARD Bayesian framework has been used
several times for prediction in medical studies. Jones et al.
applied PLANN-ARD to data on patients with laryngeal
squamous carcinoma [38], in which 97.9% (855 out of
873) died from the disease. When comparing the SNN to a
Cox model, the authors found that the SNN performed bet-
ter in separating patients’ survival based on dichotomous
variables. Taktak et al. performed a double-blind multicentre
study for uveal melanomas [39]. They applied a PLANN-
ARD, using 5-fold cross-validation to tune the hyperpara-
meters instead of an empirical Bayes approach. A Bayesian
mechanism was used to compensate for skewness in the data
vector, resulting from the necessary data replication when
transforming the data to long format [23]. The authors
found a better performance of the SNN when compared to
the semiparametric Cox model and other models (the log-
normal model, the partial spline model, and the partial logis-
tic radial basis function network).

Five years after the development of PLANN-ARD, Lis-
boa et al. [40] applied the approach to breast cancer data.
They extended the existing methodology to a competing
risks model, where the two competing events are disease-
free survival and breast cancer related mortality. This SNN
provided a smoothed estimate for the hazards over time
(assumptions about proportionality not required). The
Bayesian framework for variable selection was extended to
allow for continuous variables. To evaluate performance, a

pt

ANN[x] + [pt-1] ht (x) 

Figure 4: A schematic representation of the SNN by Han et al.,
adapted from [33], built for 242 patients with synovial sarcoma.
Here ANN means artificial neural network, x is the set of 9
clinical features, pt−1 is the survival probability of the previous
year t − 1 sequentially updated (10th input feature), htðxÞ is the
predicted survival risk (alive/death probability), and pt the
predicted survival probability for the following year t.
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time-dependent C-index was used, which is an extension of
the Area Under the Receiver Operating Characteristic
(AUROC) measure [41]. The authors concluded that
PLANN-ARD was a useful tool for risk assessment, as it dis-
tinguished high and low risk patients better than the Cox
model.

Amiri et al. applied a hierarchical ANN for risk assess-
ment of gastric cancer patients [42]. Input features consisted
exclusively of binary covariates. The network was a simple
feed-forward with three nodes in the hidden layer, which
computed the probability of survival in different periods.
The authors observed that the SNN had a smaller mean
standard error for the survival probabilities than the Cox
proportional hazards model. They noted, however, that the
baseline survival of the SNN may be unreliable as a conse-
quence of the small sample size (N = 330) of the study.

Biglarian et al. compared the PLANN method with Cox
models in a simulation study [43]. Percentage of censoring
was chosen between 20.0 and 80.0% and the data were sim-
ulated with linear and nonlinear effects for the hazards.
Model hyperparameters were tuned (a set of parameters
was identified that leads to best performing model in the
training data), using the Bayesian information criterion
(BIC). Model fit was assessed in the test set, using the mean
squared error (MSE). This study concluded that prediction
accuracy in more complex datasets depends on the level of
censorship. Use of PLANN was suggested for data with a
high percentage of censoring and for modelling complex
interactions.

Spelt et al. applied PLANN to predict long-term survival
after liver resection of metastases, for patients with metasta-
tic colorectal cancer [44]. The model was an extension of the
network by Biganzoli et al. [20] and used an ensemble of
SNNs. Training and validation were performed using 5-
fold cross-validation, applied to 20 slightly different datasets,
which were created by performing multiple imputations of
missing values on the original data. The networks were com-
bined within a single prediction model. The output of the
ensemble was the mean output of all individual SNNs. Har-
rell et al.’s C-index was used as an performance measure
[45]. Building on the work of Lippmann and Shahian for
odds ratios [46], time-dependent hazard ratios for each var-
iable in the SNNs were provided. Prognostic variables were
ranked and minimized for the trained SNN. Order of vari-
able relevance was obtained by measuring the change in
baseline C-index (model with all variables) after removal of
each of the risk factors, one at a time.

