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Background. To construct and validate a radiomic-based model for estimating axillary lymph node (ALN) metastasis in patients
with breast cancer by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods. In this retrospective study,
a radiomic-based model was established in a training cohort of 236 patients with breast cancer. Radiomic features were extracted
from breast DCE-MRI scans. A method named the least absolute shrinkage and selection operator (LASSO) was applied to select
radiomic features based on highly reproducible features. A radiomic signature was built by a support vector machine (SVM).
Multivariate logistic regression analysis was adopted to establish a clinical characteristic-based model. The performance of
models was analysed through discrimination ability and clinical benefits. Results. The radiomic signature comprised 6 features
related to ALN metastasis and showed significant differences between the patients with ALN metastasis and without ALN
metastasis (P < 0:001). The area under the curve (AUC) of the radiomic model was 0.990 and 0.858, respectively, in the
training and validation sets. The clinical feature-based model, including MRI-reported status and palpability, performed
slightly worse, with an AUC of 0.784 in the training cohort and 0.789 in the validation cohort. The radiomic signature was
confirmed to provide more clinical benefits by decision curve analysis. Conclusions. The radiomic-based model developed in
this study can successfully diagnose the status of lymph nodes in patients with breast cancer, which may reduce unnecessary
invasive clinical operations.

1. Introduction

Breast cancer has severely threatened women’s physical
health and quality of life. It accounts for the highest inci-
dence of malignancy and the second leading cause of
tumour-related deaths in females [1]. The 5-year survival
rate is up to 99% for patients with localized breast cancer,
while the rate of patients with lymph node metastasis
descends to 89% [2].

The identification of axillary lymph node (ALN) is cru-
cial for therapy of patients with breast cancer, which deter-
mines whether postoperative chemical or radiation therapy

is needed [3]. Sentinel lymph node dissection (SLND) is rec-
ommended to predict the status of nonpalpable axillary
lymph nodes [4]. Axillary lymph node dissection (ALND)
or ultrasound-guided fine-needle aspiration (US-FNA) is
clinically operated in patients with palpable axillary lymph
nodes [5]. However, both ALND and SLND are invasive,
potentially resulting in impaired shoulder range of motion,
limber edema, numbness, and pain syndromes [6, 7]. There-
fore, it would be beneficial if there is a reliable noninvasive
evaluation of ALN metastasis.

Radiomics has attracted great attention as a potential
way to preoperatively detect breast cancer and assess ALN
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status. Quantitative imaging features extracted from mag-
netic resonance imaging (MRI), combined with other clinical
information, can be used to support clinical decisions [8]. In
the study by Chai et al. [9], dynamic contrast-enhanced mag-
netic resonance imaging (DCE-MRI) showed the best perfor-
mance to predict ALN metastasis among multiparametric
MR sequences.

There have been several studies evaluating SLN status by
radiomic analysis of DCE-MRI combined with clinicopatho-
logic features. However, the use of ALND shows no superior
survival compared with SLND alone for patients with T1 or
T2 breast cancer if there are only one or two positive SLNs
[10, 11]. Thus, patients with positive SLNs may undergo
unnecessary ALND due to the lack of evidence for ALN
metastasis [12]. The purpose of this study is to predict
ALN metastasis by developing and validating a radiomics-
based model.

2. Methods

2.1. Patients. 573 patients with histologically confirmed
breast cancer who received DCE-MRI and SLND/ALND
from June 2015 to June 2019 were retrospectively reviewed.
The exclusion criteria were (1) lack of DCE-MR images at
The Affiliated Cancer Hospital of Nanjing Medical Univer-
sity (n = 109). (2) lack of high-quality images (n = 34), (3)

an interval of more than one month between MRI scanning
and SNLD/ANLD (n = 11), (4) with any therapy or inter-
vention before MRI scanning (e.g., a history of ipsilateral
breast operation and chemical, radical, and endocrine ther-
apy) (n = 58), and (5) incomplete baseline characteristics
(n = 24). A total of 337 patients were enrolled in this study
(Figure 1). Based on the date of surgery, 236 patients treated
from June 2015 to December 2017 were allocated to the
training cohort and 101 patients from January 2018 to June
2019 were for the validation cohort.

