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Background. Chromobox protein homolog 8 (CBX8), a transcriptional repressor, participates in many biological processes in
various carcinomas. Cell differentiation, aging, and cell cycle progression are examples of such processes. It is critical to
investigate CBX8 expression and its relationship with clinicopathological characteristics in liver hepatocellular carcinoma
(LIHC), kidney renal clear cell carcinoma (KIRC), and ovarian cancer (OV) to investigate CBX8’s potential diagnostic and
prognostic values. Methods. TCGA and CPTAC databases were used to compare the data between cancer and matched normal
tissues on RNA and protein expression profiles and their relevant clinical information to determine the relationship between
CBX8 and clinicopathological features. Kaplan–Meier analyses were used to assess CBX8 relationship’s with disease-free
survival (DFS), relapse-free survival (RFS), and overall survival (OS). The multivariate Cox regression analysis was used to
identify independent risk factors which affect prognosis. DNA methylation and genetic changes and their impact on prognoses
were evaluated by cBioPortal and MethSurv websites. Spearman’s correlation was used to determine the relationship of CBX8
expression with somatic mutation. Tumor immune estimation resource (TIMER) was adopted to investigate the relationship
between CBX8 and immune cell infiltration (ICI). CBX8-relevant genes and proteins are analyzed by EnhancedVolcano and
STRING databases. The gene set enrichment analysis (GSEA) was performed to investigate the potential functions of CBX8.
Results. CBX8 RNA and protein overexpression were confirmed in LIHC, KIRC, and OV (p < 0:05). High CBX8 was
significantly related to the clinical features and poor prognoses. The CBX8 genetic alteration rate was 3%. DNA methylation
was also associated with prognoses. CBX8 closely interacted with ICI, TMB, MSI, purity, and ploidy. GO analyses revealed that
CBX8-associated genes were enriched in biological processes, cell cycle regulation, and molecular functions. KEGG analyses
exhibited that CBX8 was gathered in signaling pathway regulation. GSEA revealed that cell cycle, DNA replication, and Wnt
signaling pathways were differentially enriched in the high CBX8 expression group. Conclusions. CBX8 could be a potential
diagnostic and prognostic biomarker for LIHC, KIRC, and OV cancers.
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1. Introduction

Chromobox protein homolog 8 (CBX8), regarded as human
polycomb 3, is the core member of CBX family [1]. CBX
proteins are involved in many biological courses, like pluri-
potency maintenance and self-renewal in developmental
program controls, cell fate decisions, and embryonic stem
cells. CBX8 regulates cell differentiation, aging, and cell cycle
progression in many malignant tumors [2–4]. Evidence
implies that CBX8 expression is closely related to tumor
generation and growth, but CBX8’s role in liver hepatocellu-
lar carcinoma (LIHC), kidney renal clear cell carcinoma
(KIRC), and ovarian cancer (OV) and its link with progno-
ses and clinicopathological characteristics of patients remain
elusive. In this study, relative clinical information and a sig-
nificant expression profile data of patients of LIHC, KIRC,
and OV were retrieved from TCGA [5, 6] for estimating
the clinical values of CBX8.

2. Methods

2.1. Comparison of the CBX8 Expression Level. Relative clin-
ical information and RNA expression profiles of LIHC,
KIRC, and OV patients were downloaded from TCGA data-
base (https://portal. http://gdc.cancer.gov/), and the infor-
mation of ovaries were obtained from GTEx database
(https://commonfund.nih.gov/GTEx/). The exclusion cri-
teria were as follows: (1) the loss of CBX8 expression; (2)
follow-up information absence in survival analysis; (3)
uncertain TNM phase; and (4) accompaniment of other
tumors. Finally, 374 LIHC tumor tissue vs. 50 normal liver
tissue, 539 KIRC tumor tissue vs. 72 normal kidney tissue,
and 379 OV tumor tissue vs. 180 normal ovary tissue were
included in our study. Protein expression profiles were
obtained through CPTAC database (https://cptac-data-
portal.georgetown.edu/datasets), and Human Protein Atlas
database (https://www.proteinatlas.org) was employed to
identify tumor-type-specific protein expression patterns.

2.2. Correlation Analysis of CBX8 with Clinicopathological
Characteristics and Prognoses. LIHC, KIRC, and OV patients
are divided into low and high CBX8 expression groups when
adopting optimal CBX8 mRNA expression as the cutoff
value based on R (version 4.0.5). Correlation of CBX8 and
clinicopathological characteristics such as age, gender, stage
of cancer, and histological grade were analyzed by utilizing
the chi-square test package of R. The prognosis of patients
(OS, RFS, and DFS) was evaluated by Kaplan–Meier plots.

2.3. Somatic Mutation Analysis. Somatic mutations were
visualized using cBioPortal (http://cbioportal.org/). Change
frequencies of CBX8 in LIHC, KIRC, and OV patients were
analyzed. Genomic mutations of CBX8 contained missense
mutation, deep deletion, and copy number amplification.
Kaplan–Meier plots were created to identify difference sig-
nificance between survival plots, and p < 0:05 was statically
evident.

2.4. DNA Methylation Analysis. The MethSurv database
(https://biit.cs.ut.ee/methsurv/) analyzed CBX8 gene DNA

methylation sites of LIHC and KIRC. The DNA methylation
data of OV was downloaded from TCGA database. More-
over, the overall survival of cg07581365 methylation was
evaluated among LIHC, KIRC, and OV.