Gong et al. investigated the PLANN approach in a sim-
ulation with a view to the field of pharmacometrics [47].
As in the study by Biglarian et al. and Gong et al. investi-
gated both different proportional hazard functions (linear,
nonlinear) and different censoring percentages. To interpret
the results, the authors employed the connection weights
algorithm proposed by Garson [48] to calculate the relative
importance of each input variable, and evaluated this
method in a high-dimensional setting. Performance was
assessed using the C-index, and the authors found that
PLANN outperformed Cox regression. PLANN was less sen-
sitive to changes in sample size and censoring percentage

than Cox regression, and achieved the best performance
when predictor variables assumed nonlinear relationships
in the hazard function. Additionally, for high-dimensional
simulated data, PLANN was able to identify all predefined
influential variables.

Kantidakis et al. compared PLANN with Cox models for
large liver transplantation data (n = 62294 patients, 97 pre-
dictors). The authors described novel extensions to existing
PLANN architecture (i.e, hyperparameters, activation func-
tions, and time interval specification) [49]. The extended
PLANNs were tuned with the Integrated Brier Score (IBS)
as the main criterion, which is a global summary of Brier
score over the whole range up to the time horizon of the
study (10 years) [50, 51]. The SNNs showed better perfor-
mance than the Cox models based on IBS at 10 years, and
the extended PLANN with 1 hidden layer was as calibrated
as the Cox model with all variables (the predicted survival
probabilities were similar to the observed survival probabil-
ities estimated by using Kaplan-Meier’s methodology).
Emphasis was given on the advantages and pitfalls of each
method and on the interpretability of the ML techniques.
As in Garson, the connection weights algorithm [48] was
used to identify the strongest prognostic factors.

5. A Critical Perspective

In this Section, we critically appraise relevant characteristics
of the 13 methodological and the 11 application studies
selected for this review (details on Figure 1). Excel sheets
were constructed (available in the online version as pdf files)
that list the relevant prediction model characteristics. Addi-
tional information is provided in the Supplementary Mate-
rial (availanle here) (overview of the extracted items in
each study, 9 tables regarding the study characteristics) .

5.1. General Study Characteristics. Of the 24 studies, 21
(87.5%) made use of existing data, while three (12.5%)
applied the methods to simulated datasets. Descriptive sta-
tistics are shown in Table 2. The median total sample size
was 920 patients, the median number of predictors was 7
(low-dimensional data), and the median percentage of cen-
soring was 70.8% (10 of 24 studies considered multiple out-
comes). Medical applications were mainly in the field of
oncology (73.5%, 25 datasets). The majority of these studies
conducted research on breast cancer (10 datasets), cervical
cancer, gastric cancer, or prostate cancer (2 datasets each).
Other fields of application comprised cardiovascular disease,
coronary artery disease, liver transplantation, and postpar-
tum amenorrhea (2, 1, 1, and 1 datasets, respectively).

Clinical endpoints of interest included overall survival
(analysed 16 times, 47.1%) and disease-free (or progression
free, recurrence-free, relapse-free) survival (analysed 12
times, 35.3%). Remaining endpoints were breast cancer spe-
cific mortality (5.9%), death or hospitalization due to cardio-
vascular events (5.9%), menstruation-free survival (2.9%),
and time to clinical artery events (2.9%).

The strategy used to address the missing data (if any)
was unclear for 9/21 (42.9%) studies (disregarding the 3 sim-
ulation studies that did not contain any missing data). Single
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or multiple stochastic imputation was used for 6 studies
(28.6%) and ad hoc approaches (separate attribute or
mean/median imputation) were used in 5 studies (23.8%).
One dataset had no missing data. Ad hoc approaches to
missing data can be problematic, as they can alter the distri-
bution of a variable (if there is a substantial number of miss-
ing values). Multiple stochastic imputation, which replaces
each missing value with multiple plausible values, is the pref-
erable option [52], as the variability in multiple predictions
reflects the uncertainty of the imputation process. It is
understandable that multiple imputations may not be con-
sidered due to computational cost. Nevertheless, a single sto-
chastic imputation is still superior to an ad hoc fix, since
imputation algorithms are more likely to preserve the origi-
nal data structure. Examples of such algorithms are k-near-
est neighbor and random forest (missForest) [53, 54].

