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Diabetic retinopathy (DR) caused by diabetes occurs as a result of changes in the retinal vessels and causes visual impairment.
Microaneurysms (MAs) are the early clinical signs of DR, whose timely diagnosis can help detecting DR in the early stages of
its development. It has been observed that MAs are more common in the inner retinal layers compared to the outer retinal
layers in eyes suffering from DR. Optical coherence tomography (OCT) is a noninvasive imaging technique that provides a
cross-sectional view of the retina, and it has been used in recent years to diagnose many eye diseases. As a result, this paper
attempts to identify areas with MA from normal areas of the retina using OCT images. This work is done using the dataset
collected from FA and OCT images of 20 patients with DR. In this regard, firstly fluorescein angiography (FA) and OCT
images were registered. Then, the MA and normal areas were separated, and the features of each of these areas were extracted
using the Bag of Features (BOF) approach with the Speeded-Up Robust Feature (SURF) descriptor. Finally, the classification
process was performed using a multilayer perceptron network. For each of the criteria of accuracy, sensitivity, specificity, and
precision, the obtained results were 96.33%, 97.33%, 95.4%, and 95.28%, respectively. Utilizing OCT images to detect MAs
automatically is a new idea, and the results obtained as preliminary research in this field are promising.

1. Introduction

Diabetic retinopathy (DR) is a serious and dangerous dis-
ease, and since the prevalence of DR is directly related to
the increasing prevalence of diabetes, it is growing rapidly
in different societies [1]. DR can damage the retinal blood
vessels and ultimately leads to blindness [2]. Microaneur-
ysms (MAs) are the first clinical signs of DR [3], and their
premature diagnosis can be very useful for preserving
patients’ vision [4]. Retinal MAs are small protrusions of
the capillary vessel walls and are most commonly seen in
the inner nuclear layer [5–7]. The number of MAs indicates
the likelihood of developing a more severe level of DR [8].
The fluorescein angiography (FA) imaging technique has
been used for over 50 years as the gold standard technique
for retinovascular imaging [9]. Ophthalmologists currently

use FA as the primary tool for the detection of MAs in the
images of DR patients. Although FA is capable of detecting
microvasculature details, it is an invasive and time-
consuming method that requires intravenous injection and
an expert photographer [10]. The imaging technique known
as optical coherence tomography (OCT) was introduced in
1991 [11] and subsequently became an essential tool for
clinical imaging [10]. OCT is a near-infrared light interfer-
ometry method developed for cross-sectional, noninvasive,
high-resolution, and three-dimensional tomography imag-
ing in biological systems. Therefore, the use of OCT images
as a new type of retinal imaging for automatic detection of
MAs could be a good approach to improve the current rou-
tine of MA detection.

What is done in this article as our main contribution to
the automatic detection of MAs is as follows:
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(1) At first, the dataset including FA and OCT images of
20 patients were collected for DR disease. The men-
tioned dataset contains one FA image and 31 OCT
B-scans per patient. It should be noted that the pro-
cess of automatic detection of MAs with the help of
OCT images has not been performed in the manner
used in this study. Hence, there is no comprehensive
database for this purpose

(2) The next step is the registration of OCT B-scans with
corresponding FAs. Since many MAs are well recog-
nizable in FA images, the MA and normal areas can
be found with the help of the registration of OCT B-
scans and the corresponding FA

(3) Afterward, the characteristics of each of the areas
related to the two categories, i.e., MA and normal,
have been extracted using the BOF method. It makes
sense to use local features to describe MAs after lim-
iting their location in the previous step

(4) In next phase, these characteristics have been used to
train the multilayer perceptron network, so that the
two regions could be separated. Then, the perfor-
mance of the classifier is compared with several dif-
ferent classifier techniques

(5) Finally, this trained model is used to automatically
detect MAs. In this way, vertical strips are extracted
from each OCT image as system input, and they
are automatically checked and labeled for MA
or normality

2. Related Works

Previous articles related to the automatic detection of micro-
aneurysms have commonly used FA, fundus, sometimes
optical coherence tomography angiography (OCTA), and
OCT imaging techniques.

2.1. FA Imaging. MAs in these images are often presented as
hyperfluorescent points on FA images, and some MAs are
associated with focal fluorescence leakage. Initially, MA
counting protocols were developed to monitor the progress
of DR during drug trials. Automated techniques were then
used for more accurate and faster MA detection [12–16].
Although FA shows a very clear image of the retina and
many MAs are detectable in these images, it is not well
accepted by patients because of its invasive nature. There-
fore, the researchers then used fundus images, which are a
less-invasive method than FA to detect MAs.