2.5. Analyses of Associations between CBX8 Expression and
TMB, Microsatellite Instability (MSI), Purity, and Ploidy.
Tumor mutation burden (TMB) scores were computed by
R (version 4.0.5) [7]. The microsatellite instability (MSI),
purity, and ploidy of these three cancers were obtained from
the Sangerbox website (http://vip.sangerbox.com/login
.html). Through the Spearman correlation test, we assessed
the associations of CBX8 expression with TMB, MSI, purity,
and ploidy in LIHC, KIRC, and OV.

2.6. CBX8 Expression and ICI. Tumor immune estimation
resource (TIMER) (http://cistrome.shinyapps.io/timer) [8]
was adopted to infer the immune cell infiltration (ICI) and
its relations with CBX8 in LIHC, KIRC, and OV.

2.7. Analysis of CBX8-Related Partners. We tried to screen
out genes related to CBX8 expression and its targeting pro-
teins to obtain more accurate knowledge of CBX8 molecular
mechanisms in tumorigenesis. For RNA level, LIHC, KIRC,
and OV patients were separately divided into low- and high-
expression groups based on CBX8 medium expression as the
cutoff value based on R package, and then EnhancedVolcano
(version 1.11.3) was applied. After that, the STRING data-
base was utilized for protein level to obtain PPI network
information of CBX8 protein using the Cytoscape 3.5.0
instrument. Based on the integrated score, EED, BMI1, and
RNF2 proteins were considered closely interacting with
CBX8 protein. Then, Pearson’s correlation analyses were
conducted. Lastly, we divide LIHC patients into four groups
based on mRNA expression (LL: low CBX8 and low gene A;
LH: low CBX8 and high gene A; HL: high CBX8 and low
gene A; and HH: high CBX8 and high gene A). Then, we
created Kaplan–Meier plots and performed a log-rank test
to identify the survival curves of different combination
groups.

2.8. Gene Set Enrichment Analyses (GSEA). Gene Ontology
(GO) was applied to find the potential biological functions
of CBX8 by adopting the clusterProfiler package [9]. Kyoto
Encyclopedia of Genes and Genomes (KEGG) was curated
from the Molecular Signature Database to feature apparent
enrichment [10, 11]. By adopting the upper-tenth and
lower-tenth values of CBX8 expressions of LIHC, KIRC,
and OV patients, respectively, we performed GSEA (version
1.52.1) to decipher survival differences between high and low
CBX8 expression groups [12].

2.9. Statistical Analyses. R (version 4.0.5) was used for statis-
tical analysis. Comparisons between tumor and nontumor
tissues were conducted by the two-sided Wilcoxon test.
The chi-square test or Fisher’s exact probability method
was used to evaluate the correlation between CBX8 expres-
sion and clinical characteristics of patients. The Kaplan–
Meier method was applied to estimate patients’ OS, RFS,
and DFS. Univariate and multivariate Cox regression
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Figure 1: CBX8 mRNA expression in three types of cancers. (a–c) CBX8 mRNA expression in LIHC, KIRC, and OV tissues; (d–f) CBX8
mRNA expression in different clinical stages of tumors; ns: nonsignificant; ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, ∗∗∗∗p < 0:0001. Colored
images are available online.
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analyses were performed to identify independent prognostic
factors [13]. Clinicopathological parameters with p < 0:2 in
the univariate analysis were incorporated into the multivar-
iate analysis to identify independent prognostic factors for
patients. p < 0:05 was considered statistically significant.
The Spearman correlation test was utilized to evaluate the
relationships between CBX8 expression and immune cell
infiltrations (ICIs).

3. Results

3.1. mRNA and Protein Expression Patterns of CBX8. CBX8
expressions in LIHC, KIRC, andOV tumor tissues were higher
than in nontumor tissues (all p < 0:05, Figures 1(a)–1(c)).
Subgroup analyses exhibited that CBX8 expression in nontu-
mor groups was lower compared to tumor tissues of LIHC
and OV patients in phases I-II (p < 0:05). However, in KIRC
patients, CBX8 expression showed no differences between
nontumor tissues and patients at stages I-II (p > 0:05). In
all three cancers, CBX8 expression was significantly higher
in cancer patients in III-IV phase compared to nontumor tis-
sues (Figures 1(d)–1(f), p < 0:05). As for protein level,
through the CPTAC database, higher CBX8 protein expres-

sion was observed in LIHC, KIRC, and OV tumor tissues
compared to normal tissues (p < 0:05, Figure 2). Based on
the Human Protein Atlas database, immunohistochemical
staining of clinical specimens also identified the CBX8 level
in LIHC, and OV tumor tissues exceeded compared to adja-
cent normal tissues (Figures 3(a), 3(b), 3(e), and 3(f)). For
KIRC patients, CBX8 protein overexpression was found in
tumor tissues compared with the glomeruli of normal kidney
tissues. However, it showed no differences compared to the
tubules of a normal kidney (Figures 3(c) and 3(d)).

3.2. CBX8 Expression Correlated with Clinicopathological
Characteristics and Prognoses. Among LIHC and KIRC
patients, higher CBX8 mRNA expression was related to the
histological grade of patients (p < 0:05), but not to gender,
age, and TNM stages (p > 0:05, Tables 1 and 2). Among
OV patients, higher CBX8 expression was related to TNM
stages (p < 0:05), but not to age and grade (p > 0:05,
Table 3). LIHC patients with higher CBX8 expression have
shorter OS (p < 0:0001), RFS (p = 0:0052), and DFS
(p < 0:0001) (Figures 4(a), 4(d), and 4(g)). Similarly, KIRC
patients with higher CBX8 expression have shorter OS
(p < 0:0001), RFS (p < 0:0001), and DFS (p < 0:0001)
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Figure 2: CBX8 protein expression in three types of cancers. (a–c) CBX8 protein expression in LIHC, KIRC, and OV tissues. ∗p < 0:05,
∗∗p < 0:01, ∗∗∗p < 0:001, ∗∗∗∗p < 0:0001.
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(Figures 4(b), 4(e), and 4(h)). OV patients of higher CBX8
expressions have shorter RFS (p = 0:0011) and DFS
(p = 0:011), but no OS (p = 0:1) (Figures 4(c), 4(f), and 4(i)).