5.2. Model Development. Different aspects of model develop-
ment for SNNs were considered: (1) whether the hyperpara-
meters were tuned and which was the performance criterion
for model development; (2) how the prognostic variables
were scaled; (3) which programming language was used.

Hyperparameters are fundamental to the architecture of
an ANN. They fine-tune the performance of a prediction
model, preventing overfitting and providing generalizability
of the model to new “unseen” data. Choice of hyperpara-
meters can be a challenge in the modern era of building
SNNs with state-of-the-art software that allows for numer-
ous choices. Commonly tuned parameters were penalty
terms in the likelihood (e.g., weight decay) and the number
of units (nodes) in the hidden layer(s). In the majority of
studies (15, 62.5%), the approach to training hyperpara-
meters was unclear, with 6 of these studies (25.0%) failing
to report whether parameters were tuned or default values
were chosen. In 4 studies (16.7%) parameters were tuned,
in 3 studies (12.5%) some parameters were tuned and some
were assigned default values, while in 2 studies (8.3%)
default values only were chosen for the hyperparameters.
The performance criterion for model development (hyper-
parameter tuning) was examined across the 24 studies. The
training criterion was unclear for 6 studies (25.0%). For 5
studies (20.8%), neural network hyperparameters were
trained based on the log-likelihood, for 3 studies based on
the C-index (12.5%), and for 2 studies (8.3%) based on the
Area Under the Curve (AUC). Other criteria used for model
development are provided in the Supplementary Material
(availanle here). Better reporting of the choice of hyperpara-
meters (which parameters were selected) and of the training
procedure (how they were tuned) is needed. This will help

researchers to better understand how the model was devel-
oped and will facilitate reproducibility.

In ANNs, input features are typically scaled to ensure
that all features have a comparable scale, which allows an
update of the same rate, resulting in faster algorithm conver-
gence. The procedure was unclear in 10 of the 24 studies
(41.7%), scaling was unnecessary in 7 studies (29.2%), and
normalization (minimum and maximum values of features
are used for scaling) was applied in 5 studies (20.8%). Stan-
dardization (mean and standard deviation of features are
used for scaling) was applied in only 2 studies (8.3%). A pre-
cise description of the scaling approach (normalization or
standardization) should be provided by researchers.

The programming language used for the development of
the ANN was unclear in 7 studies (29.2%). Python was
employed in 4 (16.7%) and R in 2 (8.3%) of the more recent
studies. In the previous decades, MATLAB was used 3 times
(12.5%), NeuralWare 3 times (12.5%), S-plus 3 times
(12.5%), while Epilog Plus and PlaNet were used 1 time each
(4.2%). There is a trend towards employing Python, utilizing
the keras and Theano libraries, which can build state-of-the-
art ANNs with multiple options for layers, optimisers, and
error (loss) functions. These two libraries also have an inter-
face available to the R programming language. It is strongly
encouraged to share code developed for new methodologies
or applications of existing methodologies in publicly avail-
able repositories (e.g., GitHub) to support reproducability
and good clinical practice.

5.3. Model Validation. We examined the validation
approach for each of the 34 outcomes (clinical endpoints
of the studies). Single random split was used 17 times
(50.0%), with the data split into single train-test or train-
validation-test parts. When the data are split into train-test
parts, the best model for training data is chosen based on
model’s performance on test data, whereas when the data
are split into train-validation-test sets, the best model for
training data is selected based on the performance of the
model on validation data. Then the test data are used to
internally validate the performance of the model on new
patients. Resampling (cross-validation or nested cross-vali-
dation) was used 9 times (26.5%). External validation (test-
ing the original prediction model in a set of new patients
from a different year, location, country, etc.) was used 4
times (11.8%). External validation involved the chronologi-
cal split of data into training and test parts 3 times (temporal
validation) and validation of a new dataset 1 time. Multiple
random split was used 2 times (5.9%), with the data split
into train-test or train-validation-test data multiple times.