2.2. Fundus Imaging. Most of the previous works have been
done to automatically detect MA using fundus images. This
process in these images is usually done in two steps: (1)
extraction of MA candidates and (2) classification. The first
step requires image preprocessing to reduce the noise and
improve the contrast. Subsequently, candidate regions for
MAs are identified. Blood vessel segmentation algorithms
are then used to eliminate the blood vessels from the MA
candidates to reduce false positives, since many blood vessels

may appear as false positives in the pre-processed images.
Secondly, the classification algorithm is applied to the classi-
fication of these features for the candidates of MA and the
candidate of non-MA [17]. In recent works [18–34], the
same procedure has been applied by employing different
machine learning, deep learning, and image processing
methods. For example, in [35], a deep learning method
based on transformation splicing (TS) and multicontext
ensemble learning is proposed. TS balances the MA size
ratio and reduces blood vessel interference by transforming
the pixel distribution of each image and fortifying the char-
acteristics of hard samples. In this way, the model learns the
features of the improved image better. In this way, the multi-
context ensemble learning model used learns the features of
the improved image better. The final scores in this paper for
e-ophatha-MA, DiaretDB1, and ROC three public datasets
are 0.518, 0.429, and 0.306, respectively. Also, in [36], a
method for automatic detection of microaneurysms that
divides the original image into small independent images
and applies a local Fourier transform on them was proposed.
In addition, a statistical feature has been considered to check
for normality, and a new feature has been designed to show
the difference in every direction. Finally, a group of candi-
date points are extracted, and some features of these key
points are used for random forest classification. The FROC
curve score for the proposed method on the e-ophtha and
ROC datasets is 0.847 and 0.283, respectively. Also, the
AUC on the ROC dataset can reach 0.961. In [37], an effi-
cient local structure awareness-based combination of several
features for MA diagnosis was proposed. A local structure
property called a ring gradient descriptor (RGD) is used to
describe the structural differences between an object and
its surroundings. A combination of RGD with salience and
texture features was then used for a gradient boosting deci-
sion tree (GBDT) for classification. The AUC evaluation
results of this method on e-ophtha MA and ROC datasets
increased from 0.9615 to 0.9751 and from 0.9066 to
0.9409, respectively. In [38], a screening method using the
combined features of shape and texture is presented. A pro-
posed hybrid multikernel support vector machine classifier
is also used for classification. According to the checking
performed in this paper, the FROC score for ROC,
DIARETdB1, and MESSIDOR datasets are 0.503, 0.481,
and 0.464, respectively. The authors claim that the use of
the proposed algorithm on the AGAR300 dataset works bet-
ter in terms of FROC, AUC, F1 score, precision, sensitivity,
and specificity. In [4], fundus images were segmented using
particle swarm optimization. This method combines the
membership functions with high similarity data grouping
in clusters. The authors state that the accuracy score for
the DIARETDB0 database is 99.9 percent. In [39], a hybrid
feature embedding approach is proposed using pretrained
VGG-19 and Inception-v3 models. After evaluating this
method on “e-ophtha” and “DIARETDB1” datasets, accu-
racy scores 96% and 94% were obtained, respectively.

However, processing of fundus images is more challeng-
ing than FAs because different objects in fundus images may
be confused with diabetes lesions [33]. Furthermore, auto-
matic detection of MAs has always been a problem because
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of their very small size [32], interference with blood
vessels, and apparent contrast differences between MAs
[35]. Also, the major limitation of these images is that
they provide a two-dimensional view of the 3D retinal
texture [40].

2.3. OCTA Imaging. It should be noted that OCTA imaging
is also a new imaging technique that has become popular in
recent years. The 3D visualization provided by OCTA
images is useful for analyzing MAs and their spatial orienta-
tion [5]. MAs appear as saccular or fusiform in these images
[41]. Some previous studies have compared FA and OCTA
imaging and concluded that FA detects a higher number of
MAs than OCTA [42–44]. Measurement of relative blood
speed indicates that blood flow is slower in MAs [44–46].
Studies have also identified MAs without blood flow. As a
result, fewer MAs are detected in OCTA images because
OCTA is based on blood flow [45], and areas where blood
flow is slow may not be seen in these images [46]. Studies
show that OCTA is more effective in the diagnosis of MAs
than fundus imaging [47]. On the other hand, as described
in the text, in OCT images, MAs are seen as a reflection. If
these reflections are hyporeflective, they will less likely visi-
ble in OCTA images. But if they are hyperreflective, they will
often be visible in OCTA images, which indicates the rate of
blood flow in these MAs [48].

