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In this work, we presented the type I half logistic Burr-Weibull distribution, which is a unique continuous distribution. It offers
several superior benefits in fitting various sorts of data. Estimates of the model parameters based on classical and nonclassical
approaches are offered. Also, the Bayesian estimates of the model parameters were examined. The Bayesian estimate method
employs the Monte Carlo Markov chain approach for the posterior function since the posterior function came from an
uncertain distribution. The use of Monte Carlo simulation is to assess the parameters. We established the superiority of the
proposed distribution by utilising real COVID-19 data from varied countries such as Saudi Arabia and Italy to highlight the
relevance and flexibility of the provided technique. We proved our superiority using both real data.

1. Introduction

One of the fundamental objectives of statistics is to develop
appropriate statistical models for natural and real-world
events defined by well-established statistical probability dis-
tributions. This is one of the primary functions of statistics.

In this instance, probability distributions are used to
characterise the unpredictability and potential hazard of
the life event under investigation. As a result of the extreme
difficulty of reproducing real-life events using ordinary
probability distributions, several probability distributions
have been developed.

Using probability distributions is one of the most impor-
tant aspects of statistic to model real-world events. Know-
able probability distributions are used to model uncertain
and risky natural phenomena.

Due to the complexity and variety of natural phenom-
ena, several probability distributions are derived. Nonethe-
less, identified probability distributions are incapable of
accurately representing data for certain natural phenomena.
These are useful for extending and altering generalized prob-
ability distributions.

Due to the widespread availability of additional param-
eters, generalized probability distributions have advanced.
By adding a few parameters to well-known probability dis-
tributions, their suitability for data from natural phenom-
ena was improved, as was the precision of the distribution
tail shape description.

Oftentimes, the known and accessible probability dis-
tributions are inadequate to accurately represent and
characterise information resulting from certain natural phe-
nomena. As a result of the modifications and expansions that
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have taken place, the generalized probability distributions are
changed and enlarged.

The world has been ravaged by a variety of pandemics
and diseases throughout the whole of human existence.
Other recent coronavirus outbreaks include COVID-19,
which arose last year and has been classified a global epi-
demic. This outbreak is historically regarded as one of the
most terrifying infectious illnesses in human history.

COVID-19’s worldwide growth has been inhibited as a
result of the deployment of “strict” safety procedures by
the vast majority of nations.

Various additional measures, such as total restrictions on
commerce and shorter business and nighttime school hours,
have also been implemented. Among other features, a com-
plete mathematical and statistical model was constructed
and evaluated to predict the course of future COVID-19-
related disorders.

Researchers have taken an interest in presenting new
wide families of continuous univariate distributions and
their successful application during the course of the last
two decades. By adding one or more additional shape com-
ponents to a baseline distribution, a growing interest has
been sparked in the production of new classes of distribu-
tions. These characteristics make the produced distribution
more adaptable and accurate for evaluating tail behaviour.

However, there are still a great number of significant
instances in which real-world data does not conform to
any classical or conventional probability model. In latest
days, several sorts of families have been introduced.

Among the most notable generators are the follow-
ing: an innovative method for integrating a parameter
into a family of distributions, which consists of merging
the distributions themselves (see [1], beta-G by [2],
logistic-X by [3–10], the transmuted odd Fréchet-G fam-
ily by [11], and Burr X Exponential-G family by [12],
among others.

Both the probability density function (PDF) and the
cumulative distribution function (CDF) of the Weibull distri-
bution, together with the parameter β, δ > 0, are the following:

G x ; β, δð Þ = 1 − e−δx
β , x ≥ 0, β, δ > 0, ð1Þ

g x ; δð Þ = βδxβ−1e−δx
β , x, δ > 0: ð2Þ

[13] presented a novel generator based on the Burr X ran-
dom variable, which is well-known X −G family of distribu-
tions. [14] made a novel family of continuous distributions
with an extra positive parameter λ > 0 called the type I half
logistic-G (TIHL −GÞ family. Recently, a new generator based
on theTIHL −Gfamily and BurrX −Gfamily constructed a
new family called the type I half logistic BurrX −G
ðTIHLBX −GÞfamily of distributions by Algarni et al. [15].
This series is more versatile and attracts a larger range of
health modeling field purposes. The CDF and PDF of
TIHLBX −G family of distributions, respectively, are given by

F x ; λ, α, δð Þ =
1 − 1 − 1 − e− G x;δð Þ/�G x;δð Þð Þ2

� �α� �λ

1 + 1 − 1 − e− G x;δð Þ/�G x;δð Þð Þ2
� �α� �λ

,

f x ; λ, α, δð Þ = 4λαg x ; δð Þ
�G x ; δð Þ3

G x ; δð Þe− G x;δð Þ/�G x;δð Þð Þ2

� 1 − e− G x;δð Þ/�G x;δð Þð Þ2
� �α−1

,

1 − 1 − e− G x;δð Þ/�G x;δð Þð Þ2
� �α� �λ−1

� 1 + 1 − 1 − e− G x;δð Þ/�G x;δð Þð Þ2
� �α� �λ

( )−2

,
ð3Þ

where gðx ; δÞ and Gðx ; δÞ are the baseline distribution’s PDF
and CDF in the given parameter vector δ.