Table 2: General characteristics for the 24 studies. If multiple outcomes were predicted, multiple lines were used in the extraction sheet.
Maximum number of lines was 34 (10 studies used multiple outcomes). For simulation studies, the number of predictors and percentage
of events were not considered, unless they were fixed (e.g., not varied across simulations).

Min 1st Qu. Median 3rd Qu. Max Excel lines

Total sample size 96 242 920 1616 361239 33

# of predictors 1 5 7 25.75 97 32

% of events 6.60 21.32 29.25 47.58 97.90 20
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Validation was not performed for 2 datasets (5.9%). We rec-
ommend reporting the steps of the validation approach in
detail, to avoid misconceptions. In case of complex proce-
dures, a comprehensive representation of the validation pro-
cedures can be insightful. Researchers should aim at
performing both internal and external validations, if possi-
ble, to maximize the reliability of the prediction models.

Table 3 shows the performance measures used for model
validation in the 24 studies. A popular measure in the sur-
vival field, the C-index, was employed in 8 studies (33.3%,
as C-index or time-dependent C-index) and AUC in 5 stud-
ies (20.8%). Notably, during the screening process, several
manuscripts were identified, where AUC and C-statistic
were used interchangeably. While there is a link between
the dynamic time-dependent AUC and the C-index (the
AUC can be interpreted as a concordance index employed
to assess model discrimination) [55], the two are not identi-
cal and some caution is required. Apart from the C-index,
there was no other established measure in the 24 studies
(large variability). This issue is of paramount importance
as validation (and development) of the SNNs depends on a
suitable performance measure. Any candidate measure
should take into account the censoring mechanism. By
employing performance measures that are commonly used
in traditional classification ANNs, such as accuracy, some
SNNs were suboptimally validated. Consistency in the use
of performance measures should also be considered. In the
simulation study of Biglarian et al. [43], hyperparameter
values for PLANN were based on the Bayesian information
criterion (BIC), while validation of the SNN performance
on the test data was performed using the mean squared error
(MSE), and the comparison with Cox model was based on
the C-index. Proper measures should be employed for model

development and validation of time-to-event data (see the
book of van Houwelingen and Putter [5]).

Reporting of confidence intervals for the predictive mea-
sures was examined; 13 studies (54.2%) did not provide con-
fidence intervals. Repeated data resampling was practiced in
6 studies (25.0%). The following remaining approaches were
observed: repeating the simulations 500 times, rerunning the
SNN 10 times for each covariate, and using a nonparametric
confidence interval based on Gaussian approximation (4.2%
each). The method of choice was unclear in 2 studies (8.3%).
There is a strong need for the development of methods
which reflect the amount of uncertainty of an evaluation cri-
terion. This would provide additional insights into the pre-
dictive accuracy of the model.

Another important aspect of a prediction model is cali-
bration. It refers to the agreement between observed survival
probabilities estimated with Kaplan-Meier’s methodology
and the predicted outcomes. Typically, a plot is produced
where the subjects are divided into 10 groups based on the
deciles of predicted probabilities. Observed survival proba-
bilities are plotted against predicted. In this review, calibra-
tion plots were available for only 11 studies (45.9%).
Calibration of the SNNs was not assessed in most studies,
and as such a neutral comparison with the Cox proportional
hazards model could not be established. This is in accor-
dance with the findings of Christodoulou et al. [56], which
pinpoint an urgent need for more attention in calibration
of modern ML techniques versus traditional regression
methods to achieve a fair model comparison in the classifica-
tion setting.

5.4. Comparison with Cox Model’s Performance. The Cox
proportional hazards regression model assumes

Table 3: The performance measures used for model validation across the 24 studies.