3.3. Value of CBX8 in Diagnoses and Prognoses. For LIHC
patients, the univariate analysis (UA) showed that CBX8
expression and TNM were closely related to poor OS, RFS,
and DFS (p < 0:05). Multivariate analyses (MA) implied that
CBX8 expression and TNM were independent prognostic
considerations (IPFs) for OS and DFS (p < 0:05), while
TNM was IPF for RFS (p < 0:05, Table 4). For KIRC
patients, UA exhibited that CBX8 expression, age, TNM
phase, and histological grade were IPFs for OS and DFS
(p < 0:05). MA implied that CBX8 expression, TNM, and
histological grade were IPFs for OS (p < 0:05), and CBX8
expression, TNM stage, age, and histological grade were IPFs
for DFS (p < 0:05). UA showed that CBX8 expression, TNM
stage, and histological grade were IPFs for RFS (p < 0:05).
MA implied that CBX8 expression, TNM, and histological
grade were IPFs for RFS (p < 0:05, Table 5). Among OC
patients, UA presented that CBX8 expression was linked to

poor RFS and DFS (p < 0:05), and MA indicated that
CBX8 expression was IPF for RFS and DFS (p < 0:05,
Table 6).

3.4. CBX8 Genetic Alteration in Patients with LIHC, KIRC,
and OV. The somatic mutations of CBX8 gene in LIHC,
KIRC, and OV were analyzed. The somatic mutation rate
was 3% in three cancer types (Figure 5(a)). The most fre-
quently mutated genes related to CBX8 somatic mutation
in these three cancers are displayed in Figure 5(b), such as
cbx4, enpp7, and cbx2. In LIHC, KIRC, and OV cancers,
CBX8 amplification indicated relatively high change fre-
quency, contributing to upregulating CBX8 expression
(Figure 5(c)). Genetic mutations occurred among 211/364
LIHC samples (57.97%, Figure 5(d)). tp53 (28%), ttn
(25%), muc16 (16%), and csmd3 (8%) were the most fre-
quently mutated genes across LIHC cancer. Furthermore,
missense mutation was the main mutation form. Among
336 KIRC cancer samples, genetic mutations occurred in
248 (73.81%, Figure 5(e)). vhl (49%), pbrm1 (41%), and ttn
(17%) were the most frequently mutated genes across KIRC
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Figure 3: IHC analysis of CBX8 in three types of cancer. (a, b) CBX8 protein expression in normal tissue and LIHC tissue. (c, d) CBX8
protein expression in normal tissue and KIRC tissue. (e, f) CBX8 protein expression in normal tissue and OV tissue. IHC:
immunohistochemistry. Colored images are available online.
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cancer. Of 436 OV cancer specimens, genetic mutations
occurred in 260 (59.63%, Figure 5(f)). tp53 (57%), ttn
(23%), muc16 (8%), and csmd3 (8%) were the most fre-
quently mutated genes across OV cancer. Nonetheless, no
obvious differences in genetic mutations were investigated
across LIHC, KIRC, and OV cancer. Kaplan–Meier plots

implied nonsignificant differences in OS (p = 0:109,
Figure 5(g)) and DFS (p = 0:0878, Figure 5(h)) between
patients featuring changes and those without changes across
LIHC, KIRC, and OV cancers.

3.5. CBX8 Methylation in Patients with LIHC, KIRC, and
OV. DNA methylation levels of CBX8 in LIHC, KIRC, and
OV with the prognostic value of the CpG site
(cg07581365) were researched by adopting the MethSurv
instrument. Outcomes implied that the CpG site methyla-
tion level (cg07581365) was correlated with prognosis. KIRC
patients with higher CBX8 methylation exhibited better
prognoses (p < 0:05, Figure 6(b)) and LIHC patients had
the same trend (p > 0:05, Figure 6(a)). However, OV patients
showed opposite results (p < 0:05, Figure 6(c)).

3.6. Link between CBX8 and ICIs. The link between CBX8
expression and ICIs was adjusted by purity, B cells, CD8+

T cells, CD4+ T cells, macrophages, neutrophils, and DCs
and was studied by TMER. In KIRC, the results proved that
CBX8 expression was negatively related to infiltration of
CD8+ T cells (r = −0:128, p = 7:29e − 03) and positively
related to level CD4+ T cells (r = 0:188, p = 4:79e − 05). In
LIHC, CBX8 expression was positively related to the infiltra-
tion of purity (r = 0:19, p = 3:71e − 04), B cells (r = 0:163,
p = 2:39e − 03), CD8+ T (r = 0:122, p = 2:38e − 02), CD4+
T cells (r = 0:138, p = 1:03e − 02), macrophages (r = 0:163,
p = 2:50e − 03), neutrophils (r = 0:206, p = 1:17e − 4), and
DCs (r = 0:145, p = 7:38e − 03). In OV, CBX8 expression
was positively related to the infiltration of purity
(r = 0:207, p = 4:18e − 06) and negatively correlated with B
cells (r = −0:124, p = 9:49e − 03), CD8+ T cells (r = 0:082,
p = 7:40e − 02), macrophages (r = −0:208, p = 4:20e − 06),
neutrophils (r = −0:157, p = 5:37e − 4), and DCs (r = −0:155,
p = 6:62e − 04) (Figure 7).