2.4. OCT Imaging. This imaging method is also a new imag-
ing technique that has received a lot of attention today.
Automatic detection of ocular diseases using OCT images
is still in its infancy because only academic research has
been published, and no commercial activity is available
[49]. Since OCT images facilitate the evaluation of retinal
morphology to microscopic resolution [14], it has been
attempted to use these images to detect various retinal mal-
formations such as glaucoma, diabetic macular edema
(DME), age-related macular degeneration (AMD), retinal
detachment, and diabetic retinopathy [50]. Most previous
works have focused on the analysis of OCT images on the
problem of dividing the retinal layers, retinal thickness
measurement, or segmentation of specific lesions such as
cysts [49]. OCT is more desirable than fundus imaging
because it provides in-depth and cross-sectional informa-
tion from the eye [51].

In recent years, researchers have investigated the poten-
tial of using SD-OCT images to detect MAs and have
attempted to identify the apparent features of diabetic MAs
in these images. In these studies [52–56], the following
results have been achieved for the appearance of MAs:

MAs have a relatively circular and capsular structure and
are mainly located in the inner nuclear layer (INL) layer and
the deeper layers than the INL layer. MAs increase the thick-
ness of the retina, and in some cases, reflectivity points are
found in their vicinity.

Preliminary studies have shown that SD-OCT is a
reliable and promising criterion for further investigation to
diagnose MAs and also has a good correlation with the
equivalent FA image [57].

3. Methods

The method proposed in this paper for automatic detection
of MAs in OCT images is divided into two general stages of
training and testing (Figure 1). Each of these steps con-
sists of several sections, which will be described in more
detail below.

FA and OCT images used in this study were captured
using the Spectral HRA2/OCT Heidelberg imaging device.
For this study, late frames of FA imaging of 20 patients with
DR were used. Equivalent to each FA image, 31 OCT B-scan
images were produced by the imaging unit, and each B-scan
dimension was 496 ∗ 768 pixels.

3.1. Training. In the training phase, the FA images and their
equivalent OCT images are initially considered as inputs of
the system. The following are the three steps of system training.

3.1.1. Preprocessing. As it is shown in Figure 1, the prepro-
cessor consists of two parts: registration of OCT B-scans
with corresponding FAs and in the next step extraction of
MA and non-MA areas from B-scan images.

(1) Registration. Due to the fact that MAs are well visible in
FA images related to diabetic Retinopathy patients, with the
help of FA and OCT images registration, areas containing
MA can be found on OCT images. Since OCT images pro-
vide a cross-sectional and depth view of the retina and the
FA images represent a surface view of the retina, the two
images have different dimensions and cannot be directly
aligned together [58]. As stated, the dataset used in this
study was prepared by the Heidelberg device, which enables
simultaneous scanning laser ophthalmoscopy (SLO)/OCT
imaging. SLO provides real-time images from the surface
of the retina which is corresponding to the OCT images.
Since these two image groups (SLO and OCT) are made
from a unit light source, they are pixel-to-pixel aligned. So,
by registration of SLO and FA images, OCT B-scans and
FAs will be aligned. For this reason, the multistep
correlation-based technique has been used for the registra-
tion of FA and OCT images [59]. This algorithm consists
of two phases: (1) phase I: general registration (rigid analy-
sis) and (2) phase II: local registration in areas with MA
(nonrigid analysis) which are briefly explained below:

Phase I: first, the vein network is extracted from each
image using the Dijkstra Forest Exploratory Algorithm used
in [60], and the correlation of FA and SLO images is calcu-
lated using a multistep correlation-based method at different
angles and dimensions. Then, the most appropriate affine
parameters are identified with the highest correlation as a
result of the algorithm and used in subsequent phases

Phase II: a patch-based local registration algorithm with
several different accuracies is used to improve the results of
the first phase of registration in areas with MA. After this
step, MA areas can be identified in B-scan OCT images.
The result of the registration and the MA regions identified
on the FA image and its equivalent B-scan for an example
set of the images used in this study are shown in Figure 2
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(2) Crop Area including MA and Normal B-Scan Images.
After identifying the MAs in FA images and applying the
registration stage, the corresponding areas can be extracted
from the B-scan images (the red strip in Figure 2(b)). A
range of 30 pixels is considered for each detected MA in
the B-scan image, and unnecessary areas are removed from
the top and bottom of the region of interest (ROI) to
preserve useful information around the retinal layers. There-
fore, for each desired area, the vertical bar consists of 170
∗ 30 pixels. Normal areas will similarly be extracted from
the B-scan image. Figure 3 shows two areas extracted from
the MA and normal areas from a sample B-scan image. In
total, 92 MA areas and 110 normal areas were used for this
study. Some areas were excluded from the MA category
due to other lesions related to other diseases. 70% of data
are randomly selected for training, 15% for test, and 15%
for validation.