As a consequence of this, the composite distribution that
emerges as a consequence of this procedure will only include
a total of four parameters. These four parameters will be
comprised of two parameters derived from the baseline dis-
tribution, which is the Weibull distribution, and two param-
eters derived from the TIHLB-G family of distributions.

The exponential distribution is one of the most impor-
tant probability models in the science of statistics as well as
in other fields of inquiry; it is comprised of distributions
such as the Rayleigh distribution and the exponential distri-
bution. One of the most essential components of the Weibull
distribution, the exponential distribution, is regarded as one
of the most influential types of probability models.

A number of efforts have been made in the past to
broaden the scope of this distribution, for example, see
[16–18] and [19], which are some of the most well-known
pieces of literary composition.

However, when a more versatile family of distributions is
utilised, the modelling capability of the flexible Weibull dis-
tribution may be boosted; it is one of the challenges that our
current study tackles. More articles have been addressed,
including the new Weibull distribution expansion (see
[20–25], etc.).

The purpose of this study is to build a four-parameter
TIHLB Weibull distribution, establish its different attributes,
estimate its unknown parameters, and illustrate its strength
via the use of COVID-19 data in a practical applications.
When it comes to PDF, the TIHLBW distribution is quite
adaptable; it may be positive skewed, negative slanted, and
symmetrical, and it can allow for more versatility in the
tails. The TIHLBW distribution features a PDF that is
quite versatile; it may be positively skewed, negatively
skewed, or symmetric, and it can allow for more flexibility
in the tails of the distribution.

It is capable of simulating hazard rates that are mono-
tonically declining, growing, bathtub, upside down bathtub,
and reversed-J in nature, among other things. Moreover,
the distribution has a closed-form CDF and is relatively
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simple to handle, which makes it a good choice for usage in a
variety of domains such as life testing, durability, biological
investigations, and survival analysis.

Using actual data, three instances demonstrate that the
suggested distribution is quite comparable with certain exist-
ing distributed models.

An innovative form of the Weibull distribution is referred
to as the TIHLBXWeibull distribution. This distribution may
also be referred to as the TIHLBW distribution. We have built
a novel distribution in the hopes of boosting its versatility and
garnering a wider variety of uses in dependability, economics,
biopsychosocial issues related, and other study domains.

The following is the structure of the rest of this paper. In
Section 2, we find out how to calculate the TIHLBW distri-
bution. TIHLBW distribution has a number of mathematical
features, which we will analyse in Section 3. In Section 4, we
derive an estimate technique MKITL distribution using the
MKITL estimation technique. In Section 5, we derive the
results of a simulations of the TIHLBW probability distribu-
tion. Using actual data analysis, we were able to acquire
three applications in Section 6. Section 7 provides a
summary and conclusion to the work.

2. TIHLBW Distribution

In the field of statistics, one of the most significant chal-
lenges is deciding which probability distribution is the best
suitable to use when trying to draw conclusions from certain
sets of data. Because of this factor, academics in the recent
past have put in a significant amount of work to build distri-
butions. There is a wide range of univariate continuous dis-
tributions and their applications in modelling real-world
data that may be found in the body of academic research.

Many other classes of distributions have been produced in
recent years. These distributions have been created by adding
an additional shape parameter or parameters to an existing dis-
tribution inorder tomake thedistributionmoreflexible. Study-
ing the actions of tails becomes more interesting as a result.

Weibull, Rayleigh, and exponential distributions are
some of the most commonly used distributions for modeling
lifetime data by researchers.

When the exponential distribution is taken into account,
it only demonstrates constant danger shapes; when the Ray-
leigh distribution is taken into consideration, it only demon-
strates a rising hazard function shape. When modelling data
that may be categorised as either constant, decreasing, or
rising hazard shape, the Weibull distribution has been the
distribution that has been used the most often. The Weibull
distribution has a flaw in that it is not ideal for handling data
that are characterised by nonmonotonic hazard shapes.

This is one of the distribution’s shortcomings. The vast
majority of lifetime data exhibits the characteristic of having
nonmonotonic hazard forms.

Analyse the Weibull distribution using the CDF and
PDF values that have been provided (for x > 0) by Equa-
tions (1) and (2), respectively. By entering the CDF of
the Weibull distribution into the TIHLBW distribution,
we can define the CDF of the TIHLBW distribution (4),
to provide an example:

F x ;Ωð Þ =
1 − 1 − 1 − e− eδx

β−1
� �2� �α� �λ

1 + 1 − 1 − e− eδxβ−1
� �2� �α� �λ

, ð4Þ

f x ;Ωð Þ = 4λαβδxβ−1e2δxβ 1 − e−δx
β

� 	
e− eδx

β−1
� �2

� 1 − e− eδx
β−1

� �2� �α−1
1 − 1 − e− eδx

β−1
� �2� �α� �λ−1

� 1 + 1 − 1 − e− eδx
β−1

� �2� �α� �λ
( )−2

,

ð5Þ
where Ω is vector of parameters ðα, λ, δ, λÞ. For more

shape density of this model, see Figure 1.
The hazard rate (HR) function of the TIHLBW distribu-

tion is shown as

τ x ;Ωð Þ =
2λαβδxβ−1e2δxβ 1 − e−δx

β
� 	

e− eδx
β−1

� �2
1 − e− eδx

β−1
� �2� �α−1

1 − 1 − e− eδxβ−1
� �2� �α� �

1 + 1 − 1 − e− eδxβ−1
� �2� �α� �λ( ) :

ð6Þ

For more shape HR of this model, see Figure 2.