Clinical characteristics and the data of baseline MR
imaging were collected from medical records. The clinical
data included age, immunophenotype (according to pro-
gesterone receptor (PR) status, estrogen receptor (ER) sta-
tus, human epidermal growth factor receptor 2 (HER-2)
status, and Ki67 proliferation index), histological type
(invasive ductal carcinoma, invasive lobular carcinoma,
and other types), and ALN palpability. The serum tumour
markers (cancer antigen 15-3 (CA15-3), cancer antigen
125 (CA125), and carcinoembryonic antigen (CEA)) were
considered due to the diagnostic value in metastatic breast
cancer [13].

2.2. SLND/ALND and Pathological Assessment. SLND was
performed for all participants by the dye method within
one week after MRI examination. Negative indications of

All achieved data of patients with
pathologically confirmed breast cancer who

underwent DCE from June 2015 to June
2019 (n = 596)

-Lack of DCE-MR images of our institution
(n = 109)

-Lack of high-quality images (n = 34)

Standard DCE-MRI images available (n = 419)

Patients enrolled in this retrospective study.
(n = 337)

Training cohort
(n = 236)

Validation cohort
(n = 101)

-With any therapy or intervention before MRI
scanning (n = 58)

-A history of ipsilateral breast operation (n = 27)
-Preoperative chemical, radical and endocrine

therapy (n = 31)
-Incomplete baseline characteristics (n = 24)

-Lack of records of SNLD/ANLD (n = 23)
-An interval of more than one month between

MRI scanning and SNLD/ANLD (n = 11)

Figure 1: Patient selection flow chart. In all, 337 breast cancer patients with high-quality DCE-MRI scans were included in this study.
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Figure 2: Continued.
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ALND were defined as isolated tumour cells and microme-
tastasis in the SN (isolated tumour cells: <0.2mm or <200
tumour cells; micrometastasis: tumour diameter > 0:2mm,
≤2mm, or <200 tumour cells). Macrometastasis (tumour
diameter > 2mm) was considered a positive indication of
axillary clearance [14].

Histological types of breast cancer were analysed by two
pathologists with over 5-year experience in consensus. Each
pathologist was blinded to the clinical situation. Immuno-
phenotypes were based on expression levels of ER, PR,
HER2, and Ki67: luminal A (ER+ and/or PR+, HER2-,
and Ki67-low), luminal B (ER+ and/or PR+, HER2+; ER+
and/or PR+, HER2-, and Ki67-high), HER2 positive (ER-,
PR-, and HER2+), and triple-negative (ER-, PR-, and
HER2-) [15].

2.3. MR Image Acquisition and Radiologic Evaluation. DCE-
MRI scanning was performed with a 3T MRI system (SIE-
MENS) and 8-channel breast coils in a prone position. The
contrast enhancement agent, gadopentetate dimeglumine
penta-acetic acid (Gd-DPTA), was intravenously injected
at a dose of 0.1mmol/kg and a rate of 3.0ml/s. A total of five
phases, one precontrast and four postcontrast phases, were

obtained with a sagittal VIBRANT multiphase sequence:
repetition time ðTRÞ = 4:46-7.80msec, echo time ðTEÞ = 1:54
-4.20msec, flip angle = 10°, field of view ðFOVÞ = 36 ∗ 36 c
m2, matrix = 256 ∗ 256, and slice thickness without a gap =
2mm.

The workflow is depicted in Figure 2. Two radiologists,
one with 8 years of breast cancer MRI experience and the
other with 10 years, evaluated the following traits of all
images with blindness to the clinical and pathological details:
(1) tumour size: defined by the maximum transverse diame-
ter of the largest lesion; (2) multifocality: defined by more
than one lesion; and (3) LN status: defined by shape, fatty
hilum, cortical thickness, and thickening pattern [16]. Con-
sensus would be reached through discussion if the two radi-
ologists disagreed with the LN status.

2.4. Region-of-Interest Segmentation and Radiomic Feature
Extraction. The signal intensity of tumour lesions in differ-
ent phases was calculated with GE Advanced Workstation
ADW4.4. In the images with the strongest enhanced phase,
region of interests were manually segmented along the
4mm dilated tumour contour by a 3D slicer (version
4.4.0), which contains both intra- and peritumoural data.