3.1.2. Bag of Features. Feature extraction: in this study, the
dense SURF local descriptors have been used to identify
and describe image features. For this purpose, the image is
batched to a ½8 ∗ 8� grids, and key SURF points are extracted
from image patches to describe the distribution of local light
intensity. This way, local descriptors will be able to identify
and localize key points in the horizontal and vertical direc-
tions of image patches. Since these features are invariant to
scale and rotation and are resistant to noise [61], small
MAs with low contrast will also be detectable. As shown in
Figure 4, the key points are extracted from the image
batches, and for each key point, the square is aligned with
the point direction (the point direction is obtained during
the previous steps of the SURF algorithm). This square is
then divided into 4 × 4 subregion. This preserves important
spatial information around the point. Then, Haar wavelet
responses are obtained for each subregion. dx is the Haar
wavelet response in the horizontal direction and dy is the
Haar wavelet response in the vertical direction. So, for each
part, the sum of dx, ∣dx ∣ , dy, and ∣dy ∣ is considered as
the descriptor vector.

Quantization and building visual vocabulary: In the
visual word construction phase, the number of features
extracted from the previous stage will be reduced. In this
way, the feature vectors created by SURF must be grouped

into several clusters by a clustering algorithm. In this study,
the K-means++ clustering algorithm with the Euclidean dis-
tance criterion is used. The reason for choosing this cluster-
ing method is its simplicity. The K-means++ clustering
algorithm performs better than the original K-means
method by changing the way of the initialization of the
clusters’ centers [62]. In other words, visual words are the
centers of the clusters.

The sum of the events of each visual word (each cluster)
for all images in each category is shown in Figure 5. These
two charts show the difference between the two categories
of images for 100 visual words.

3.1.3. Classification. In visual word-based image classifica-
tion, a training set of images are given to the classifier in
the form of term vectors. In this study, a multilayer percep-
tron (MLP) network with a hidden layer, and 10 neurons
were used for the classification process. As can be seen in
Figure 6, the use of 10 neurons in the hidden layer is the
most appropriate choice. In the experiments performed,
the MLP classification method showed better performance
than other classification algorithms such as Gaussian SVM,
linear SVM, KNN, and Naïve Bayes.

(1) Test. In the testing phase, the following steps will be done
for each OCT image as input to identify the MAs:

(1) Extraction of the vertical strips from each B-scan
image

(2) Encoding each extracted strip using the dictionary
created in the training step. In this way, first, the fea-
tures of each strip are extracted and then assigned to
the nearest centers of the clusters. As a result, a
visual word vector is created for the strip

(3) This term vector is given to the MLP network
trained in the previous step to assign a label (MA
or non-MA) to it

4. Results

To evaluate the proposed method, several classification
methods were tested in comparison to a multilayer

Input: FA and
OCT images Registration Crop area including MA

and normal B-scan images: BoF Classification
Output:

classification of MA
and normal regions

Training

Pre-processing

OCT image
Crop the input

image to vertical
strips 

Using the
trained model

Output:detect
MA areas 

Test

Figure 1: The general diagram of the method used in this study.
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perceptron network. The comparison of these methods for
the criteria of accuracy, sensitivity, specificity, and precision
are presented in Table 1.

Besides, the impact of the existence of a BOF technique
to achieve the desired result was evaluated. So, instead of
using BOF, the image features were first extracted using
SURF. Then, PCA is applied to reduce a large number of
features. Finally, these feature vectors are given as input to

different classifiers including MLP, Gaussian SVM, linear
SVM, KNN, and Naïve Bayes. The average of the measured
criteria for these classifiers is shown in Table 1. These results
show a decrease in accuracy compared to when using BOF.

Also in Figure 7, a bar chart is plotted for each criterion
to better compare the methods described in Table 1.

5. Discussion

Given that diabetes is a rapidly growing disease, the tradi-
tional diagnosis of DR is very time-consuming, labor cost,
and requires expert people. Therefore, a system for screening
and monitoring diabetic patients and automatic diagnosis of
DR would be beneficial. Since MAs are the first clinical signs
of DR, their diagnosis can help early diagnosis of DR [33].

Based on these results, the use of MLP as the classification
algorithm in this method yields the best results. Then, the
SVM classifier with a Gaussian kernel comes in the second.