2.1. Useful Expansion. f , ðxÞ and F, ðxÞ expansions are made
easier with the following findings ðxÞ. If jzj < 1 is a real non-
integer and b > 0 is a real noninteger, then the power series
shown below holds. The subsequent outcomes are beneficial
for extensions of f ðxÞ and FðxÞ.

f x ; λ, α, δð Þ = 4λα 〠
∞

i,j,k=0
−1ð Þ j+k

�
−2

i

 !
γ λ i + 1ð Þð Þγ α j + 1ð Þð Þ

j!k!γ λ i + 1ð Þ − jð Þγ α j + 1ð Þ − kð Þ

× 〠
∞

m=0

−1ð Þm k + 1ð Þm
m!

g x ; δð Þ
�G x ; δð Þ2m+3 G x ; δð Þ2m+1:

ð7Þ

Using the generalized binomial expansion, we can rewrite
the PDF as follows:

f TIHLBW x ; λ, α, δð Þ = 〠
∞

m,d=0
ϖm,dπ 2 m+1ð Þ+dð Þ xð Þ, ð8Þ

where

ϖm,d = 〠
∞

i,j,k=0
−1ð Þj+k+m

−2

i

 !
4λαγ λ i + 1ð Þð Þγ α j + 1ð Þð Þ

j!k!m!d!γ λ i + 1ð Þ − jð Þγ α j + 1ð Þ − kð Þ

×
k + 1ð Þmγ 2m + d + 3ð Þ

γ 2m + 3ð Þ 2 m + 1ð Þ + dð Þ ,

ð9Þ
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and πð2ðm+1Þ+dÞðxÞ = ð2ðm + 1Þ + dÞβδxβ−1e−δxβð1 − e−δx
βÞ2m+d+1

is
the expo-G PDF with power parameter ð2ðm + 1Þ + dÞ.
Thus, several mathematical and statistical properties of the
TIHLBW distribution can be determined obviously from
those of exp-Weibull distribution.

3. Maximum Likelihood Estimation

In addition to having beneficial qualities, the MLEs may be
employed in the construction of confidence intervals and
regions, as well as in test statistics. In this study, we use
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solely complete samples to derive the maximum likelihood
estimates (MLEs) of the parameters of the TIHLBW distri-
bution. Let x1,⋯, xn be a random sample of size n from

the TIHLBW distribution given by (5). Let Ω = ðα, λ, δ, λÞT
be vector of parameters. The likelihood function is given by

Ł Ωð Þ = 4nλnαnβnδne
2δ〠

n

i=1
xβi
e
−〠

n

i=1
eδx

β
i −1

� 	2Yn
i=1

xβ−1i 1 − e−δx
β
i

� 	

� 1 − e
− eδx

β
i −1

� 	22
4

3
5
α−1

×
Yn
i=1

1 − 1 − e
− eδx

β
i −1

� 	22
4

3
5
α8<

:
9=
;

λ−1

� 1 + 1 − 1 − e
− eδx

β
i −1

� 	22
4

3
5
α8<

:
9=
;

λ
8><
>:

9>=
>;

−2

:

ð10Þ

The log-likelihood function is given by

ℓ Ωð Þ = n ln 4ð Þ + ln λð Þ + ln αð Þ + ln βð Þ + ln δð Þ½ � + β − 1ð Þ〠
n

i=1
ln xið Þ

− 〠
n

i=1
eδx

β
i − 1

� 	2
+ 〠

n

i=1
ln 1 − e−δx

β
� 	

+ 2δ〠
n

i=1
xβi

− 2〠
n

i=1
ln 1 + 1 − 1 − e

− e
δx

β
i −1

� 	22
4

3
5
α8<

:
9=
;

λ
8><
>:

9>=
>;

+ λ − 1ð Þ〠
n

i=1
ln 1 − 1 − e

− eδx
β
i −1

� 	22
4

3
5
α8<

:
9=
;

+ α − 1ð Þ〠
n

i=1
ln 1 − e

− eδx
β
i −1

� 	22
4

3
5:

ð11Þ

After obtaining the initial partial derivatives of (11) with
regard to α, λ, δ, λ and then equating each partial derivative
to 0, we are able to arrive at the desired result.