Performance criterion N (%)

C-index 7 (29.2%)

AUC 5 (20.8%)

Log-likelihood 3 (12.5%)

Accuracy 2 (8.3%)

Global Chi-squared statistic of Cox regression 2 (8.3%)

Brier score 1 (4.2%)

Comparison of predicted probabilities with Kaplan-Meier 1 (4.2%)

Integrated brier score (IBS) 1 (4.2%)

Mean absolute error (MAE) 1 (4.2%)

McNemar’s test 1 (4.2%)

Mean squared error (MSE) 1 (4.2%)

Prognostic risk group discrimination 1 (4.2%)

Sensitivity 1 (4.2%)

Separation of cases into good and bad prognosis 1 (4.2%)

Specificity 1 (4.2%)

Survival curves comparison with log-rank test 1 (4.2%)

Time-dependent C-index (Ctd) 1 (4.2%)

Wilcoxon test (separation of cases into good and bad prognosis) 1 (4.2%)

12 Computational and Mathematical Methods in Medicine



proportionality of hazards across different prognostic groups
over time. Any interaction between predictors and/or time
needs to be manually specified by the user (e.g., fractional
polynomials and splines). This may be difficult when a large
set of prognostic factors is available. ML techniques such as
ANNs, which are flexible and data-adaptive, relax this
assumption and can naturally incorporate multiway interac-
tions between the input features. This characteristic together
with the rise of computational power and the collection of
large-volumes of data (with electronic healthcare records)
has contributed to the popularity of ANNs. However, the
Cox model remains the most common choice for survival
data. Therefore, any new prediction model including SNNs
should be compared to the traditional Cox model to be con-
sidered in clinical practice.

Of 24 studies, 19 reported comparisons between Cox
models and SNNs. We assessed whether interaction terms
were specified in the models to obtain optimal predictive
performance in Cox regression. Fifteen studies (78.9%) did
not consider interaction terms between the predictors, infor-
mation was unclear for 2 studies (10.5%), and 2 simulation
studies considered interaction terms when applicable
(10.5%). This result suggests suboptimal attention to the
development of Cox models, which in turn undermines
inferences made regarding comparative SNN and Cox
model performance. For datasets with a large number of
prognostic factors (p > 10), a number of interaction terms
can be selected based on external knowledge and clinical
expertise (see [6]).

Secondly, the author’s claim for the performance of SNN
was investigated. Among the 19 studies comparing SNN and
Cox model’s performance, 9 (47.4%) claimed better predic-
tive performance of the SNN, while 5 reported a similar or
better performance (26.3%) of the SNN compared to the
Cox model. The performance was similar to Cox’s model
in 5 studies (26.3%). These result may be influenced by pub-
lication bias, as articles with favorable results are more likely
to be published than articles with poor results.

A fair comparison between SNN and Cox model
approaches to modelling survival data should include model
validation with proper evaluation measures, a comparison of
calibration curves, and the inclusion of nonlinear terms and
interactions for Cox models, where applicable and possible.
On the preface of his textbook on clinical prediction models,
Steyerberg reflects on exaggerated claims of modern method
performance, which are lacking in convincing presentation
of evidence and frequently involve suboptimal strategy
choices for the regression model competitor [57].

6. Discussion

To the best of our knowledge, this is the first ever attempt at
a large-scale review of SNNs in medicine using prognostic
factors (1st January 1990–31st August 2021). It included 24
studies (13 methodological and 11 applications), where
ANNs were employed for time-to-event prediction with
right-censored data, mainly in the field of oncology (73.5%,
25 datasets) with a particular focus on breast cancer research
(10 datasets). This might be due to the fact that survival

analysis is well-suited to long-term outcome prediction (e.g
overall survival), which is of primary interest in the field of
oncology. Several methodologies were developed in the
1990s and were in later years applied to more complex data-
sets for clinical prediction. The majority of the SNNs were
simple FFANNs, with the exception of some recent publica-
tions, which made use of deep ANNs and Survival Recurrent
Networks. Amongst the methods used, two general trends
can be distinguished: networks with a unique output unit
and a time indicator variable added as an extra input feature
and networks with multiple outputs representing k nonover-
lapping time intervals. The former approach requires that
the data are replicated multiple times, for each of the time
intervals considered, and allows for the incorporation of
time-varying covariates.