In the published ratings for DR, the difference between
the two levels without DR and mild nonproliferative DR is
the presence or absence of MA. Therefore, if there are only
MAs in an image and the system fails to detect them, the
patient is diagnosed mistakenly without DR, causing the

(a) (b)

Figure 2: The FA image (a) and the B-scan image corresponding to the yellow horizontal line displayed on the FA image (b). The location of
MA is shown as a red circle in (a) image and red lines in (b) image.

(a) (b)

Figure 3: Extraction of MA (a) and normal (b) areas from a B-scan image. In both cases, the middle image is an area of 30 pixels extracted
from the original image, and in the right image, unnecessary parts are removed from the top and bottom.

Figure 4: Point descriptors produced by SURF. On the left image,
the key points of a sample image with an ½8 × 8� grid are shown, and
how the SURF descriptor vector is produced is shown in the middle
of the figure.
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Figure 5: Sum of events of all visual words in each category. The image (a) is for the MA class, and the image (b) is for the normal class.
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Table 1: Evaluation of the proposed method.

Classification method
Evaluation criteria

Accuracy Sensitivity Specificity Precision

1 BOF+MLP 96.33% 97.33% 95.4% 95.28%

2 BOF+Gaussian SVM 91.63% 88.27% 95.02% 94.65%

3 BOF+linear SVM 91.13% 86.52% 95.78% 95.40%

4 BOF+KNN 84.19% 73.14% 95.28% 93.95%

5 BOF+Naïve Bayes 87.75% 85.65% 89.91% 89.48%

6 PCA+MLP 92.52% 93.93% 92.22% 92.36%

7 PCA+Gaussian SVM 83.38% 85.53% 81.28% 82.16%

8 PCA+linear SVM 80.94% 77.77% 84.15% 83.19%

9 PCA+KNN 57.32% 14.77% 99.39% 96.32%

10 PCA+Naïve Bayes 76.13% 76.14% 76.15% 76.14%
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disease to become more severe and elevated to a high level in
the next visit. This demonstrates the importance of automatic
MA detection algorithms and their accuracy and sensitivity.

In the “Introduction” section of this article, the superior
applicability of OCT as a screening method and its advan-
tages over fundus photography in DR screening courtesy of
its strength in providing in-depth information from the ret-
ina have been explored. Therefore, in this article, it was
decided to OCT imaging over fundus photography.

6. Conclusion

Due to the above reasons, it was decided to use OCT images
for the automatic detection of MAs. For this purpose, at first,
FA images have registered with OCT B-scans. By doing so,
the MAs regions are identified in OCT B-scans and can be
analyzed. SURF algorithm has been used to extract the fea-
tures that can detect precise local information from the
MA regions and distinguish areas containing MA and nor-
mal well. Visual words were then created using the BOF
method. Utilizing the BOF method significantly improves
the results. Afterward, a multilayer perceptron network was
applied to classify these areas using these visual words. The
evaluation criteria reviewed show suitable performance for
the method proposed in this study. In this paper, it was
shown that in addition to identifying areas with clear signs
of MA, even areas that do not have clear signs of MA and
are not visible to the human eye can be identified with the
help of this method. These areas can be identified with the
help of features extracted from OCT images and machine
learning algorithms.

This research is a preliminary study to show that OCT
images can be used to detect MAs. However, this method
is not without its caveats. Limitations of this method include
the following: lack of suitable and comprehensive data for
this purpose and incorrect diagnosis of MAs in some cases
due to the presence of lesions caused by other diseases and
blood vessels in OCT images.

To overcome these limitations, the following solutions
can be considered in future works:

(1) Expansion and improvement of datasets with the
help of various imaging devices or using GAN net-
works to generate more data

(2) Using information from the before and next B-scans
on top of the extracted features from each B-scan to
increase the accuracy and prevent the possible loss of
an MA

(3) Expanding the categories from two categories: “MA”
and “normal” to four categories: “MA,” “non-MA,”
“normal,” and “vessel,” so that the “MA” category only
includes areas related toMAwithout any other lesions
and vessels. The “non-MA” category includes areas
that do not have MA but may have another lesion or
vein. The “normal” category includes areas without
any lesions or vessels. Finally, the class of “vessel”
refers to the areas that only contain the vessel

(4) In addition to the above and as stated in [63], MAs
can also be examined in terms of flow, location,
and capillary density. Thus, although OCTA devices
are not as common as OCT devices in all medical
centers, they may be potentially helpful and worthy
of further research for MA analysis
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The dataset is available in misp.mui.ac.ir/bank.
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