∂ℓ Ωð Þ
∂λ

=
n
λ
+ 〠

n

i=1
ln 1 − 1 − e

− eδx
β
i −1

� 	22
4

3
5
α8<

:
9=
;

− 2〠
n

i=1

1 − 1 − e
− eδx

β
i −1

� 	22
4

3
5
α8<

:
9=
;

λ

ln 1 − 1 − e
− eδx

β
i −1

� 	22
4

3
5
α8<

:
9=
;

1 + 1 − 1 − e
− eδx

β
i −1

� 	22
4

3
5
α8<

:
9=
;

λ
,

∂ℓ Ωð Þ
∂α

=
n
α
+ 2λ〠

n

i=1

1 − e
− eδx

β
i −1

� 	22
4

3
5
α

ln 1 − e
− eδx

β
i −1

� 	22
4

3
5 1 − 1 − e

− eδx
β
i −1

� 	22
4

3
5
α8<

:
9=
;

λ−1

1 + 1 − 1 − e
− eδx

β
i −1

� 	22
4

3
5
α8<

:
9=
;

λ

− λ − 1ð Þ〠
n

i=1

ln 1 − e
− eδx

β
i −1

� 	22
4

3
5 1 − e

− eδx
β
i −1

� 	22
4

3
5
α

1 − 1 − e
− eδx

β
i −1

� 	22
4

3
5
α + 〠

n

i=1
ln 1 − e

− eδx
β
i −1

� 	22
4

3
5,

∂ℓ Ωð Þ
∂β

=
n
β
+ 〠

n

i=1
ln xið Þ − 2δ〠

n

i=1
Ui

+ δ〠
n

i=1

ln xið Þxβi e−δx
β
i

1 − e−δx
β
i

+ 2αδ〠
n

i=1
xβi ln xið Þ

+ 4λαδ〠
n

i=1

Uie
− eδx

β
i −1

� 	2

1 − e
− eδx

β
i −1

� 	22
4

3
5
α−1

1 − 1 − e
− eδx

β
i −1

� 	22
4

3
5
α8<

:
9=
;

λ−1

1 + 1 − 1 − e
− eδx

β
i −1

� 	22
4

3
5
α8<

:
9=
;

λ

− 〠
n

i=1
Uie

− eδx
β
i −1

� 	2

2 λ − 1ð Þδα
1 − e

− eδx
β
i −1

� 	22
4

3
5
α−1

1 − 1 − e
− eδx

β
i −1

� 	22
4

3
5
α +

2δ α − 1ð Þ

1 − e
− eδx

β
i −1

� 	2

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
,

∂ℓ Ωð Þ
∂δ

=
n
δ
− 2〠

n

i=1
xβi e

δxβi eδx
β
i − 1

� 	

+ 〠
n

i=1

xβi
−δxβi

1 − e−δx
β
i

+ 2〠
n

i=1
xβi + 4λα

�〠
n

i=1

Wi 1 − e
− eδx

β
i −1

� 	22
4

3
5
α−1

1 − 1 − e
− eδx

β
i −1

� 	22
4

3
5
α8<

:
9=
;

λ−1

1 + 1 − 1 − e
− eδx

β
i −1

� 	22
4

3
5
α8<

:
9=
;

λ

− 2 λ − 1ð Þα〠
n

i=1

Wi 1 − e
− eδx

β
i −1

� 	22
4

3
5
α−1

1 − 1 − e
− eδx

β
i −1

� 	22
4

3
5
α + 2 α − 1ð Þ〠

n

i=1

Wi

1 − e
− eδx

β
i −1

� 	2 ,

ð12Þ

where Ui = ln ðxiÞxβi eδx
β
i ðeδxβi − 1Þ and Wi = xβi e

δxβi ðeδxβi − 1Þ
e−ðe

δx
β
i −1Þ

2

.
The numerical solution of such equations, which cannot

be obtained from the analysis, may be accomplished by the
use of statistical analysis software using iterative approaches.

4. Bayesian Estimation

In this section, the Bayesian hypothesis for unknown param-
eters of both models is constructed by using left censoring in
the case of both informative and flat priors in the case of
both informative and flat priors. Both of these priors are
used. The squared error loss function is something that is
taken into consideration (SELF). The next part has an expla-
nation that is more fundamental in nature about the loss
function, priors, and the posterior analysis:

In loss function, the loss function LoðΩ, ~ΩÞ = ð~Ω −ΩÞ2
is called SELF, which is the simplest symmetric loss function.
The Bayes estimator of Ω under SELF is ~Ω = EðΩjXÞ with
risk VarðΩjXÞ. In this case, the expectation and variance
are calculated in relation to the posterior PDF. Initial appli-
cations included estimate issues where an unbiased estima-
tor of Ω was being evaluated, and it is still in use today.