3.7. Link between CBX8 Expression and TMB, Microsatellite
Instability (MSI), Purity, and Ploidy. The investigation
assessed the CBX8 expression correlation with TMB, MSI,
and purity in LIHC, KIRC, and OV cancers. TMB, MSI,
and purity serve as antitumor immunity and may predict

Table 1: Correlation between CBX8 expression and
clinicopathological characteristics of LIHC.

Characteristics
CBX8 expression

χ2 pLow
(n = 193)

High
(n = 178)

Gender

Male 129 (34.77%) 121 (32.61%)
0.015076 0.9023

Female 64 (17.25%) 57 (15.36%)

Age, years

<60 89 (24.05%) 80 (21.62%)
0.005224 0.9424

≥60 104 (28.11%) 97 (26.22%)

TNM stage

I 101 (29.11%) 70 (20.17%)

7.0821 0.0602
II 38 (10.95%) 48 (13.83%)

III 39 (11.24%) 46 (13.26%)

IV 2 (0.58%) 3 (0.86%)

Grade

G1 36 (9.84%) 19 (5.19%)

10.249 0.0163∗
G2 96 (26.23%) 81 (22.13%)

G3 52 (14.21%) 70 (19.13%)

G4 4 (1.09%) 8 (2.19%)
∗p < 0:05 was considered statistically significant.

Table 2: Correlation between CBX8 expression and
clinicopathological characteristics of KIRC.

Characteristics
CBX8 expression
Low

(n = 265)
High

(n = 265) χ2 p

Gender

Male 167 (31.51%) 177 (33.40%)
0.67095 0.4127

Female 98 (18.49%) 88 (16.60%)

Age, years

<60 123 (23.21%) 122 (23.02%)
0 1

≥60 142 (26.79%) 143 (26.98%)

TNM stage

I 137 (26.00%) 128 (24.29%)

2.1651 0.5388
II 31 (5.88%) 26 (4.93%)

III 59 (11.20%) 64 (12.14%)

IV 36 (6.83%) 46 (8.73%)

Grade

G1 7 (1.34%) 7 (1.34%)

8.9854 0.02949∗
G2 124 (23.75%) 103 (19.73%)

G3 102 (19.54%) 104 (19.92%)

G4 26 (4.98%) 49 (9.39%)
∗p < 0:05 was considered statistically significant.

Table 3: Correlation between CBX8 expression and
clinicopathological characteristics of OV Patients.

Characteristics
CBX8 expression

Low (n = 190) High (n = 189) χ2 p

Age, years

<60 107 (28.23%) 92 (24.27%)
1.9212 0.166

≥60 83 (21.90%) 97 (25.59%)

TNM stage

I-II 8 (2.13%) 16 (4.26%)

10.976 0.004∗III 141 (37.50%) 154 (40.96%)

IV 39 (10.37%) 18 (4.79%)

Grade

G1-G2 18 (4.88%) 28 (7.59%)
1.6411 0.200

G3-G4 163 (44.17%) 160 (43.36%)
∗p < 0:05 was considered statistically significant.

6 Computational and Mathematical Methods in Medicine



P < 0.0001

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Strata
CBX8 = high
CBX8 = low

64 10 3 0 0
306 90 30 6 0CBX8 = low

CBX8 = high

0 1000 2000 3000 4000

OS (Days)

St
ra

ta

Number at risk
OS (Days)

Liver hepatocellular carcinoma

(a)

P < 0.0001

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Su
rv

iv
al

 p
ro

ba
bi

lit
y

194 89 19 2 0
335 187 60 8 0CBX8 = low

CBX8 = high

0 1000 2000 3000 4000

St
ra

ta

Number at risk

OS (Days)

OS (Days)

Kidney renal clear cell carcinoma

Strata
CBX8 = high
CBX8 = low

(b)

Figure 4: Continued.

7Computational and Mathematical Methods in Medicine



P = 0.1

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000

Su
rv

iv
al

 p
ro

ba
bi

lit
y

200 107 34 12 1 0
178 85 26 10 3 1CBX8 = low

CBX8 = high

0 1000 2000 3000 4000 5000

St
ra

ta

Number at risk
OS (Days)

OS (Days)
Ovary cancer

Strata
CBX8 = high
CBX8 = low

(c)

P = 0.0052

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Su
rv

iv
al

 p
ro

ba
bi

lit
y

182 23 2 1 0
182 36 12 2 0CBX8 = low

CBX8 = high

0 1000 2000 3000 4000

St
ra

ta

Number at risk
RFS (Days)

RFS (Days)
Liver hepatocellular carcinoma

Strata
CBX8 = high
CBX8 = low

(d)

Figure 4: Continued.

8 Computational and Mathematical Methods in Medicine



P < 0.0001

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Su
rv

iv
al

 p
ro

ba
bi

lit
y

104 33 4 0
423 208 60 8CBX8 = low

CBX8 = high

0 1000 2000 3000

St
ra

ta

Number at risk

Kidney renal clear cell carcinoma

RFS (Days)

RFS (Days)

Strata
CBX8 = high
CBX8 = low

(e)

P = 0.0011

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000

Su
rv

iv
al

 p
ro

ba
bi

lit
y

44 4 0 0 0 0
334 59 14 7 3 1CBX8 = low

CBX8 = high

0 1000 2000 3000 4000 5000

St
ra

ta

Number at risk

Ovary cancer

RFS (Days)

RFS (Days)

Strata
CBX8 = high
CBX8 = low

(f)

Figure 4: Continued.

