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Since the outbreak of COVID-19, BRICS countries have experienced different epidemic spread due to different health conditions,
social isolation measures, vaccination rates, and other factors. A descriptive analysis is conducted for the spread of the epidemic in
the BRICS countries. Considering the nonlinear and nonstationary characteristics of COVID-19 data, a principle of
decomposition-reconstruction(R)-prediction-integration is proposed. Correspondingly, this paper constructs an integrated deep
learning prediction model of CEEMDAN-R-ILSTM-Elman. Specifically, the prediction model is integrated by complete
ensemble empirical mode decomposition (CEEMDAN), improved long-term and short-term memory network (ILSTM), and
Elman neural network. First, the data is decomposed by adopting CEEMDAN. Then, by calculating the permutation entropy
and average period, the decomposed eigenmode component IMFs are reconstructed into four sequences of high, medium, low
level, and trend term. Thus, ILSTM and Elman algorithms are used for component sequence prediction, whose results are
integrated as the final results. The ILSTM is established based on the LSTM model and the improved beetle antennae search
algorithm (IBAS). The ILSTM mainly considers that the prediction accuracy of LSTM model is vulnerable to the influence of
parameter selection. The IBAS with adaptive step size is used to automatically optimize the super parameters of LSTM model
and to improve the modeling efficiency and prediction accuracy. Experimental results indicate that compared with other
benchmark models, CEEMDAN-R-ILSTM-Elman integrated model predicts the number of newly confirmed cases of COVID-
19 in BRICS countries with higher accuracy and lower error. Strict social policies have a greater impact on the infection rate
and mortality rate of the epidemic. During July-August 2021, epidemic spread in BRICS countries will slow down, and the
overall situation is still quite severe.

1. Introduction

Since the beginning of 2020, the COVID-19 epidemic has
swept the world. As of June 22, 2021, the number of con-
firmed cases of new coronary pneumonia in the world
reached 179.43 million, and the cumulative death rate
was 3.88 million, with a mortality rate of 2.165%, which
has brought substantial amounts of health, economic,
environmental, and social challenges. The cumulative
number of confirmed cases of new coronary pneumonia
in the BRICS countries reached 50.01 million, accounting
for 28% of the world, with a case fatality rate of 1.97%.

The B16172 mutant strain that newly appeared this year,
named, “Delta Mutant” by the WHO, has spread to about
100 countries around the world. The mutant virus spreads
exponentially, making the peak of this round of epidemics
in various countries faster than the previous wave. The
diagnosis rate of India, South Africa, and Brazil, which
have higher population densities and a large base of impo-
verished population, has reached the top 5 in the world.
Because of different age structures, hygienic conditions,
and vaccination rates, Brazil, Russia, India, China, and
South Africa (BRICS) have different infection and death
rates. India, Brazil, South Africa, and Russia reported
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nearly 50,000, 80,000, 10,000, and 15,000 new cases in a
single day for consecutive days, indicating that the spread
of the new coronavirus is still accelerating. The cumulative
number of confirmed cases of the new crown in India has
reached more than 30 million, making it the country with
the largest number of infections in the BRICS, with an
infection rate of 2.18% and a mortality rate of 1.30%.
The peak of the second wave of the epidemic in India
has passed, and the transmission rate has slowed down.
However, due to factors such as social activities in the
country and religious gatherings, the future situation of
the epidemic in India is still not optimistic. India, Brazil,
and Russia rank second, third, and fourth in the world
for confirmed cases of new coronary pneumonia, South
Africa is the country with the largest number of confirmed
cases of new coronary pneumonia in Africa. Affected by
this, the economies of the four countries shrank sharply.
Brazil, South Africa, and Russia ushered in the third wave
of the epidemic. The prediction of the epidemic is helpful
for policymakers to formulate epidemic prevention and
control measures. At the same time, it is of great signifi-
cance for promoting the joint response of the BRICS
countries to the challenges of the epidemic and promoting
cooperation and development.