The previous distribution that we choose is often deter-
mined by the kind of prior information that we have at
our disposal. When we have little or no knowledge regarding
a parameter, we should utilise a flat prior to estimate it.
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Previously, a large number of practitioners used flat priors
(see Santos and Achcar [26]). When priors are flat, we utilise
the gamma distribution to determine baseline parameters ~Ω.
That is, the considered priors PDFs are

g Ωð Þ∝ λb1−1e−a1λαb2−1e−a2αβb3−1e−a3βδb4−1e−a4δ, λ > 0, α > 0, β > 0, δ > 0:

ð13Þ

Using the concept of informative priors, the hyperpara-
meters are selected in such a manner that the expectation
of each unknown parameter’s prior distribution is identical
to the actual value. Numerous scientists, notably Chacko
and Mohan [27], have employed this strategy to great
effect. This section investigates the use of Bayesian estimat-
ing to get estimates of the TIHLBW model parameters in
order to realize those estimations. As we can see, the
maximum likelihood estimate (MLE) approach is very
important, yet it is ineffective when dealing with a high-
dimensional optimization issue, as we will show. As a

result, Bayesian estimation may be more accurate in esti-
mating the parameter than MLEs.

As a result, we merged the likelihood function (10) and
joint prior density (13) and used Bayes’ theorem to construct
the joint posterior density function Ω up to a constant.

Π Ωð Þ∝ λn+b1−1αn+b2−1βn++b3−1δn++b4−1e−a1λ−a2α−a3βe
−δ a4+−2〠

n

i=1
xβi

 !

× e
−〠

n

i=1
eδx

β
i −1

� 	2Yn
i=1

xβ−1i 1 − e−δx
β
i

� 	
1 − e

− eδx
β
i −1

� 	22
4

3
5
α−1

×
Yn
i=1

1 − 1 − e
− eδx

β
i −1

� 	22
4

3
5
α8<

:
9=
;

λ−1

1 + 1 − 1 − e
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It is hard to incorporate out joint posterior distributions
because of the high-dimensional integration of joint poste-
rior distributions. As a result, we use the most widely used

Table 1: MLE and Bayesian estimation for parameter of TIHLBW distribution when λ = 1:2, δ = 1:5 and other values.

λ = 1:2, δ = 1:5 α = 0:5 α = 2
MLE Bayesian MLE Bayesian

β n Bias MSE Bias MSE Bias MSE Bias MSE

1.5

25

λ 0.0264 0.2286 0.0464 0.0137 -0.1535 0.0847 0.0516 0.0163

α 0.1282 0.3086 0.0547 0.0409 -0.0272 0.9604 0.0448 0.1072

β 0.3121 0.8010 0.1202 0.0734 0.4296 0.9017 0.1031 0.0413

δ 0.3520 0.5737 0.0374 0.0129 0.3031 0.3551 0.0412 0.0103

50

λ 0.0533 0.2235 0.0451 0.0126 -0.1547 0.0802 0.0478 0.0154

α 0.0597 0.1364 0.0445 0.0283 0.0787 0.7540 0.0296 0.1017

β 0.2275 0.5454 0.1039 0.0653 0.2111 0.3269 0.0909 0.0351

δ 0.1855 0.2008 0.0327 0.0112 0.1785 0.0939 0.0373 0.0084

100

λ 0.0281 0.1606 0.0355 0.0118 -0.0561 0.0224 0.0430 0.0123

α 0.0201 0.0531 0.0256 0.0208 -0.0250 0.3409 0.0351 0.1005

β 0.1229 0.2551 0.0911 0.0574 0.1235 0.1309 0.0770 0.0315

δ 0.1020 0.0912 0.0306 0.0102 0.0684 0.0201 0.0303 0.0060

3

25

λ 0.1136 0.3861 0.0386 0.0147 -0.1945 0.1197 0.0463 0.0152

α 0.1382 0.2610 0.0586 0.0288 0.0663 0.7905 0.1304 0.1354

β 0.1726 1.2476 0.0542 0.0324 0.4725 1.0935 0.0925 0.0425

δ 0.2043 0.3312 0.0275 0.0118 0.2321 0.1737 0.0272 0.0072

50

λ 0.0933 0.3041 0.0342 0.0124 -0.0889 0.0642 0.0299 0.0148

α 0.0442 0.0808 0.0415 0.0173 0.1793 0.5747 0.0854 0.1022

β 0.1985 0.8358 0.0527 0.0313 0.1391 0.3592 0.0834 0.0406

δ 0.1253 0.1636 0.0227 0.0080 0.0871 0.0306 0.0280 0.0063

100

λ 0.0317 0.2076 0.0341 0.0119 -0.0769 0.0351 0.0195 0.0132

α 0.0174 0.0318 0.0296 0.0112 0.0736 0.3362 0.0550 0.1000

β 0.0649 0.3402 0.0507 0.0305 0.1150 0.2968 0.0733 0.0406

δ 0.0749 0.0787 0.0166 0.0068 0.0625 0.0198 0.0284 0.0050
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MCMC approach. The Metropolis-Hastings algorithm, as
well as Gibbs samplers, has indeed been implemented
in the MCMC approach. In order to determine if a
Markov chain is approaching a stable distribution, the
Heidelberger-Welch test has been applied. It has been pro-
posed that entire conditional distributions may be generated
by multiplying the joint distribution of the model parameter
by the joint distribution of the model parameter.