9Computational and Mathematical Methods in Medicine



+++++
+

+++++++
+

++ ++ +

+

+++++++++++

++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++ +++++++ ++++++++ +++++

++++++
+ +

P < 0.0001

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Su
rv

iv
al

 p
ro

ba
bi

lit
y

84 6 0 0 0

280 53 14 3 0CBX8 = low

CBX8 = high

0 1000 2000 3000 4000

St
ra

ta

Number at risk

DFS (Days)

DFS (Days)

Liver hepatocellular carcinoma

Strata

+

+

CBX8 = high

CBX8 = low

(g)

+++++++
+

++++
+

+++++++++++++++++++++++ ++ +++ ++ ++++
+++++++++++++

+++ ++++++++ +++ + ++++
+

+

++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++ ++++ +++++++++
++++++ ++++

P < 0.0001

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Su
rv

iv
al

 p
ro

ba
bi

lit
y

185 68 11 0

342 173 53 8

0 1000 2000 3000

Number at risk

Kidney renal clear cell carcinoma

CBX8 = low

CBX8 = high

St
ra

ta

DFS (Days)

DFS (Days)

Strata

+

+

CBX8 = high

CBX8 = low

(h)

Figure 4: Continued.

10 Computational and Mathematical Methods in Medicine



++
++++

+

++++++++++++++++++++++++++++++++
++++++

+

++
+++++++++

+++ +++ + + ++++ + ++ + + + +

P = 0.011

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000

Su
rv

iv
al

 p
ro

ba
bi

lit
y

44 4 0 0 0 0

334 59 14 7 3 1

0 1000 2000 3000 4000 5000

Number at risk

Ovary cancer

CBX8 = low

CBX8 = high

St
ra

ta

DFS (Days)

DFS (Days)

Strata

+

+

CBX8 = high

CBX8 = low

(i)

Figure 4: Survival analysis (harboring OS, RFS, and DFS) in three types of cancers. (a, d, g) Survival analysis for LIHC patients with different
CBX8 expressions. (b, e, h) Survival analysis for KIRC patients with different CBX8 expressions. (c, f, i) Survival analysis for OV patients
with different CBX8 expressions. OS: overall survival; RFS: recurrence-free survival. DFS: disease-free survival. Colored images are
available online.

Table 4: Univariate and multivariate analyses of different parameters for overall survival, relapse-free survival, and disease-free survival in
LIHC patients.

Carcinoma Survival Characteristics
Univariate analysis Multivariate analysis

p HR 95% CI p HR 95% CI

LIHC

OS

CBX8 expression high vs. low <0.001∗ 2.6 1.7-3.8 <0.001∗ 2.5 1.7-3.9

Gender male vs. female 0.26 0.81 0.57-1.2

Age, years ≥60 vs. <60 0.27 1.2 0.86-1.7

TNM stage III/IV vs. I/II <0.001∗ 2.4 1.7-3.5 <0.001∗ 2.4 1.7-3.5

Grade G3/G4 vs. G1/G2 0.54 1.1 0.78-1.6

RFS

CBX8 expression high vs. low 0.028∗ 1.4 1-1.9 0.086 1.3 0.96-1.8

Gender male vs. female 0.94 0.99 0.72-1.4

Age, years ≥60 vs. <60 0.75 1 0.78-1.4

TNM stage III/IV vs. I/II <0.001∗ 2.4 1.7-3.3 <0.001∗ 2.3 1.7-3.2

Grade G3/G4 vs. G1/G2 0.52 1.1 0.81-1.5

DFS

CBX8 expression high vs. low <0.001∗ 1.9 1.4-2.6 <0.001∗ 1.9 1.4-2.6

Gender male vs. female 0.42 0.89 0.68-1.2

Age, years ≥60 vs. <60 0.37 1.1 0.86-1.5

TNM stage III/IV vs. I/II <0.001∗ 2.1 1.6-2.8 <0.001∗ 2.1 1.6-2.8

Grade G3/G4 vs. G1/G2 0.63 1.1 0.81-1.4
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therapeutic responses to immunotherapeutic agents. We
also assessed the correlation between CBX8 expression and
ploidy, linked to tumor heterogeneity. In Figures 8(a), 8(d),
8(g), and 8(j), CBX8 exhibited predominantly positive asso-
ciations with the number of MIS, purity, and ploidy in LIHC
(p < 0:05). No obvious correlation existed between CBX8
expression and TMB in LIHC. In KIRC, CBX8 exhibited
predominantly positive associations with the number of
TMB (p < 0:05) and showed no obvious correlation between
MIS, purity, and ploidy (Figures 8(b), 8(e), 8(h), and 8(k)).
In OV patients, CBX8 exhibited positive associations with
the number of purity and showed no correlation between
TMB, MIS, and ploidy (Figures 8(c), 8(f), 8(i), and 8(l)).

3.8. Identifying CBX8-Relevant Genes and Their Biological
Function. The upregulation and downregulation of CBX8-

related genes in high CBX8 expression samples of LIHC,
KIRC, and OV were analyzed (Figure S1). We also showed
the first 20 upregulated and downregulated CBX8-relevant
genes ranked by ∣log 2foldchange ∣ among LIHC, KIRC,
and OV (Tables S1-3). Notably, LIHC, KIRC, and OV
cancers had the 40 same upregulated genes (Figure S2),
such as FOXJ1, LOC100128674, MAGEC1, and PAGE2
(Table S4).

