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This research was to evaluate the effects of regular hemodialysis (HD) on the brain function of patients with end-stage renal
disease (ESRD). Resting-state functional magnetic resonance imaging (rs-fMRI) based on improved k-means clustering
algorithm (k-means) was proposed to scan the brains of 30 regular dialysis patients with end-stage renal disease (ESRD)
(experimental group) and 30 normal volunteers (control group). The proposed algorithm was compared with the traditional k-
means algorithm and mean shift algorithm and applied to the magnetic resonance scan of patients with ESRD on long-term
regular HD. The results showed that the neuropsychological cognitive function (NSCF) evaluation result of the test group was
much better than that of the control group, and the difference was statistically obvious (P < 0:05). The results of blood
biochemistry, Digit Symbol Substitution Test (DSST), and Montreal Cognitive Assessment Scale (MoCA) in the test group
showed no statistical difference compared with those in the control group. The running time of the improved k-means
algorithm was dramatically shorter than that of traditional k-means algorithm, showing statistical difference (P < 0:05).
Comparison among the improved and traditional k-means algorithm and mean shift algorithm suggested that the improved k-
means algorithm showed a lower error rate for image segmentation, and the differences were statistically remarkable (P < 0:05).
In conclusion, the improved k-means algorithm showed better time efficiency and the lowest error rate in processing rs-fMRI
images than the traditional k-means algorithm and mean shift algorithm, and the effects of regular HD on the brains of
patients with ESRD were evaluated effectively.

1. Introduction

End-stage renal disease (ESRD) refers to the endogenous
creatinine clearance rate of the patient is less than 15mL/
(min 1.73m2) for continuous 3 months or more [1]. The
morbidity and mortality of ESRD have attracted the atten-
tion of relevant scholars around the world [2, 3]. Studies
have shown that the incidence of cognitive impairment in
the complications of ESRD patients accounts for about
15% ~32% of all patients, but the pathological mechanism
of how to cause brain damage in patients with cognitive

dysfunction is currently unclear [4]. For most ESRD
patients, HD is a common treatment to prolong the survival
time of patients, but HD is not only a traumatic treatment
but also causes psychological discomfort to patients. Accord-
ing to related reports, the risk of cognitive dysfunction in
patients receiving HD treatment is as high as 60%, and most
patients may have cognitive dysfunction in the early stage,
such as coordination movement disorder, memory decline,
executive disorder, and control ability disorder [5]. In the
later stages of the disease, as the frequency of HD treatment
continues to increase, patients may experience severe
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neurological damage, such as brain atrophy and cerebral
infarction [6]. Therefore, how to quickly detect and diagnose
the symptoms and signs of the early nervous system of
ESRD patients, improve the prognosis of the patients, and
reduce the mortality of the disease are the key issues of many
scholars.

At present, there are few methods for evaluating the
nervous system damage of ESRD patients and analyzing
the cognitive dysfunction of patients receiving HD treat-
ment, and most of the evaluation and analysis methods are
cumbersome and the judgment results are inaccurate [7].
Some scholars are inspired by the application of magnetic
resonance imaging (MRI) to the brain nervous system, sug-
gesting that ESRD patients can use MRI for head examina-
tion before and after HD treatment, and then compare the
characteristic changes of head MRI before and after treat-
ment [8, 9]. Although MRI head examination is more sensi-
tive to some organic brain lesions, it has deficiencies in some
minor lesions, such as microvascular lesions [10, 11]. The
emergence of resting-state functional MRI (rs-fMRI) has
been widely used in neurology. Compared with MRI, rs-
fMRI has high temporal and spatial resolution, and its prin-
ciple is to use the brain blood oxygen level-dependent effect.
Under the stimulation of external factors, the hemoglobin
concentration in different brain regions will change, which
will cause the magnetic susceptibility around the corre-
sponding part to also change, resulting in a change in the
blood oxygen level dependent (BOLD) signal; and rs-fMRI
indirectly reflects the brain activity under external stimuli
by measuring the change of BOLD signal [12–14]. rs-fMRI
cannot be restricted by test requirements and command
tasks, its operation is simple, and reproducibility is high, so
it can provide a reliable basis for the early and late develop-
ment of ESRD patients [15].