5. Simulation Analysis

MCMC is used in this part to execute a Monte Carlo sim-
ulation approach to compare the MLEs and the Bayesian
estimation method under the condition of self-evaluation
(SELF) for estimating the parameters of the TIHLBW
distribution. To produce these analyses, we may utilise a
variety of software tools such as the Mathcad, Mathema-
tica, Maple, and R packages. Based on data-generated
10000 random samples from TLHLBW distribution, where
x represents the TIHLBW lifetime, Monte Carlo experi-
ments are carried out for various real values of parameters

and varied sample sizes n (25, 50, and 100). We might
define the best estimator approaches as those that reduce
the bias and mean squared error (MSE) of estimators to
the greatest extent possible. We make use of several cases
of real values, such as in Table 1,

(1) actual case I: λ = 1:2, α = 0:5, β = 1:5, and δ = 1:5

(2) actual case II: λ = 1:2, α = 2, β = 1:5, and δ = 1:5

(3) actual case III: λ = 1:2, α = 0:5, β = 3, and δ = 1:5

(4) actual case IV: λ = 1:2, α = 2, β = 3, and δ = 1:5

In Table 2,

(1) actual case I: λ = 3, α = 0:5, β = 1:5, and δ = 0:5

(2) actual case II: λ = 3, α = 2, β = 1:5, and δ = 0:5

(3) actual case III: λ = 3, α = 0:5, β = 3, and δ = 0:5

(4) actual case IV: λ = 3, α = 2, β = 3, and δ = 0:5

Table 2: MLE and Bayesian estimation for parameter of TIHLBW distribution when λ = 3, δ = 0:5 and other values.

λ = 3, δ = 0:5 α = 0:5 α = 2
MLE Bayesian MLE Bayesian

β n Bias MSE Bias MSE Bias MSE Bias MSE

1.5

25

λ -0.2111 0.4032 0.0063 0.0030 -0.0026 0.0006 0.0014 0.0003

α 0.0876 0.1568 0.0535 0.0274 0.0317 0.0907 0.0259 0.0851

β 0.2663 0.5802 0.1483 0.0908 0.1040 0.0912 0.1012 0.0564

δ 0.0550 0.0233 0.0078 0.0061 -0.0081 0.0026 -0.0078 0.0019

50

λ -0.0977 0.1410 0.0061 0.0030 -0.0020 0.0002 0.0012 0.0002

α 0.0497 0.0674 0.0468 0.0235 0.0101 0.0441 0.0093 0.0390

β 0.1061 0.2411 0.1044 0.0898 0.0387 0.0339 0.0288 0.0315

δ 0.0245 0.0095 0.0043 0.0046 -0.0040 0.0012 -0.0013 0.0011

100

λ -0.0668 0.0901 0.0059 0.0029 -0.0004 0.0002 0.0002 0.0002

α 0.0372 0.0480 0.0344 0.0193 0.0005 0.0282 0.0003 0.0182

β 0.0871 0.1970 0.0870 0.0880 0.0280 0.0223 0.0190 0.0148

δ 0.0122 0.0058 -0.0022 0.0039 -0.0032 0.0008 -0.0021 0.0007

3

25

λ -0.2365 0.5905 0.0128 0.0027 -0.0011 0.0016 0.0146 0.0013

α 0.0395 0.0794 0.0347 0.0175 0.0743 0.1037 0.1039 0.0939

β 0.1953 0.5684 0.0607 0.0321 0.0836 0.1205 0.0789 0.0409

δ 0.0632 0.0214 0.0079 0.0046 0.0003 0.0014 -0.0039 0.0009

50

λ -0.0707 0.1302 0.0140 0.0023 0.0008 0.0004 0.0004 0.0003

α 0.0150 0.0139 0.0131 0.0082 0.0260 0.0457 0.0175 0.0392

β 0.0733 0.1324 0.0656 0.0304 0.0412 0.0517 0.0407 0.0406

δ 0.0231 0.0048 0.0078 0.0028 -0.0007 0.0006 -0.0006 0.0005

100

λ -0.0624 0.1274 0.0082 0.0021 -0.0005 0.0003 0.0001 0.0003

α 0.0120 0.0117 0.0120 0.0050 0.0122 0.0290 0.0105 0.0183

β 0.0246 0.1187 0.0225 0.0248 0.0154 0.0327 0.0566 0.0254

δ 0.0196 0.0031 0.0050 0.0017 0.0003 0.0004 -0.0027 0.0003
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The following remarks can be noted from Tables 1 and 2:

(1) The bias and MSE decrease in proportion to the
increase in sample size

(2) When it comes to estimating the parameters of the
TIHLBW distribution, the Bayesian technique out-
performs the Markov chain method (MLE) in terms
of bias and MSE

(3) When the value of α increases, the bias and MSE for
the TIHLBW parameters fall in certain cases

6. Applications

In this part, two real-world examples using COVID-19 data
from various nations are provided to evaluate the validity of
the TIHLBW distribution. The TIHLBW performance in
comparison to various similar models, including TIHLB-
exp (TIHLBE) [15], TIHLB-Lomax (TIHLBL) [15], odd
log-logistic modified Weibull (OLLMW) [28], Kumaras-
wamy Weibull (KW) [29], generalized modified Weibull
(GMW) [30], and Kumaraswamy exponentiated Rayleigh
(KER) [31] distributions. Tables 3 and 4 obtained MLE esti-
mates and standard errors (SE) for all parameter of the
models. Tables 5 and 6 obtained Kolmogorov-Smirnov dis-
tance (KSD) statistic along with its P value, CramÃ©r-von
Mises value (CVMV), and Anderson-Darling value (ADV)
for all models that were calibrated based on two genuine
data sets of COVID-19 data with various nations such as
Saudi Arabia and Italy, where these data constituted of a
drought mortality rate.