Many scholars have made efforts to prevent the epidemic
and have proposed a large number of epidemic dynamic
models, such as the classic differential equation model to pre-
dict the spread of epidemics [1, 2]. Babaei et al. [1] used the
susceptible exposure infection recovery (SEIR) model to
analyze the impact of health protection measures such as
isolation, masking, and social distancing on hypothetical pop-
ulations. At the same time, they used the Brownian motion
process to calculate the environmental noise of the data centre.
Campillo-Funollet et al. [3] used SEIR-D quantitative epide-
miological modeling for healthcare demand, capacity, and
the impact of local outbreaks of COVID-19 predicting, and
the model exhibits a high accuracy in the prediction. Savi
et al. [2] based on the framework of the SEIRmodel to analyze
different scenarios of COVID-19 in Brazil.

In the study of predicting infectious diseases, especially
deep learning methods [4–11], other classic models have been
conquered in the short-term estimation of epidemics. Devaraj
et al. [4] used autoregressive integrated moving average model
(ARIMA), long short-term memory (LSTM) [5], and stacked
long short-term memory (SLSTM) to predict the cumulative
confirmed cases, death cases, and recovery cases of COVID-
19 in India and Chennai. Wang et al. [6] used the built-in
rolling update mechanism of LSTM and introduced the diffu-
sion index (DI) tomake long-term predictions of the epidemic
trend in the three countries of Russia, Peru, and Iran. Abbasi-
mehr and Paki [7] combined deep learning models (CNN and
LSTM) with Bayesian optimization algorithms to predict
COVID-19 time series data. Kafieh et al. [8] applied multilayer
perceptrons, random forests, and different versions of LSTM
to predict the epidemic in selected countries. Omran et al.
[9] applied LSTM and gated recurrent unit (GRU) on time-
series data in three countries: Egypt, Saudi Arabia, and Kuwait.
Chimmula and Zhang [10] used a long short-term memory
network (LSTM) to predict the end date of the Canadian epi-

demic. Hasan [11] established an EEMD-ANN model to pre-
dict the COVID-19 epidemic, resulting from the COVID-19
data being nonlinear and unstable. Guo and He [12] devel-
oped an artificial neural network (ANN) for modeling of the
confirmed cases and deaths of COVID-19. The best simulat-
ing performance with RMSE, R, MAE is realized using the 7
past days’ cases as input variables in the training and test
dataset.

At the same time, some scholars have also proposed a
combined machine learning model and complex network
propagation method to study the relationship between
COVID-19 and social isolation, medical conditions,
socioeconomic, environmental sustainability, and other
influencing factors [13–19]. Zhu et al. [13] and Montes-
Orozco et al. [14] built a complex COVID-19 network based
on the information of each country. The results showed that
the global COVID-19 pandemic network has special com-
plex network characteristics. Jithesh [15] used the cellular
automata which initially configured to have only susceptible
and exposed states. Enlarged and evolved in discrete time
steps to different infection states of the COVID-19 pan-
demic. Li et al. [16] identified critical factors associated with
COVID-19 cases, death, and case fatality rates by using the
logistic regression model. Anser et al. [17] developed two
broad models to evaluate the impact of environmental
sustainability ratings, financial development, and carbon
damage on the new COVID-19 cases in a cross-sectional
panel of 17 countries. Abdel Hafez and Hamdan [18] used
three artificial neural network (feed-forward, NARX, and
Elman network [19]) methods to evaluate the relationship
between weather variables and COVID-19 cases.

Existing research mainly focused on how to apply vari-
ous algorithm models to COVID-19 prediction, ignoring
the optimization of the model. At the same time, it is difficult
for shallow machine learning algorithms to fully dig out the
underlying essential features of case data and ignore the
potential connection between epidemic data and influencing
factors, leading to the problem of unsatisfactory prediction
results. And the current research pays little attention to the
comparative analysis and research of the COVID-19 epi-
demic in strategic cooperation countries such as the BRICS
countries. This article is the first time to study the prediction
and analysis of the epidemic situation in the BRICS coun-
tries. Compared with the existing COVID-19 prediction
models, the integrated CEEMDAN-R-ILSTM-Elman model
proposed in this paper has the following advantages.