Although rs-fMRI can bring convenience to the clinical
diagnosis and treatment of ESRD patients with neurological
disorders, its image segmentation is still affected by the
equipment itself and external factors. Regarding how to
accurately segment MRI images, some scholars have applied
clustering algorithms [16–19]. The k-means clustering (k-
means) algorithm is a simple iterative clustering algorithm
that uses distance as a similarity indicator to find K classes
in a given data set. The center of each class is obtained
according to the mean of all the values in the class, and the
center of each class is described by the cluster center. The
algorithm overly relies on the choice of the initial center, is
more sensitive to skew distribution, and easily loses some
tiny clustering data [20–23].

To sum up, the trend of k-means for data image process-
ing is increasing, but the algorithm is less researched in the
module of rs-fMRI to diagnose the impact of regular HD
on the brain function of ESRD patients. Moreover, due to
the limitations of this algorithm, there are many defects in
clinical application. As a result, the k-means algorithm was
improved and applied in the diagnosis of ESRD patients
with rs-fMRI in this research. In addition, the mean shift
algorithm, the original k-means algorithm, and the
improved k-means algorithm were compared to prove the
superiority of the proposed algorithm. What’s more, effects

of regular HD on the cognitive neurological function of
ESRD patients were analyzed by dividing the subjects into
a test group and a control group and scanning the brains
of all subjects with rs-fMRI.

2. Materials and Methods

2.1. Research Objects. Experimental group: a total of 30
ESRD patients who received regular HD treatment at the
hospital from June 2018 to June 2020 were screened, and
they all met the requirements of the test, including 13
females and 17 males. Control group: 30 volunteers from
the hospital were selected during the same period. After
physical examination, 30 volunteers were healthy, including
14 males and 16 females. This research had been approved
by the ethics committee of the hospital. All participants
signed the written informed consent forms and volunteered
to participate in this research.

2.2. Inclusion and Exclusion Criteria. The inclusion criteria
for patients in the test group were given as follows: patients
with complete clinical data related to the trial; patients with
ESRD, and the diagnostic criteria of which met the interna-
tionally recognized chronic kidney disease guidelines formu-
lated by the American Kidney Foundation; patients aged
40~60 years old; patients with education years of more than
6 years; patients who were right-handed; and patients who
signed the informed consent forms. The exclusion criteria
were given as follows: patients with complicated major dis-
eases, such as severe myocardial infarction, cerebral infarc-
tion, and heart disease; patients with severe mental
disorders that cannot cooperate with the trial; patients with
pacemakers who were not suitable for MRI; patients with
left-handedness; and patients who had not signed the
informed consents.

The inclusion criteria for subjects in the control group
were described as follows: those whose basic clinical data
met the screening requirements of the trial; those who did
not suffer from major diseases; those who were right-
handed volunteers; and those who had signed the informed
consents, while the exclusion criteria were defined as those
who were unwilling to cooperate with the test; those who
had major diseases; those who were severely addicted to
tobacco and alcohol; those who were not suitable for MRI;
and those who had not signed the informed consents.

2.3. Neuropsychological Test. Three hours before receiving
the rs-fMRI scan of the brain, subjects in both groups
received the Digital Symbol Substitution Test (DSST) and
Montreal Cognitive Assessment (MoCA). The test time
and environment for the two groups of subjects should be
kept as same as possible, and the researchers who assisted
in the test can strictly follow the specific operations and
scoring instructions of the two scales. The main content of
the DSST test was visual memory ability, thinking activity,
and attention. The test contents of the MoCA scale included
attention and concentration, executive ability, memory, lan-
guage, visual structure branch ability, abstract thinking, cal-
culation ability, and orientation ability.
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2.4. K-Means Algorithm. The principle of the initial k-means
algorithm is to classify data sets into different categories
through an iterative process, so as to optimize the clustering
ability. This is an iterative process that keeps the cluster cen-
ter moving. It moves the cluster center to the average posi-
tion of the cluster including pixels and then resegments the
members within the cluster. Figure 1 is a demonstration of
the clustering process using the k-means algorithm.

Although the k-means algorithm can classify data sets
through continuous iteration, it cannot determine its own
K value, so the initial cluster center must be determined
before the surgery. The human brain is composed of many
tissues and blood vessels. When MRI scans the brain, the ini-
tial clustering can be bone, soft tissue, fat, regional back-
ground, etc. It can get the image as shown in Figure 2.