6.1. Saudi Arabia Data. The first group of information con-
sists of COVID-19 data obtained from Saudi Arabia. These
measurements were taken over the course of 37 days, begin-
ning on June 27 and ending on August 2, 2021. The follow-
ing is the fatality rate that was used to acquire the data:
0.0195, 0.0213, 0.0214, 0.0217, 0.0231, 0.0233, 0.0235,
0.0235, 0.0238, 0.0239, 0.0245, 0.0260, 0.0264, 0.0268,
0.0270, 0.0271, 0.0275, 0.0278, 0.0278, 0.0282, 0.0282,
0.0285, 0.0287, 0.0294, 0.0296, 0.0300, 0.0301, 0.0309,

0.0310, 0.0313, 0.0314, 0.0315, 0.0324, 0.0325, 0.0328,
0.0332, and 0.0358.

6.2. Italy Data. The second data set is a COVID-19 data set
that belongs to Italy and spans 172 days, from the first of
March to the twentieth of August, 2020. The information
is as follows: 0.0107, 0.0490, 0.0601, 0.0460, 0.0533, 0.0630,
0.0297, 0.0885, 0.0540, 0.1720, 0.0847, 0.0713, 0.0989,
0.0495, 0.1025, 0.1079, 0.0984, 0.1124, 0.0807, 0.1044,
0.1212, 0.1167, 0.1255, 0.1416, 0.1315, 0.1073, 0.1629,
0.1485, 0.1453, 0.2000, 0.2070, 0.1520, 0.1628, 0.1666,
0.1417, 0.1221, 0.1767, 0.1987, 0.1408, 0.1456, 0.1443,
0.1319, 0.1053, 0.1789, 0.2032, 0.2167, 0.1387, 0.1646,
0.1375, 0.1421, 0.2012, 0.1957, 0.1297, 0.1754, 0.1390,

Table 4: MLE for Italy data.

λ α β δ

TIHLBW
Estimates 1.1716 0.8199 0.5148 1.8929

SE 1.2784 0.2916 0.1814 0.4230

TUHLBE
Estimates 6.0662 0.5177 0.7225

SE 4.3622 0.0653 0.2938

TIHLBL
Estimates 1.4204 0.4813 0.2133 1.0133

SE 0.9456 0.1517 0.1549 0.8522

OLLMW
Estimates 20.7185 0.3096 0.6924 0.0249

SE 12.7877 0.2029 0.0147 0.0162

KS
Estimates 0.4471 0.3428 9.5106 2.0612

SE 0.1097 0.0813 0.9027 0.2006

GMW
Estimates 2.6124 5.9942 3.0918 0.2462

SE 0.7070 8.4543 0.8185 0.2231

KER
Estimates 105.2955 0.5725 24.8535 0.0207

SE 69.6219 0.3307 13.0358 0.0109

Table 5: Goodness-of-fit measures for Saudi Arabia data.

KSD P-V.KS CVMV ADV

TIHLBW 0.0936 0.8723 0.0362 0.2607

TUHLBE 0.0980 0.8351 0.0379 0.2827

TIHLBL 0.0998 0.8190 0.0412 0.2847

KS 0.1006 0.8118 0.0379 0.2692

OLLMW 0.1124 0.6964 0.0791 0.5046

GMW 0.0942 0.8671 0.0541 0.3458

Table 6: Goodness-of-fit measures for Italy data.

KSD P-V.KS CVMV ADV

TIHLBW 0.0501 0.7773 0.1179 0.7285

TUHLBE 0.0587 0.5901 0.1436 0.8437

TIHLBL 0.0529 0.7175 0.1209 0.7339

OLLMW 0.0604 0.5526 0.2184 1.3017

KS 0.0527 0.7230 0.1195 0.7308

GMW 0.0621 0.5163 0.1511 0.8802

KER 0.0712 0.3443 0.1715 0.9792

Table 3: MLE for Saudi Arabia data.