We excluded studies where SNNs were built for bioin-
formatics/computational biology analysis, dynamic survival
analysis, focused on ANN extensions of the Cox model,
studies that did not evaluate model performance, or where
predictions were based on individual’s images (pathology
images, magnetic resonance imaging, tumor slices etc.) (see
section “sec:conducting-the-review”). We addressed this
review in a pragmatic way using the biomedical database
PubMed and focusing on SNNs for prediction using prog-
nostic factors. We acknowledge that we may have missed
some articles during the process. Below, we briefly summa-
rize some other important methodological developments of
the last three decades.

Faraggi and Simon [58] extended the Cox model by
replacing the linear function βTxi with the output ϕoðxi,wÞ
of an ANN with logistic hidden and linear output layers.
No bias unit is specified for the output layer, and the model
is subject to the proportional hazards assumption. A modern
deep survival analysis approach related to Faraggi and
Simon’s work was described by Katzman et al. [59]. Here,
the authors construct a deep FFANN where the output of
the network is a single unit which predicts the log-risk func-
tion and can be used to extend Cox regression (DeepSurv; an
open source Python module). DeepSurv provides persona-
lised treatment recommendations and is capable of predict-
ing the effect of a specific patient’s characteristics on the
risk of failure. A practical extension of such work could
involve the use of convolutional neural networks on medical
imaging data for risk prediction (out of scope here). Very
recently, a multilayer deep learning Cox-based prediction
model (another extension of the linear function βTxi) was
proposed by Sun et al. [60] for high dimensional survival
data in a genome wide association study and was also
applied by Hao et al. [61] in ultra-high-dimensional geno-
mic data (number of predictors >105). It is shown that it
cannot only outperform several existing survival prediction
models (Random Survival Forest, Cox LASSO, Cox Ridge)
in terms of accuracy but also detect clinically meaningful
risk subgroups by effectively learning the complex structures
among genetic variants.

Biganzoli et al. extended the PLANN methodology to
competing risks (PLANNCR), in a study of primary invasive
breast cancer [62]. PLANNCR is an ANN for the joint
modelling of discrete cause-specific hazards and can be used
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for both discrete and grouped survival data. The output layer
contains multiple nodes (competing risks) that estimate dis-
crete conditional event probabilities. PLANNCR uses logistic
and softmax functions for the hidden and output layer,
respectively. The error function that is minimized corre-
sponds to the multinomial likelihood. The degree of
smoothing for output nodes is modulated by the number
of hidden nodes and the penalization of the error function
(weight decay in the loss function). PLANNCR can be
implemented using standard ANN software that is able to
accommodate multiple classification. Lisboa et al. published
an ARD extension of PLANNCR (PLANNCR-ARD) [63].
The authors apply the methodology for local and distal
recurrence of breast cancer, in an approach that requires
no prior domain knowledge and performs model selection
within a Bayesian framework. Kantidakis et al. performed a
simulation study [64] to compare the predictive perfor-
mance of PLANN original [20] and PLANN extended (1
hidden layer) [49] with Cox models for noncomplex clinical
data (small/medium sample size, low dimensional). Methods
were compared for scenarios where different percentages
(20%, 40%, 61%, 80%) of censored data were present. ML
and Cox models showed similar predictive performance on
simulated data for most scenarios. C-index, Brier score, or
Integrated Brier Score were used for the comparison. Results
of this study show that the statistical models were often bet-
ter calibrated.

Fornili et al. presented a simple FFANN for the purpose
of analyzing disease dynamics in a survival analysis context
[65]. This SNN, applied to breast cancer data—specifies,
for the output unit, the smoothed hazard as a function of
time interval and prognostic factors. This approach is
known as Partial Exponential ANN (PEANN), a nonlinear
extension of generalized linear models for right-censored
survival data [66] and a direct extension of the PLANN
method for piece-wise data. The network uses the logistic
and the exponential functions for the hidden and output
layers, respectively. Such method is best-suited to modelling
the hazard shape of diseases with a long follow-up and
allows for the exploration of nonlinear and nonadditive
effects.