(1) Conduct a descriptive analysis of the spread of the
epidemic in the BRICS countries, as well as Spear-
man’s correlation analysis of the influencing factors
of the epidemic and analyzed the impact of strict
social policies and vaccination on the epidemic

(2) Use CEEMDAN to decompose the number of new
cases with nonlinear changes and noise characteris-
tics into multiple stable subsequences step by step,
which solves the problem of modal aliasing and the
improper addition of white noise amplitude in
EEMD
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(3) Calculate the permutation entropy value and average
period value of each modal component IMF, and
carry out sequence reconstruction, which is divided
into four sequences of high, medium, low level, and
trend items. According to the reconstructed compo-
nents, it is possible to better analyze the influence of
each influencing factor on the spread of the epidemic
and effectively reduce the error caused by multise-
quence prediction

(4) Use ILSTM and Elman algorithms to predict the
high-level trend items, and mid- and low-level com-
ponents, respectively, and use the improved beetle
antennae search algorithm to obtain the best hyper-
parameters (the number of hidden layer units, batch
size, and learning rate) automatically for the long
short-term memory network model, effectively
improving the prediction accuracy and modeling
efficiency

(5) Integrate and predict the number of newly con-
firmed cases in India, South Africa, Brazil, Russia,
and China through the simple addition (ADD)
method, use different evaluation indicators to evalu-
ate the prediction accuracy of the model, compare it
with benchmark models such as ARIMA to deter-
mine the number of best hidden units and the initial
learning rate value of the maximum prediction accu-
racy. This article uses the adaptive beetle antennae
Search algorithm to optimize the number of two hid-
den layer units, the batch size, and learning rate of
each LSTM model according to the update of the
step length and the distance between the two whis-
kers. The Adam algorithm is used to train the model.
So that reduce the workload of manual tuning and
ensure the accuracy of the forecast. And predict the
number of new cases in each country in the next
two months

2. Materials and Methods

2.1. CEEMDAN Algorithm. Empirical mode decomposition
(EMD) and ensemble empirical mode decomposition
(EEMD) can also be considered as very useful tools for ana-
lyzing data with high complexity and irregularity. Huang
et al. [20] proposed EMD decomposition, which
decomposed noisy data according to its own time-scale char-
acteristics, without presetting any basis functions, and had
obvious advantages in processing nonstationary and
nonlinear data. The EEMD (Ensemble Empirical Mode
Decomposition) algorithm is based on the EMD algorithm
by adding normally distributed white noise to the original
signal, so that the signal is evenly distributed at the extreme
points of the entire level band, which reduces the mode mix-
ing effect [21]. The CEEMDAN algorithm adds limited
adaptive white noise based on EEMD, which overcomes
the incompleteness and reconstruction error of EEMD after
adding white noise [22]. The CEEMDAN-based data pro-
cessing hybrid model is beneficial to improve the prediction

accuracy of the algorithm [23, 24]. The specific implementa-
tion steps of this algorithm are as follows.

Step 1. Add the white noise viðtÞ obeying the standard nor-
mal distribution to the original signal SðtÞ, and the ith signal
is expressed as: SiðtÞ = SðtÞ + viðtÞ, i = 1, 2⋯ , I. The EMD
experimental signal SiðtÞ is decomposed into IMF1 = 1/I
∑I

i=1IMFi
1. The residual signal is r1ðtÞ = SðtÞ − IMF1.

Step 2. Add white noise r1ðtÞ to the residual viðtÞ, perform i
experiments, and use EMD to decompose each experiment
into ri1ðtÞ = xðtÞ + viðtÞ. Obtain its first-order component
IMF2 = 1/I∑I

i=1IMFi
1 and residual signal r2ðtÞ = SðtÞ −

IMF2.