A CBX8 protein PPI network of 50 proteins was
constructed based on the STRING database, such related
proteins as EED, BMI1, and RNF2 (Figure 9(a)). In LIHC,
Pearson’s correlation analyses implied that CBX8 was
positively related to EED, BMI1, and RNF2 (Figures S3A-C;
p < 0:001). In all gene combinations, patients in LL group
had the longest OS (median survival time: 2001, 2080, and
1967 days, respectively). In the CBX8-EED group, LL

Table 5: Univariate and multivariate analyses of different parameters for overall survival, relapse-free survival, and disease-free survival in
KIRC patients.

Carcinoma Survival Characteristics
Univariate analysis Multivariate analysis

p HR 95% CI p HR 95% CI

KIRC

OS

CBX8 expression high vs. low <0.001∗ 2.5 1.9-3.5 <0.001∗ 2.2 1.6-3

Gender male vs. female 0.68 0.93 0.68-1.3

Age, years ≥60 vs. <60 <0.001∗ 1.8 1.3-2.5 0.063 1.4 0.98-1.9

TNM stage III/IV vs. I/II <0.001∗ 4.3 3.1-5.9 <0.001∗ 3.2 2.2-4.5

Grade G3/G4 vs. G1/G2 <0.001∗ 2.6 1.8-3.7 0.005∗ 1.7 1.2-2.5

RFS

CBX8 expression high vs. low <0.001∗ 2.4 1.6-3.7 0.010∗ 1.7 1.1-2.6

Gender male vs. female 0.058 1.5 0.99-2.3 0.093 1.4 0.94-2.2

Age, years ≥60 vs. <60 0.27 1.2 0.85-1.8

TNM stage III/IV vs. I/II <0.001∗ 6 3.9-9 <0.001∗ 4.7 3-7.2

Grade G3/G4 vs. G1/G2 <0.001∗ 3.5 2.2-5.4 0.001∗ 2.1 1.3-3.4

DFS

CBX8 expression high vs. low <0.001∗ 2.3 1.7-3 <0.001∗ 1.9 1.4-2.5

Gender male vs. female 0.39 1.1 0.85-1.5

Age, years ≥60 vs. <60 <0.001∗ 1.7 1.3-2.3 0.036∗ 1.4 1-1.8

TNM stage III/IV vs. I/II <0.001∗ 4.4 3.3-5.9 <0.001∗ 3.4 2.5-4.6

Grade G3/G4 vs. G1/G2 <0.001∗ 2.8 2-3.8 <0.001∗ 1.9 1.3-2.6

Table 6: Univariate and multivariate analyses of different parameters for overall survival, relapse-free survival and disease-free survival in
OV patients.

Carcinoma Survival Characteristics
Univariate analysis Multivariate analysis

p HR 95% CI p HR 95% CI

OV

RFS

CBX8 expression high vs. low 0.001∗ 1.8 1.3-2.6 0.002∗ 1.8 1.2-2.5

Gender male vs. female 0.98 1 0.78-1.3

Age, years ≥60 vs. <60 0.17 1.5 0.85-2.5 0.21 1.4 0.82-2.4

TNM stage III/IV vs. I/II 0.34 1.2 0.83-1.7

Grade G3/G4 vs. G1/G2 0.001∗ 1.8 1.3-2.6 0.002∗ 1.8 1.2-2.5

DFS

CBX8 expression high vs. low 0.012∗ 1.6 1.1-2.2 0.009∗ 1.8 1.3-2.6

Gender male vs. female 0.31 1.1 0.9-1.4

Age, years ≥60 vs. <60 0.05 1.7 1-2.9 0.13 1.5 0.88-2.7

TNM stage III/IV vs. I/II 0.18 1.3 0.9-1.8 0.25 1.2 0.86-1.8

Grade G3/G4 vs. G1/G2 0.012∗ 1.6 1.1-2.2 0.009∗ 1.8 1.3-2.6
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Figure 5: Continued.
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patients had the longest OS (p = 0:00085), RFS (p = 0:015),
and DFS (p = 0:00052) (Figures S3D, G, and J). The same
result was also found in CBX8-BMI1 and RNF2 groups
(CBX8-BMI1 OS (p = 0:00085), RFS (p = 0:015), and DFS
(p = 0:00052) (Figures S3E, H, and K)) and RNF2 group OS
(p = 0:00085), RFS (p = 0:015), and DFS (p = 0:00052)
(Figures S3F, I, and L). GO analyses implied that CBX8-
associated genes majorly enriched three main biological
functions, biological process, regulation of cell cycle, and
molecular functions (Figure 9(b)). KEGG analyses revealed
that most CBX8-associated genes were enriched in
transcriptional misregulation in cancer, signaling paths,
regulating pluripotency of stem cells, systemic lupus,
erythematosus, and other processes (Figure 9(c)). GSEA was
performed to find possible biological functions of high CBX8
protein expression of these three tumors, as follows: the cell
cycle, DNA replication, linoleic acid metabolism, Wnt
signaling pathway, and other tumor signaling pathways
(Figure 10).