The basic idea of the k-means algorithm is to divide the
data into K categories on the basis of minimizing the error
function. The processing process of the algorithm was
described as follows. Firstly, the initial cluster center and
the number of K initial clusters were defined, and then each
data in the data set was assigned to the nearest cluster center
according to the proposed standard. If the data set Y = fx1

, x, x3⋯⋯xi ⋯ xng was divided into K categories, the cluster
center was M = fc1, c2⋯,cN⋯,cKg. The data diNðxi, cNÞ was
to represent the distance between xi and its corresponding
cluster center cj, and the sum of the distances between all
data points in the data set and the type of cluster center
could be represented by the objective function H:

H = Σ
K

h=1
Σ

i,iϵch
dih xi, chð Þ: ð1Þ

The smaller the objective function H, the more compact
the clustering and the better the clustering quality. When the
Euclidean distance was selected as the distance between the
data xi and its corresponding center chh, x

h
i was the data

sample belonging to cluster h, and nh was the number of
samples in cluster h:

H = Σ
K

h=1
Hn = Σ

K

h=1
Σ

i,iϵch
xhi − ch

�
�
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: ð2Þ

Figure 1: The clustering process of initial k-means algorithm.

(a) (b)

Figure 2: MRI scan of a patient’s brain. (a) was a normal MR scan; (b) was an MRI scan after k-means clustering.
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To minimize the objective function, each cluster center
can be expressed as follows:

ch =
1
nj

Σ
nh

i=1
xhi : ð3Þ

After the self-defined cluster center k-means algorithm
was improved, the algorithm flow is shown in Figure 3:

2.5. MRI Examination. The rs-fMRI images of all the
research subjects were acquired with 3.0T MRI scanner,
and the head coil was a 12-channel phased array. The scan-
ning process was strictly controlled and operated by a
member and sequence. The ordinary MRI detection was per-
formed on the brain of all subjects. The scan sequence
included axial T2-weighted imaging, fluid-attеnuatеd invеr-
siоn rесоvеry (FLAIR) imaging, diffusion-weighted imaging
(DWI), and high-definition sagittal T1-weighted imaging
sequence, excluding craniocerebral tumors, cerebral paren-
chymal hemorrhage, acute and old cerebral infarction, and
brain trauma, and other organic diseases. The earplugs were
put in the subject’s ears before scanning to reduce scanner
noise, prevent head movement, and minimize movement
artifacts. During the scanning process, the persons were
required to close their eyes, breathe calmly, and were in a
relaxed state without any thinking or sleep.

Preprocessing is to select statistical parametric map-
ping (SPM) 12.0 software, REST software package, and
data processing assistant for resting-state fMRI (DPARSF)
under the matrix laboratory (Matlab) 2012 software plat-
form the software conducts process-style exploration on
RS-fMRI data. The experienced brain personnel was
arranged to perform manual analysis and evaluation of
the scanned images.

2.6. Observation Indicators. The relevant clinical data of all
subjects were collected. All patients with ESRD underwent
blood testing to check various biochemical indicators: serum
potassium (K), serum calcium (Ca), serum creatinine (SCr),
blood urea nitrogen (BUN), total cholesterol (TC), hemoglo-
bin (Hb), and red blood cell (RBC). All subjects completed
neuropsychological cognitive function assessments, includ-
ing the MoCA scoring scale. All subjects completed rs-
fMRI scans, and ESRD patients completed rs-fMRI scans
before blood collection.

2.7. Statistical Analysis. The SPSS 22.0 software was used to
statistically analyze the differences in relevant clinical data,
blood biochemistry test results, and neuropsychological
test results between the two groups. The normality and
homogeneity of variance tests were performed on the mea-
surement data of the two groups of age, education level,
neurocognitive scores, and blood biochemical indicators,
and the data complying the normal distribution were
expressed in the form of mean± standard deviation, while
data not complying the normal distribution were described
in the form of median/quartile. When indicators of two
groups were compared, two independent sample t test
(data obey normal distribution and uniform variance),

rank sum test (two groups of data do not conform to
normal distribution or conform to normal distribution
but uneven variance), and chi-square test (compared to
gender) were adopted. The two-sample t-test was adopted
to test the difference in the data components between the
two groups, ignoring the covariates such as age, gender,
and educational level, and the union of the single-sample
t-test results was adopted to compare only the DMN
components. When P < 0:05, the difference was considered
to be statistically significant, the Alpha Sim correction was
adopted, and cluster size was >49. P < 0:05 indicated that
the difference was statistically significant.