Feature selection

High reliability

LASSO regression

Overlap
High
intra-observer
reliability

High
intra-observer
reliability

(c)

Clinical use and analysis

SVM

ROC curves

Decision curve analysis

(d)

Figure 2: The workflow of necessary steps in this study. (a) ROI was manually delineated on the DCE-MR images. (b) Radiomic features
were extracted, including the first-order statistics, textural features, and wavelet transforms. (c) Radiomic features highly related to LN
metastasis were selected to construct a radiomic signature. (d) The radiomic model was constructed by SVM, and the performance of
models was evaluated by ROC and DCA curves.
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Firstly, to assess inter- and intraobserver reliability, the
ROIs were performed by two experienced radiologists (one
with 10-year experience and the other with 16-year experi-
ence). Reader 1 repeated the segmentation twice a week,
and reader 2 independently extracted ROIs to, respectively,
calculate intra- and interobserver reproductivity with intra-
class correlation coefficient [17] (ICC). Radiomic features
with both intra- and interobserver ICC greater than 0.8 were
subsequently analysed in this study. Secondly, the least abso-
lute shrinkage and selection operator [18] (LASSO), with
penalty parameter tuning conducted by 10-fold cross-valida-
tion, was applied to select features of ALN status with non-
zero coefficients in the training cohort.

2.5. Establishment, Performance, and Validation of a
Radiomic Model. The support vector machine (SVM) is a
kind of supervised model for regression analysis with robust
prediction ability. Based on selected radiomic features, SVM
was applied to generate a radiomic signature, using “e1071”

package (https://CRAN.R-project.org/package=e1071) on R
software (version 3.6.1, http://www.r-project.org).

To assess the association between ALN metastasis and
clinical features, the features with significant differences
(P < 0:05) between the training and validation cohorts were
selected for further analysis. Next, multivariable logistic
regression was applied to build the clinical model in the
training cohort. The cutoff value of each independent risk
factor was evaluated by receiver operating characteristic
(ROC) analysis with the maximum Youden index.

This study established three models to predict ALN
metastasis using logistic regression, including the radiomic
signature alone, clinical factors alone, and the model com-
bining the radiomic signature and clinical risk factors. The
discrimination performance of each model was determined
by ROC analysis and area under the curve (AUC). The
Delong test was used to compare each model with the

Table 1: Main characteristics of patients in the training and
validation cohorts.

Characteristics
Training
(n = 236)

Validation
(n = 101) P

Age∗ 53:21 ± 9:72 52:7 ± 10:13 0.67

Immunophenotype 0.415

Luminal A 76 (32.2) 38 (37.6)

Luminal B 126 (53.4) 46 (45.5)

HER2 11 (4.7) 8 (7.9)

Triple-negative 23 (9.7) 9 (8.9)

Histological type 0.547

Invasive carcinoma 189 (80.1) 87 (86.1)

Precursor lesions 43 (18.2) 14 (13.9)

Tumour markers∗

CEA 0:83 ± 0:31 0:76 ± 0:42 0.09

CA15-3 12:32 ± 5:41 11:71 ± 5:53 0.34

CA125 20:61 ± 8:57 21:13 ± 7:49 0.59

Tumour size 18:44 ± 8:34 19:52 ± 9:12 0.29

Multifocality 0.56

Yes 21 (8.9) 11 (10.9)

No 215 (91.1) 90 (89.1)

LN palpability 0.88

Yes 29 (12.3) 13 (12.9)

No 207 (87.1) 88 (87.1)

MRI-reported LN status 0.48

Positive 50 (21.2) 18 (17.8)

Negative 186 (78.8) 83 (82.2)

LN metastasis 0.68

Yes 78 (33.1) 36 (35.6)

No 158 (66.9) 65 (64.4)

Note. Data are numbers of patients, with percentages in parentheses. CEA:
carcinoembryonic antigen; CA15-3: cancer antigen 15-3; CA125: cancer
antigen 125. ∗Data are presented as means ± standard deviations.

Table 2: Main characteristics of patients with and without LN
metastasis.

Characteristics
LN

metastasis
(n = 114)

Non-LN
metastasis
(n = 223)

P

Age∗ 52:13 ± 9:18 52:75 ± 8:93 0.54

Immunophenotype 0.29

Luminal A 41 (40.0) 73 (32.7)

Luminal B 51 (44.7) 121 (54.2)

HER2 9 (7.9) 10 (4.5)

Triple-negative 13 (11.4) 19 (8.5)

Histological type <0.001
Invasive carcinoma 111 (97.4) 169 (75.8)

Precursor lesions 3 (2.6) 54 (24.2)