4. Discussion

Cancer is a main public health issue and a major reason for
death globally. In 2021, 1,898,160 new cancer cases and
608,570 cancer deaths occurred in the U.S. [14]. Global can-
cer statistics show that liver cancer is the fifth most typical
cancer and the third major reason for global cancer-
associated mortality [15]. The recurrence rate is up to 70%
even after traditional treatments, like radiofrequency abla-
tion, arterial embolization, chemotherapy, and surgery
[16]. KIRC takes up 80% of all renal cancers and features
poor prognoses [17]. The global annual mortality cases are
approximately 90,000, and 25–30% of patients have metasta-
sis at initial diagnosis [18]. OV is the most lethal gynecologic
malignancy, with over 125,000 women dying each year glob-
ally. The high mortality results from its advanced stage when
OV patients are diagnosed and lacking available oriented
therapies [19]. Endeavors at earlier test and new therapeutic
methods for reducing mortality of LIHC, KIRC, and OV
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Figure 5: Analysis of genetic alteration and somatic mutation in CBX8 in LIHC, KIRC and OV. (a) OncoPrint visual summary of alteration
on a query of CBX8. (b) Summary of alterations in CBX8 in LIHC, KIRC, and OV from TCGA. (c) Altercation frequency of CBX8 of LIHC,
KIR, and OV cancers. (d) The somatic mutation rate of CBX8 across LIHC. (e) The somatic mutation rate of CBX8 across KIRC. (f) The
somatic mutation rate of CBX8 across OV. Kaplan–Meier plots comparing (g) OS and (h) disease-free survival in patients with/without
CBX8 gene alterations.
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Figure 6: Continued.
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have been greatly unsuccessful since their pathogenesis and
origin are poorly understood. CBX8, as an oncogene, plays
a role in developing these cancers we mentioned.

Many studies have implied that CBX8 is highly associ-
ated with malignant tumor occurrence and development

[20–22], but its relationship with LIHC, KIRC, and OV
and supporting regulatory mechanisms remains elusive.
The study focused on the abnormal CBX8 expression in
LIHC, KIRC, and OV, revealing its correlation with clinico-
pathological features and prognoses.
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Figure 6: Survival analysis in three types of cancer based on the methylation levels of CBX8. (a) Survival analysis in LIHC patients with
different methylation levels of CBX8. (b) Survival analysis in KIRC patients with different methylation levels of CBX8. (c) Survival
analysis in OV patients with different methylation levels of CBX8. cg07581365 indicated the probe for methylation of CBX8. HR: hazard
ratio. Colored images are available online.
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Figure 8: Continued.
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Higher CBX8 gene expression was discovered in LIHC,
KIRC, and OV tumor tissues than nontumor tissues, follow-
ing many studies [1, 23, 24]. Subgroup analyses implied that
nontumor groups featured a lower CBX8 expression than
those with phase I in LICH and OV, suggesting CBX8 can
be a valid biomarker for earlier diagnoses of LICH and OV
(Figure 1). Many studies proved that CBX8 could promote
tumor development and metastasis in many cancers, such
as breast cancer, hepatocellular carcinoma, cervical cancer

cell, and muscle-invasive bladder cancer [23, 25–27]. Our
study found that in LIHC patients, CBX8 expression was
obviously higher in stages II-III than in stage I. In KIRC
patients, CBX8 expression was obviously higher in stage IV
than in stage I, suggesting that CBX8 can be a supervision
index for distant tumor metastases in LIHC and KIRC.
According to the CPTAC database, higher CBX8 protein
expression was observed in LIHC, KIRC, and OV tissues
than in normal tissues (p < 0:05, Figures 1 and 2). Based
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Figure 8: Correlation between CBX8 expression and biomarkers of immune cells in LIHC, KIRC, and OV cancers.
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Figure 9: Continued.
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Figure 9: Gene enrichment analysis for CBX8-related genes. (a) PPI networks of CBX8-related proteins. The increase from a small circle to
a bigger circle represents an increase in the number of genes interacting directly with each other (namely degree). (b) GO analysis; (c) KEGG
analysis. PPI: protein-protein networks; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes pathway. Colored images
are available online.
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on the Human Protein Atlas database, we also found higher
CBX8 protein expression in LIHC, KIRC, and OV tissues
than in normal tissues (Figure 3). Immunohistochemistry
outcomes implied that CBX8 was more strongly expressed
in tumor tissues than in normal tissues, almost aligning with
mRNA and protein expression. These results suggested that

CBX8 was upregulated in these three tumors and could be a
suitable tumor biomarker.

For LIHC and KIRC patients, some investigations have
exhibited that high CBX8 expression induces tumorigenesis
and implies poor prognoses [17, 23, 28]. However, no stud-
ies focused on the correlation between OV cancer and
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Figure 10: (a–f) GSEA was performed to explore the biological functions of high CBX8 expression in LIHC, KIRC, and OV.
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CBX8. For the first time, our study found that high CBX8
expression indicated the worst prognosis in OV patients.
Further investigation indicated that patients having higher
CBX8 expression featured shorter OS, RFS, and DFS in
LIHC, KIRC, and OV (expect OS) (Figure 4), implying that
CBX8 might constitute a key molecule in the prognosis
supervision of patients with these tumors we mentioned.
Cox regression analyses suggested that CBX8 constituted
an IPF for OS and DFS of LIHC, KIRC, and OV patients,
and it constituted an IPF for RFS of KIRC and OV patients.
It implies that CBX8 expression includes a bona fide index
for recurrence in patients with LIHC, KIRC, and OV, sug-
gesting that it may be a potentially valuable prognostic and
diagnostic biomarker for LIHC, KIRC, and OV.