Ching et al. developed Cox-nnet [67]—a new ANN
framework for patient prognosis using transcriptomics data.
This FFANN has an input layer, one fully connected hidden
layer with 143 nodes (set as the square root of more than
20000 input features) and one output “Cox regression” layer.
To avoid overfitting, different regularization methods are
employed, such as ridge (weight decay), dropout, and a com-
bination of ridge and dropout [68]. The author compared an
ANN with no hidden layer (shallow), a single hidden layer,
and two hidden layers, and found that a single layer neural
network had the best performance based on C-index.

Very recently, two novel deep learning approaches have
been published for dynamic survival analysis. Changhee
et al. proposed Dynamic-DeepHit for longitudinal and
time-to-event data with competing risks to issue dynami-
cally updated survival predictions for cystic fibrosis patients
[69]. This network is trained by leveraging a combination of
loss functions that capture the right-censoring, and the asso-

ciations of longitudinal measurements with disease progres-
sion. It provides a remarkable improvement in
discriminating individual risks of different causes of failure.
This model can also provide useful clinical insights by iden-
tifying covariates which are influential for different compet-
ing risks (risk predictions interpretation). In the same year,
Jarrett et al. developed temporal convolutional networks
for Alzheimer’s disease (called MATCH-Net) [70]. This
CNN is designed to capture temporal dependencies and het-
erogeneous interactions in covariates and patterns of miss-
ingness for personalised risk prognosis. Its performance is
compared with statistical and deep learning benchmarks
showing incremental sources of gain from various design
choices.

A critical appraisal was carried out to pinpoint current
limitations and identify future research directions. Our find-
ings are summarized in Table 4. Based on these findings, we
make the following recommendations. Complete and trans-
parent reporting of modelling steps and analysis is necessary
(e.g., more details on training and test data) to enable repro-
ducibility and to allow critical appraisal of the results by a
wider audience [71, 72]. In the event of missing data, a single
or multiple imputation approach should be used, prior to
SNN development (see also section “subsec:general_study_
characteristics”), to avoid discarding patients from nearly
complete records. Hyperparameter selection and training
should be more extensive with the performance criterion
for model development clearly reported. Careful tuning of
parameters can prevent overfitting and improves the gener-
alizability of the prediction model. When developing an
SNN, the following elements must be considered: the num-
ber of hidden nodes, the penalty terms, the activation func-
tions, and the optimizers. Of particular importance is the
choice of performance measure for model validation, which
we observed to be sometimes poorly chosen (see section
“subsec:model_validation”). A suitable performance mea-
sure should take into account the censoring mechanism
(see the book of Houwelingen and Putter [5]). Additionally,
model calibration should be assessed, preferably through cal-
ibration plots. In the studies of our review, the median

Table 4: Summary of the findings from the critical appraisal across
the 24 manuscripts.

Unclear addressing of missing data (42.9%) or ad-hoc methods
(23.8%)

Unclear reporting of hyperparameters (62.5%)

Unclear reporting of the performance criterion for model
development (25.0%)

Unclear scaling of prognostic factors (41.7%)

Unclear programming language for SNNs (29.2%)

Large variability and improper performance measures for survival
data

External validation for only 4 outcomes (11.8%)

No confidence intervals for the predictive measures (54.2%)

No calibration plots (54.2%)

No interactions in Cox regression or unclear reporting (89.5%)
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sample size was 920 patients, and the median number of
predictors was 7 (low-dimensional data). Larger datasets
and/or more predictors are needed for better model develop-
ment/validation and improved generalizability. These aspects
are of great value as suboptimal clinical prediction models are
responsible for research waste [57, 73]. Comparisons of SNNs
with conventional regression models should be made in a fair
manner, with the conventional models fully developed and
interactions and/or nonlinear terms included when appropriate.