3. Results

3.1. Comparison on Running Time of Improved and
Traditional K-Means Algorithms. The improved k-means
algorithm for customizing the initial center and the tradi-
tional k-means algorithm was adopted to process the two
256× 256 images and two MRI brain scans with a size of
512× 512 simultaneously. As shown in Figure 4, the
improved k-means algorithm was up to 8 seconds faster
than the traditional k-means algorithm, and the difference
was statistically visible (P < 0:05).

Start

Whether to meet the threshold, if otherwise,
redistribute the data to the nearest cluster
 

Recalculate cluster centers

Enter the number of clusters N

Initialize N cluster centers

Assign data to the nearest cluster center

Output clustering
resultsnearest cluster 

Figure 3: The operation flow chart of the improved k-means
algorithm for custom clustering centers.
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3.2. Comparison on Segmentation Error Rate among the
Traditional and Improved K-Means Algorithm and Mean
Shift Algorithm. The mean shift algorithm [24] was intro-
duced and compared with the improved and traditional k-
means algorithms in the term of segmentation error rate,
and the results are illustrated in Figure 5. It was found that
among the three algorithms, the segmentation error rate
was the lowest for the improved k-means algorithm pro-
posed in this research, which was 16.3%; the highest seg-
mentation error rate was found in the traditional k-means
algorithm (25.33%); and that of the mean shift algorithm
was centered at 19.2%. As shown in Figure 5, the differences
were statistically significant (P < 0:05).

3.3. Basic Clinical Data of the Two Groups of Subjects. There
were 60 subjects in this research, including 30 ESRD
patients in the test group and 30 volunteers in the control
group. There were 13 females and 17 males in the test
group, and 14 females and 16 males in the control group.
The average age of patients in the test group was 52.34
± 10.23 years old, the average course of disease was 6.63
± 1.74 years, the average years of education were 10.03
± 3.27 years, the average height was 16.5± 3.08 dm, and
the average weight was 62.43± 8.64 kg. The average age,
years of education, height, and weight of patients in the
control group were 49.37± 12.13 years old, 10.11± 3.46
years, 16.6± 4.15 dm, and 63.56± 9.08 kg, respectively. As
shown in Figure 6, there was no observable difference
between the two groups of subjects in age, years of educa-
tion, height, and weight (P > 0:05).

3.4. Test on Neuropsychological Cognitive Outcome. The sub-
jects in test group and the control group were tested on the
DSST scale and the MoCA scale before the rs-fMRI scan.
The test group showed an average of 31.3 points on the
DSST scale and an average of 22.43 points on the MoCA
scale, while the DSST scale averaged 45.6 points, and the
MoCA scale averaged 27.36 points in the control group. As
shown in Figure 7, the test results of the DSST scale and
MoCA scale were greatly different between the two groups
(P < 0:05).

3.5. Correlation between Psychological Test and Blood
Biochemistry Test Results. The correlation between the
blood biochemistry results obtained after blood sampling
and the DSST scale and MoCA scale was analyzed. It
was found that the correlation coefficients between MMAE
scale and K, Ca, SCr, BUN, TC, Hb, and RBC were -0.01,
-0.25, -0.04, -0.117, 0.22, 0.071, and 0.09, respectively,
while the correlation coefficients between MoCA scale
and K, Ca, SCr, BUN, TC, Hb, and RBC were -0.22,
-0.33, -0.01, -0.112, 0.12, 0.18, and 0.13, respectively. As
illustrated in Figure 8, there was no statistically remarkable
correlation between the blood biochemistry results and the
test results of the DSST scale and the MoCA scale
(P>0.05).

3.6. Analysis on the Difference in Functional Connectivity
between Two Groups. Two-sample t-test was performed
on both the test group and the control group to obtain
the functional connectivity difference diagram of the two,
as shown in Figure 9. Compared with the control group,
the brain area with reduced functional connectivity was
located in the precuneus/posterior cingulate gyrus, and
the increased brain area was located in the right medial
prefrontal cortex in the test group; in addition, the func-
tional connectivity of the different brain areas was statisti-
cally significant (P < 0:05).