DNA methylation is a typical epigenetic mechanism pre-
sented in each form of cancer. Substantial evidence exhibited
that gene methylation caused RNA transcription suppres-
sion, resulting in upregulating oncogenes or downregulating
inhibitor genes and ultimately affecting tumor formation
[29]. The link between DNA methylation (cg07581365 site)
of CBX8 and the prognoses of LIHC, KIRC, and OV patients
was investigated (Figure 6). Using the MethSurv instrument,
we identified that KIRC patients with lower CBX8 methyl-
ation had a worse survival time than those with higher
methylation (p < 0:05); LIHC patients had the same trend.
CBX8 methylation could cut CBX8 expression, thus
improving patient prognoses. However, higher CBX8 gene
methylation in OV patients can result in a worse survival
time. It may be caused by the insertion of methylation sites
that can promote oncogenes. Gene mutations are highly
associated with tumors and are typically related to poor
prognoses. However, CBX8 genetic change percentage in
LIHC, KIRC, and OV was approximately 3%, and the
genetic change exhibited no obvious relation to a poor OS
and RFS (Figure 5).

However, it has also been revealed that CBX8 is associ-
ated with tumor-infiltration immune cells and may affect
tumor recurrence and progression [30–32]. TMB, MSI,
purity, and ploidy are biomarkers monitoring the efficacy
of immunotherapeutic response [33]. According to our find-
ings in LIHC, CBX8 was associated with the number of MIS,
purity, and ploidy. In KIRC, CBX8 has close interaction with
TMB. In OV patients, CBX8 interactions with purity were
close, indicating that CBX8 could participate in modulating
the immune response in LIHC, KIRC, and OV. Our investi-
gation implied that CBX8 was positively or negatively linked
to different immune cells in three cancers, indicating the
potential immunotherapy approaches to cure these diseases
(Figure 8).

By TCGA database, as for RNA level, we found the up/
downregulation of CBX8-related genes in LIHC, KIRC, and
OV cancer (Figure S1) and identified the same upregulated
genes in these three tumors (Figure S2). These findings can
guide further analysis of interaction genes in tumor
generation mechanisms of these cancers. Then, the PPI
network was developed for protein levels to find CBX8-
related proteins. Based on combined scores, three genes,
EED, BMI1, and RNF2, were chosen as candidate molecules
for cooperating with CBX8 to further assess prognoses in

LIHC patients. Fortunately, the outcomes implied that HH
groups featured the shortest OS, RFS, and DFS, and LL
groups exhibited the longest OS, RFS, and DFS, implying
that overexpressions of CBX8, EED, BMI1, and RNF2 were
linked to poorer prognoses in LIHC (Figure S3). Previous
investigations reported that CBX8 works with EED for DNA
damage repair [24]. CBX8, BMI1, and RNF2 are interaction
proteins that maintain transcriptional repression of
hundreds of cancer growth and signaling-related genes [34].
Therefore, these results suggest that CBX8 and EED, BMI1,
and RNF2 feature a concerted effort to promote tumors.

GO analyses uncovered that CBX8 was gathered in the
biological process, cell cycle regulation, and molecular func-
tions, which Choi et al. approved [35] (Figure 9(b)). Mean-
while, KEGG outcomes revealed that CBX8 was majorly
centered in transcriptional misregulation in cancer, signaling
pathways regulating pluripotency of stem cells, systemic lupus,
erythematosus, and other processes (Figure 9(c)), consistent
with van Wijnen et al.’s report [2]. Yuan et al. found that
CBX8 promotes muscle-invasive bladder cancer through the
p53 signaling pathway [25]. Chris discovered CBX8 via the
AKT/β-Catenin signaling pathway to affect liver cancer
development [36]. In our study, GSEA was performed to find
possible associated biological functions and signaling path-
ways of these three cancers with higher CBX8 expression.
We found CBX8 enrichments in the cell cycle, DNA replica-
tions, linoleic acid metabolism, Wnt signaling pathway,
and other tumor signaling pathways. These findings could
be a significant guide for our later investigation of mecha-
nisms of tumor geneses and progression in LIHC, KIRC,
and OV patients (Figure 10).

Overall, CBX8 may be a potential prognostic and diag-
nostic biomarker for early diagnosis and prognosis monitor-
ing and a therapeutic target for LIHC, KIRC, and OV
patients. The diagnostic and prognostic values of CBX8
should be further explored by in vivo and in vitro studies.
Further mechanistic studies are required to validate our
findings and promote the clinical application.
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Supplementary Materials

Figure S1: analysis of CBX8-related upregulation and down-
regulation genes in higher CBX8 samples across LIHC,
KIRC, and OV. Figure S2: analysis of the same CBX8-
related upregulation genes in LIHC, KIRC, and OV.3. Figure
S3: the survival outcomes in liver hepatocellular carcinoma
patients with different gene combinations (CBX8-EED;
CBX8- BMI1, and CBX8-RNF2). (A), (B), and (C) Pearson’s
correlation analysis between CBX8 and EED, BMI1, and
RNF2, respectively; (D), (E), and (F) OS for different gene
combinations; (G), (H), and (I) RFS for different gene com-
binations. (J), (K), and (L) DFS for different gene combina-
tions. Colored images are available online. Table S1: the
upregulated and downregulated CBX8-relevant genes
ranked by ∣ log 2fold change∣ in LIHC. Table S2: the upregu-
lated and downregulated CBX8-relevant genes ranked by ∣
log 2fold change∣ in KIRC. Table S3: the upregulated and
downregulated CBX8-relevant genes ranked by ∣ log 2fold
change∣ in OV. Table S4: the 40 same upregulation genes
in LIHC, KIRC, and OV. (Supplementary Materials)
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