When comparing SNN methods to traditional
approaches in simulation, scenarios with different sample
sizes, censoring percentages, and numbers of covariates
(fixed and/or time-varying) can be considered. Comparing
SNNs in low and high dimensional settings is relevant to
areas of study like bioinformatics. ANNs are often referred
to as “black boxes”, due to the lack of interpretability (ANNs
do not provide coefficients/hazard ratios as a Cox model
does). The more complicated (deep) an ANN is, the more
challenging interpretation of results becomes. As interpret-
ability is necessary for clinical decision making, more
emphasis should be placed on the development of methods
which can facilitate SNN model interpretation. In section
“sec:applications”, we discussed several applications that
attempt to address this aspect. Olden et al.’s article provides
a comparison of different techniques for ANN interpretabil-
ity (e.g., variable importance) [74].

In the studies considered in this review, variability of
performance (e.g., through the use of confidence intervals)
was not well documented. The studies that did employ con-
fidence intervals, typically used a resampling approach. Mul-
tiple resampling of all empirical data using bootstrapping
can be an advantageous approach when sample size is lim-
ited, as it avoids the need to split the data for model develop-
ment. While confidence intervals are necessary for model
assessment, obtaining them can be computationally expen-
sive. Further methods and guidelines for obtaining confi-
dence intervals are needed. Another aspect which is under-
reported in studies concerns the stability of SNN. ML tech-
niques are algorithmic approaches that inherently rely on
random processes to obtain generalisable models (e.g., for
ANNs, values of weights are randomly initialized). Conse-
quently, when rerunning the same model on the same data,
there will be variations in output. In the event of a well-
tuned model, these variations will be small and the model
can be described as stable. In contrast, an incorrect approach
to hyperparameter tuning may result in an unstable model
with large variations. When validating an SNN, we recom-
mend rerunning the model several times under the same
parameterisation, to evaluate the stability of network’s
performance.

In section “sec:methodologies”, 13 methodologies were
presented for survival prediction with SNNs. Some studies
predict survival probabilities in the units of the output layer,
which allows the estimated survival curves to be nonmono-
tonic (such networks cannot be forced to generate monoton-
ically decreasing output units that predict survival
probabilities) [10]. This can be avoided by predicting condi-
tional hazard probabilities instead (from which survival
probabilities can be readily calculated), as it is done, for

example, in the PLANN and PLANN-ARD methods. We
recommend that future ANN methodologies either estimate
the (smoothed) hazard function in the output unit(s), or
alternatively add constraints to ensure monotonicity of the
survival curve. Furthermore, in this review, all neural net-
works were developed for right-censored data. Future work
should focus on building SNNs for other types of censoring
such as left or interval censoring, which are less common in
practice compared to right censoring.

SNNs developed in recent years usually havemore compli-
cated structures and make use of multiple hidden layers (deep
learners). It should be noted, however, that increasing the
complexity of an ML prediction model does not necessarily
translate to improved performance on new clinical data. An
increase in the complexity, and by extent flexibility of a net-
work may produce a model that is too attuned to the training
data with poorer generalization to new data (overfitting),
resulting in less accurate survival probabilities than a simpler
network. Additionally, increasing complexity will pose addi-
tional challenges regarding interpretation. For clinical survival
data using prognostic factors, sample size and number of pre-
dictors is likely to be insufficient for employing such advanced
ML techniques. This may explain the frequent use of PLANNs
in applications, as a PLANN guarantees survival curve mono-
tonicity, relaxes proportional hazard assumption and employs
a relatively simple network structure.

7. Conclusions

Nowadays, prediction models are ubiquitous in a wide range
of research fields (e.g., medicine, engineering, and finance)
and are becoming increasingly relevant in the medical field,
as a result of the large-scale data collection and the increase in
biological knowledge. In this paper, we discussed clinical pre-
diction models with SNNs in the healthcare domain using
prognostic factors, which can be used as guidance for future
works. Light was shed on SNN approaches developed and
applied from 1990 to August 2021. We assessed various meth-
odological and practical aspects, including study characteris-
tics, model development/validation, and comparison with
Coxmodels. It is our opinion that, in the future, artificial intel-
ligence and related algorithms (e.g., ANNs and SNNs) might
become an integral part of personalised and evidence-based
medicine. This review and critical appraisal hopely provides
enough stimuli for researchers to be inspired from these
methods and seek for new developments.
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