λ α β δ

TIHLBW
Estimates 48.1999 2.1852 1.4615 67.4952

SE 0.0069 0.0043 0.0022 0.0045

TUHLBE
Estimates 14.1517 3.6447 0.0467

SE 33.0825 0.8766 0.0188

TIHLBL
Estimates 1.3570 6.4543 0.5680 19.7100

SE 2.4011 5.5973 1.9628 66.2191

KS
Estimates 3.9925 12.4107 31.0745 2.8601

SE 24.8132 127.4390 21.8936 13.7647

OLLMW
Estimates 10.5314 6.7451 7.5742 0.7531

SE 12.2575 73.7284 10.2987 0.5212

GMW
Estimates 79.1348 7.7471 62.7334 1.4464

SE 20.1560 9.0892 34.6153 0.3317
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0.1761, 0.1119, 0.1915, 0.1827, 0.1548, 0.1522, 0.1369,
0.2495, 0.1253, 0.1597, 0.2195, 0.2555, 0.1956, 0.1831,
0.1791, 0.2057, 0.2406, 0.1227, 0.2196, 0.2641, 0.3067,
0.1749, 0.2148, 0.2195, 0.1993, 0.2421, 0.2430, 0.1994,
0.1779, 0.0942, 0.3067, 0.1965, 0.2003, 0.1180, 0.1686,
0.2668, 0.2113, 0.3371, 0.1730, 0.2212, 0.4972, 0.1641,
0.2667, 0.2690, 0.2321, 0.2792, 0.3515, 0.1398, 0.3436,
0.2254, 0.1302, 0.0864, 0.1619, 0.1311, 0.1994, 0.3176,
0.1856, 0.1071, 0.1041, 0.1593, 0.0537, 0.1149, 0.1176,
0.0457, 0.1264, 0.0476, 0.1620, 0.1154, 0.1493, 0.0673,
0.0894, 0.0365, 0.0385, 0.2190, 0.0777, 0.0561, 0.0435,
0.0372, 0.0385, 0.0769, 0.1491, 0.0802, 0.0870, 0.0476,
0.0562, 0.0138, 0.0684, 0.1172, 0.0321, 0.0327, 0.0198,
0.0182, 0.0197, 0.0298, 0.0545, 0.0208, 0.0079, 0.0237,
0.0169, 0.0336, 0.0755, 0.0263, 0.0260, 0.0150, 0.0054,
0.0375, 0.0043, 0.0154, 0.0146, 0.0210, 0.0115, 0.0052,
0.2512, 0.0084, 0.0125, 0.0125, 0.0109, and 0.0071.

It is evident from Tables 3 and 4 that the TIHLBW,
TIHLBE, TIHLBL, KS, OLLMW, and GMW distributions
have MLE and SE estimations. In addition, the P value for
KS is maximum for the TIHLBW distribution (see

Tables 5 and 6). In addition, the KSD, CVMV, and ADV
have their lowest values for the TIHLBW distribution as
compared to other models (see Tables 5 and 6). Since dem-
onstrated in Figures 3 and 4, the four roots of the parameters
in the COVID-19 data sets are all global maximums, which
indicates that the data sets perform rather well. We drew
the log by establishing two parameters and adjusted the
others. Figures 5 and 6 show the probabilities for each
parameter in COVID-19 data sets. This leads us to the con-
clusion that the TIHLBW distribution is a superior match
for the three actual data sets from Saudi Arabia and Italy.
The estimated PDF of model plots provided in Figures 7
and 8 demonstrates that our distribution is a good fit for
modelling the COVID-19 data presented above.

7. Major Findings and Conclusions

During the course of this research, the idea of developing
and researching a new Weibull distribution that is based
on the type I half logistic Burr G family was brought up,
and it was studied. In order to make an accurate estimates
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Figure 3: Profile-likelihood for the four parameters for COVID-19 data of Saudi Arabia.
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of the unknowable parameters included in this investigation,
the methodologies of maximum likelihood and Bayesian
estimation were used. The TIHLBW distribution provides

a better match than other submodels, including the
TIHLB-exp distribution, the TIHLB-Lomax distribution,
the odd log-logistic modified Weibull distribution, the
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Kumaraswamy Weibull distribution, the generalized modi-
fied Weibull distribution, and the Kumaraswamy exponen-
tiated Rayleigh distributions. An R software was used in
order to carry out a simulation research so that a compari-
son could be made about how well the different methods
of estimation worked. The MCMC methodology was used
in order to arrive at a Bayesian estimate of the data. Two sets
of real-world COVID-19 data from a variety of countries,
such as Italy and Saudi Arabia, were taken into account.
For more reading, see [19, 32–42].

8. Future Work

The expansion of classical statistics is known as neutrophilic
statistics, and it is applicable to situations in which the data
in question originates from a complex issue or an unpredict-
able context. Our present work may be expanded using
neutrosophic statistics as future research, and we will use
the preceding publications as sources and guides in our

future studies. In addition, our present project can be
improved utilising neutrosophic statistics.

The future effort will include us applying the suggested
distribution as well as the newly established family of distri-
butions to the censored sample method. We are going to
experiment with several types of censoring schemes, and
we are going to produce random censored samples based
on the new distribution. Our research may be expanded to
include the application of the suggested model to several
kinds of accelerated life testing, and perhaps even progres-
sive load accelerated life test results. In the end, we are going
to apply a variety of different optimality criteria to the cen-
sored samples that were created by the suggested model.
For more reading, see Ramzan et al. [43].

Data Availability

The data is attached to this paper.
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