Tumour markers∗

CEA 0:77 ± 0:45 0:82 ± 0:31 0.26

CA15-3 11:69 ± 5:61 12:37 ± 5:32 0.27

CA125 20:53 ± 7:86 20:88 ± 8:41 0.71

Tumour size 19:82 ± 7:58 18:22 ± 9:42 0.12

Multifocality <0.001
Yes 22 (19.3) 10 (4.5)

No 92 (80.7) 213 (95.5)

LN palpability <0.001
Yes 34 (29.8) 8 (3.6)

No 80 (80.2) 215 (96.4)

MRI-reported LN
status

<0.001

Positive 46 (40.4) 22 (9.9)

Negative 68 (59.4) 201 (90.1)

LN metastasis

Yes — —

No — —

Note. Data are numbers of patients, with percentages in parentheses. CEA:
carcinoembryonic antigen; CA15-3: cancer antigen 15-3; CA125: cancer
antigen 125. ∗Data are presented as means ± standard deviations.
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Figure 3: Radiomic feature selection by the least absolute shrinkage and selection operator (LASSO) regression. (a) LASSO coefficient
profiles of the 841 selected features. (b) Optimal λ value was determined by the LASSO model using 10-fold cross-validation via
minimum criteria. The mean-squared error was plotted versus log(λ). Dotted vertical lines were drawn at the optimal values by using the
minimum criteria and the 1 standard error of the minimum criteria. The optimal λ value of 0.067 was chosen.

Table 3: LN status-related radiomic features.

Types Features

Shape (n = 2) Maximum 3D diameter, minor axis

Texture features (n = 1) Original GLDM gray level variance

Wavelet transforms (n = 2) LHL GLSZM gray level nonuniformity, HHL glcm difference entropy

Note. GLDM: gray level difference matrix; GLSZM: gray level size zone matrix; H: high; L: low.
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Figure 4: ROC curves using radiomic features (a) and clinical features (b) for the training and validation sets.
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AUC value. The performance of models was then tested in
the independent validation cohort with the formula from
the training cohort.

2.6. Statistical Analysis. For categorical variables, the chi-
squared test or Fisher exact test was performed to analyse
the equality of variances between the training and validation
cohorts, and the Student t-test or Mann–Whitney U test was
used to compare continuous variables. Decision curve anal-
ysis (DCA) was applied in the validation cohort to assess
the benefit of each model at different threshold probabilities.
A two-sided P value less than 0.05 was considered statistical
significance.

3. Results

3.1. Patient Characteristics. As summarized in Table 1, there
were no statistical differences in clinical and radiological
characteristics between the training and validation cohorts.
The rates of LN metastasis were, respectively, 33.1% (78 of
236) and 35.6% (36 of 101) in the training and validation
cohorts, whereas no difference was found between the two
cohorts (χ2, P = 0:64). The overall discrimination accuracy
of MRI report of LN status was 63%, with a sensitivity of
48.7% (38 of 78), a specificity of 66.4% (105 of 158), a posi-
tive value of 76.0% (38 of 50), and a negative predictive value
of 56.4% (105 of 186). Statistical differences were found
between non-LN metastasis and LN metastasis in multifo-
cality, LN palpability, and MRI-reported LN status (Table 2).

3.2. Radiomic Signature. In total, 841 features (13 shape fea-
tures, 18 first-order features, 74 textural features, and 736
wavelet-based features) were automatically extracted from
each ROI with the opensource Pyradiomics package
(http://www.radiomics.io/pyradiomics.html). Details about
the extracted features are shown in the supplement material
(Table S1).

Of 841 extracted features, 332 LN-related features were
selected for the following analysis, including 11 shape fea-
tures, 9 first-order features, 37 textural features, and 275
wavelet-based features. Five LN status-related features with
nonzero coefficients in the LASSO regression model were
selected based on the training cohort, including two shape
features, one textural feature, and two wavelet-transformed
features (Figure 3). The five features are shown in Table 3.

The SVM algorithm was applied to construct a radiomic
signature. A difference in the decision values was observed

between patients with and those without LN metastasis in
the training cohort (mean, -0.581 vs. 0.737, P < 0:001) and
also obtained in the validation cohort (mean, 0.129 vs.
0.470, P < 0:001). As is shown in Figure 4, the radiomic sig-
nature displayed a favourable discriminatory ability with an
AUC of 0.990 (95% confidence interval (CI): 0.990-1) in the
training cohort and 0.858 (95% CI: 0.834-0.950) in the vali-
dation cohort. The optimal cutoff value of 0.8567 for the
radiomic signature was calculated at the point of the maxi-
mum Youden index from the entire cohort. The radiomic
model performs well in the training cohort, whose sensitivity
and specificity were 100% and 94%, respectively. In the val-
idation cohort, the sensitivity was as high as 87% and the
specificity was 78%. The accuracies were 96% and 81% in
the training and validation cohorts, respectively. The calibra-
tion curve of the radiomic signature yielded great agreement
between the predicted and actual metastases in the training
cohort.