4. Discussion

In this research, the basic clinical data of the subjects in
different groups were compared, and the results showed
that the differences between the two in gender, age, height,
and weight were not significant statistically (P > 0:05). The
results of the DSST scale and MoCA scale of the two
groups of subjects were compared, and the results showed
that the neuropsychological cognitive test scores of ESRD
patients were much lower than those of the control group,
showing statistically obvious difference (P < 0:05). In addi-
tion, the correlation between neuropsychological cognition
results and blood biochemistry examination results of
ESRD patients was analyzed. The results revealed that
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the two were not related and the difference was not statis-
tically remarkable (P > 0:05). HD treatment is an impor-
tant therapy to extend the life of ESRD patients, and the
filtration of metabolites in patients is still not perfect.

The results suggested that the SCr and BUN levels in
ESRD patients after HD treatment were relatively high.
The previous studies showed that SCr and BUN were
related to the damage of the brain function system in
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Figure 5: Comparison on segmentation error rate among three different algorithms. ∗Compared with other algorithms, P < 0:05.
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patients with ESRD [25, 26]. After discussion, the main
reason for the difference between this research and the
previous results is that the patients also received HD treat-
ment during the rs-fMRI examination. Oliveira et al. [27]
used the low-frequency oscillation amplitude algorithm to
research the fMRI of ERSD patients during HD treatment
and found the difference between the ESRD patient group

and the healthy control group was not obviously con-
nected with SCr and BUN. The reason for this result
may be that the SCr and BUN levels of ESRD patients
are controlled at relatively stable values during regular
HD, and the brain activity of ESRD patients has a certain
tolerance to long-term high SCr and bun levels. Sprick
et al. [28] showed that ESRD patients undergoing
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Figure 8: Correlation between the blood biochemistry results and the DSST scale and MoCA scale.
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maintenance hemodialysis have multiple cognitive impair-
ments, such as cognitive fluctuations, and the main clinical
manifestation is the improvement of executive ability,
which may be related to changes in the accumulation of
toxic metabolites in ESRD patients during HD [29].

Besides, the comparison on running time showed that
regardless of the size of the image, the k-means algorithm
based on custom clustering centers was more efficient,
which was similar to the results of Krishan et al. [30].
The traditional k-means algorithm is affected by the initial
clustering center during segmentation, and its segmenta-
tion result is not ideal. In addition, the algorithm ignores
the position information of the image, which leads to a
high segmentation error [31]. Compared with the mean
shift algorithm, the k-means algorithm based on custom
initial clustering centers proposed in this research had a
better effect on image segmentation. When performing ini-
tial segmentation of the image, this improved k-means
algorithm makes full use of the distribution information
of the data set and selects the data object with relatively
large local density as the initial clustering center, thereby
optimizing the algorithm and reducing the possibility of
dividing the image by mistake. This method of finding
the initial cluster centers is more efficient than the random
method, and it is not easy to fall into a local minimum,
making this experiment more stable [32, 33].

5. Conclusion

This research explored the effect of regular dialysis on the
cranial nerves of patients with ESRD based on rs-fMRI
and central k-means algorithm. It was found that this
improved k-means algorithm showed better time efficiency
and lower error rate when rs-fMRI was adopted to
diagnose the effect of regular HD on the brain function
of ESRD patients. Compared with normal volunteers,
ESRD patients had poor neuropsychological cognitive
function. The rs-fMRI scan of the brain showed that the
abnormal brain area of the experimental group mainly
appeared in the default network area of the brain, namely,
the medial prefrontal lobe and the anterior cuneiform
lobe/posterior cingulate. This means that the abnormality
of FC in a certain part of the brain can detect the neuro-
pathological basis of early cognitive dysfunction in
patients. Due to the small number of samples in this
research, the samples and results showed low overall rep-
resentativeness. The inclusion criteria for ESRD patients
ignored the effects of antihypertensive and hypoglycemic
drugs taken by the patients on brain function, and the
indicators for neuropsychological cognitive assessment of
the two groups of patients were also relatively limited. In
the follow-up research, it would be necessary to increase
the blood biochemistry index for detecting normal volun-
teers and analyze its correlation with the results of neuro-
psychological cognitive assessment. In conclusion, this
research provided data support for the clinical rs-fMRI
diagnosis of the effect of regular HD on the brain function
of ESRD patients and the mechanism of the occurrence of
cognitive dysfunction in patients.
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