3.3. LN Status-Related Clinical Factors. As shown in Table 1,
histological type, multifocality, MRI-reported LN status, and
LN palpability were significantly related to LN metastasis
(P < 0:001, chi-squared test). Table 4 displays the odds ratios
of the above clinical factors. The odds ratios of MRI-
reported status and LN palpability were statistically signifi-
cant, respectively, 5.28 (95% CI: 2.52-11.79) and 7.35 (95%
CI: 3.48-16.57). Then, the clinical prediction model was built
by multivariable logistic regression based on MRI-reported
status and LN palpability. The model displayed an AUC of
0.784 (95% CI: 0.716-0.851) in the training cohort, and the
sensitivity, specificity, and accuracy were, respectively, 69%,
71%, and 70%. The performance in the validation cohort
was similar, with an AUC of 0.739 (95% CI: 0.644-0.833),
a sensitivity of 68%, a specificity of 70%, and an accuracy
of 69%. The optimal cutoff value of the clinical model was
-0.671, determined from the whole cohort. Compared with
the radiomic signature, the clinical model yielded poorer
results in the training and validation sets.

3.4. Combining Radiomic Signature and Clinical Factors. The
discriminatory ability of the combined model was poorer
than that of the radiomic signature, with an AUC of 0.987
(95% CI: 0.9743-1; P = 0:877) in the training cohort and of
0.826 (95% CI: 0.742-0.909; P = 0:11). The sensitivity, speci-
ficity, and accuracy of the third model were, respectively,
96%, 93%, and 95% in the training cohort and 77%, 81%,
and 78% in the validation cohort.

3.5. Clinical Use. As summarized in Table 5, the radiomic
signature had the best discriminatory ability in the training
and validation cohorts. In the training cohort, the AUC
value of the radiomic signature was significantly higher than
that of the clinical model (AUC: 0.784; CI: 0.716-0.851),
MRI-reported metastasis alone (AUC: 0.661; CI: 0.586-
0.735; P < 0:001), and palpability (AUC: 0.703; CI: 0.631-
0.775; P < 0:001). In the validation cohort, the radiomic
signature displayed the best results, compared with the clin-
ical model (AUC: 0.739; CI: 0.644-0.833; P = 0:020), the
MRI-reported metastasis (AUC: 0.557; CI: 0.456-0.659; P <

Table 4: Clinical risk factors for axillary lymph node metastasis.

b coefficient Odds ratio P value

Histological type 0.26 1.3 (0.23-11.45) 0.7864

Multifocality 0.12 1.13 (0.33-3.67) 0.8444

MRI-reported status 1.66 5.28 (2.52-11.79) <0.001
LN palpability 2 7.35 (3.48-16.57) <0.001
Note. b coefficient was from multivariable logistic regression. Clinical
factors found to be significantly related to the LN metastasis entered into
the clinical model.
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0:001), and palpability (AUC: 0.689; CI: 0.594-0.784; P =
0:002). Though the AUC of the radiomic signature was
slightly higher than the combined model, the difference
showed no statistical significance. Figure 5 presents the deci-
sion curve analysis for the clinical prediction model and the
radiomic signature. The radiomic signature indicates more
benefit to predict LN metastasis, with the threshold proba-
bilities of more than 10%.

4. Discussion

This study constructed and validated a radiomics-based
model and a clinical model to predict LN metastasis in
patients with breast cancer. Six stable radiomic features
effectively identify patients as LN metastasis or non-LN
metastasis. Compared with the clinical model consisting of
the MRI-reported LN status and LN palpability, the radio-
mic model performed much better with an AUC of 0.858
in the validation cohort.

Radiomics is termed as extracting quantitative features
that convert images into mineable data, and analyse these
data to improve diagnosis, prediction power, and much
other decision support. MRI-based radiomic analysis can
provide an efficient method to estimate the existence of
ALN metastasis and probably change the clinical routine in
the future. In this study, we constructed a radiomic model
based on images extracted from DCE-MRI to find the LN
metastasis, and the results of the model were satisfactory.
The AUC, sensitivity, and specificity were 0.858, 87%, and
78%, respectively, in the validation cohort. While MRI has
been the main noninvasive method to assess LNs, its sensi-
tivity and specificity were merely 68% and 70%.

Like other research, this study found that the clinical
characteristics of patients with breast cancer were related
to LN status, such as multifocality, palpability of LNs, and
MRI-reported LN status. Tan et al. selected four factors,
including age, HER2 status, size of tumour, and vascular
thrombus accompanied or not, into the clinical model to

predict SLN metastasis [19]. The accuracy of the model rely-
ing on clinicopathological features was merely 70.26%, much
lower than the radiomic signatures, and the damage must
happen if histological information is needed for the model.

A radiomic signature, based on ROI extracted from
DCE-MR images, was constructed in this study to evaluate
the ALN metastasis. Dong et al. predicted SLN metastasis
based on radiomics of diffusion-weighted (DWI) and T2-
weighted fat-suppression MRI (T2-FS). The AUC of radio-
mic model-based DWI and T2-FS were, respectively, 0.77
and 0.79 in the validation set, slightly lower than ours. To
date, there have been some articles published combining
the radiomic signature and clinicopathological features. For
instance, Han et al. evaluated the ALN with the radiomic sig-
nature and clinical characteristics including palpability of
LN and MRI-reported LN status, achieving an AUC of
0.78 [20]. Similar clinical features associated with LN metas-
tasis were found to predict the LN status in our study, but
the radiomic-based model combining the clinical features
was slightly worse than the model using the radiomic signa-
ture alone. One of the reasons was that the accuracy of the
clinical information is much dependent on the experience
of doctors.

There were several limitations in this study. First, the ret-
rospective analysis had inherent bias influencing the out-
comes. More independent samples from different centres
will be needed to validate the results. Second, the images to
extract radiomic features are the primary tumour instead
of LNs. The MR images with LNs, however, are only a small
part of all samples. Third, the ROI is circled manually.
Although the intra- and interobserver ICC were more than
0.8, some studies demonstrated that automated or semiauto-
mated methods show higher accuracy and stability [21, 22].
Fourth, many scholars have applied radiogenomics to cancer
research [23–25]. This study ignored the genomic data due
to economic limitations.

In conclusion, the radiomic model is a promising nonin-
vasive method to predict LN metastasis for breast cancer.

Table 5: Performances of all methods for predicting LN metastasis.

Training Validation Training vs. validation

AUROC AUROC Delong test

Radiomic signature 0.990 (0.990, 1) 0.858 (0.834, 0.950) 0.004

Clinical model 0.784 (0.716, 0.851) 0.739 (0.644, 0.833) 0.4439

Combined model 0.987 (0.9743-1) 0.826 (0.742-0.909) <0.001
MRI-reported status 0.661 (0.586-0.735) 0.557 (0.456-0.659) 0.1083

LN palpability 0.703 (0.631-0.775) 0.689 (0.594-0.784) 0.8253

Comparison of AUCROC

Radiomic signature vs. clinical model <0.001 0.02

Radiomic signature vs. MRI-reported status <0.001 <0.001
Radiomic signature vs. LN palpability <0.001 0.002

Radiomic signature vs. combined model 0.877 0.11

Clinical model vs. MRI-reported status 0.005 0.006

Clinical model vs. LN palpability <0.001 0.028

MRI-reported status vs. palpability 0.462 0.103

Note. 95% confidence intervals were shown in parentheses.

9Computational and Mathematical Methods in Medicine



Further study with a larger sample size is needed to achieve
the application.

4.1. Clinical Practice Points. Breast cancer patients with pos-
itive SLNs are advised to undergo ALND to confirm the

ALN status which is important for treatment strategy, while
some results of ALND are negative. We hope to find a con-
venient and noninvasive method for patients with breast
cancer to assess ALN status. MRI has been extensively
applied to the diagnosis of breast cancer, and it is easy for
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Figure 5: Decision curve analysis for each model in the training (a) and validation (b) cohorts. The Y-axis measures the net benefit,
calculated by the true-positive findings and false-positive findings. Across the threshold probability, the application of radiomic signature
to predict LN status provides more benefits than clinical features.
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patients to obtain MR images. The MRI-based radiomic
model performs well in evaluating the ALN metastasis and
may reduce unnecessary lesions.
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