Step 3. Repeat the above decomposition process to obtain the
IMF components and the corresponding residuals that meet
the conditions. When the residual is a monotonic function
and cannot be decomposed by EMD, the program termi-
nates. The final original signal and residual signal can be
expressed as SðtÞ =∑n

i=1IMFi + rnðtÞ and rnðtÞ = SðtÞ −∑n
i=1

IMFi.

2.2. Permutation Entropy Space Reconstruction Algorithm. In
this paper, Permutation Entropy (PE) proposed by Bandt
and Pompe is used to detect the randomness and dynamic
changes of time series [25]. PE has the advantages of simple
definition, fast calculation speed, and good robustness. The
algorithm is briefly described as follows. Consider the time
series fxðiÞ, i = 1, 2,⋯,Ng, the length is N . It can be recon-
structed in phase space as

X ið Þ = x ið Þ, x i + λð Þ,⋯x 1 + m − 1ð Þλð Þf g, ð1Þ

where m is embedding dimension, and λ is the time delay.
Rearrange each reconstruction component in ascending
order as

X ið Þ = x i + j1 − 1ð Þλð Þ ≤ x 1 + jm − 1ð Þλð Þf g, ð2Þ

i = 1, 2,⋯,N −m + 1: ð3Þ

The column index of each element in the vector consti-
tutes a sequence of symbols:SðgÞ = ½j1, j2,⋯jm�, where g = 1
, 2,⋯, k, k ≤m!, there are a total of m types of symbol
sequences with different m! dimensional phase space map-
ping. Calculate the number of occurrences of each symbol
sequence divided by the total number of occurrences of m!
different symbol sequences as the probability of the symbol
sequence. The probability distribution is PðgÞ = ½P1, P2 ⋯
PK �. The permutation entropy of time series fxðiÞg can be
defined as the entropy of k different symbols:

Hp mð Þ = −〠
k

g=1
pg ln pg: ð4Þ
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Note that when Pj = 1/m!, HpðmÞ reaches its maximum
value. For convenience, HpðmÞ can be normalized to 0 ≤
Hp =HpðmÞ/ln ðm!Þ ≤ 1 by ln ðm!Þ. In fact, Hp can effec-
tively represent the randomness and dynamic changes of
the time series. The smaller the Hp value, the more regular
the time series. The larger the value of Hp, the more random
the time series. Some studies reconstruct the IMFs decom-
posed from sample data into high and low-frequency
sequences according to the PE value [26].

2.3. LSTM Network Optimized Based on the Improved Long-
Term Beetle Algorithm

2.3.1. Beetle Antennae Search. BAS algorithm (beetle anten-
nae search-BAS) is an optimization algorithm based on the
principle of bionics and by imitating the foraging behavior
of long-term beetle in nature [27]. Compared with other
intelligent optimization algorithms such as particle swarm
algorithm and bird swarm algorithm. BAS algorithm only
needs one beetle individual to perform optimization. Each
iteration is faster, which greatly reduces the overall running
time of the algorithm without limiting the specific form of
the fitness function. The BAS algorithm means that the bee-
tle individual finds the global optimal solution through a
continuous trial and update of the individual’s position in
the solution space. In dimension D, the beetle heading vector
is represented and normalized as

b
!
= rand k, 1ð Þ

rand k, 1ð Þk k , ð5Þ

where m is the number of iterations, xrt and xlt , respec-
tively, represent the spatial coordinates of the right and left
beetles at the mth iteration; d represents the distance
between the left and right beetle antennae. It can be set
according to the step length:

xrt = xm + d ⋅ b
! ,xlt = xm − d ⋅ b

!
:

�
ð6Þ

According to the fitness function, the fitness value of the
left and right beetle antennae in the current space is judged.
f ðxrtÞ and f ðxltÞ are the fitness functions. To imitate the
detection mechanism of the long beetle, the following posi-
tion update iterative model is generated:

xm+1 = xm + δm ⋅ b
!
⋅ sign f xrtð Þ − f xltð Þð Þ: ð7Þ

2.3.2. Improved Beetle Algorithm (IBAS). When the original
BAS algorithm with a fixed step is applied, the global search
and local search process have relatively general search speed
and accuracy problems. To solve this problem, this paper
uses a variable step search method based on exponential
decay [28]. When it is at the initial position, it is often far
from the true solution. Therefore, the initial step size is set
to be large and begin to be reduced as the beetle goes for-
ward. Since the step size is proportional to the individual size
of the beetle, in the initial stage, the beetle will take big steps

to improve the global search ability. In the later period of the
iteration, the small beetle will take small steps to improve the
local search ability. At the same time, the basic resolution
step0 is adopted, and the exponential attenuation gradually
tends to 0, which is not conducive to the local search under
high iteration times. Therefore, the basic step size is set as
the basic resolution, and the following update step size is
used:

step = e−utstep + step0: ð8Þ

The attenuation coefficient u and step0 are set according
to physical truth. The selection of the search step will fall
into the local optimum in the iterative process. To make
the algorithm jump out of the local optimum, the Monte
Carlo criterion of simulated annealing (SA) is used to
improve the BAS algorithm [29]. SA simulates the annealing
process of the object, which searches the lowest energy and
the optimal value of the target. Simulated annealing intro-
duces random factors in the process of searching and
optimizing, that is, accepting an inferior solution with an
appropriate probability to reduce the probability of falling
into the local optimum. The Monte Carlo criterion is used
to improve the BAS algorithm. In the iterative process, the
inferior solution is accepted with probability p, thereby
improving the global optimization ability of the BAS algo-
rithm.

p =
1 f xmð Þ < f xm−1� �

,

exp −
f xmð Þ − f xm−1� �

T

� �
f xmð Þ < f xm−1� �

:

8><
>: ð9Þ

In the formula, f ðxmÞ represents the fitness function
value at the preupdate position; f ðxm−1Þ represents the opti-
mal fitness function value before; exp represents the natural
index; T is the higher temperature. Because the cooling rate
determines the ability to accept inferior solutions, which
directly affects the improved BAS algorithm, the ability of
to jump out of the local optimal solution to find the global
optimal solution. As the number of iterations continues to
increase, the cooling rate of the temperature T is very fast,
and the difference between f ðxmÞ and f ðxm−1Þ fluctuates less.
Therefore, as the iteration progresses, the probability of
accepting the inferior solution p will gradually decrease.

2.3.3. LSTM Network Model Optimized Based on IBAS
Algorithm. When using LSTM model to predict, manual
tuning and optimization will greatly reduce the modeling
efficiency. How to automatically select the most suitable time
window for the subparameter sequences with different level
distributions is also an important factor affecting the forecast
accuracy. This study uses the improved beetle antennae
search algorithm to optimize the long and short-term mem-
ory network model for prediction. The ILSTM model
construction process is shown in Figure 1.

(1) Determine the optimization dimension K of the
long-term and short-term memory network model
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according to the long and short-term memory
network model

(2) Set the hyperparameter value range and iteration ter-
mination conditions; use the random function to
determine the initial position x0 of the beetle, and
initialize the beetle parameters; set the attenuation
index coefficient u in the step update formula, the
initialization step step, and the basic resolution
step0, the initial temperature and the individual size
ratio coefficient of the beetle, the maximum number
of iterations, etc.

(3) Set the number of iterations m = 0, and set the opti-
mal position xbest = x0; set the optimal fitness value
with f best = f ðxbestÞ

(4) Calculate the left and right antennae coordinates xlt
and xrt of the individual long beetle; construct a long
and short-term memory network model according to
the coordinate values of the left and right antennae,
and train the data sets of the prediction problem,
and then calculate the fitness value ylt and yrt of
the right and left antennae of the long beetle accord-
ing to the objective function; update the beetle step
length according to formula (8)

(5) According to the acceptance probability p, judge
whether to update the optimal position of the beetle.
If k f ðxmÞk2 ≥ k f bestk2, to update the optimal posi-
tion of the beetle when rand < p, that is, xbest = xm,
f best = f ðxmÞ; otherwise, do not update, discard bad
value of the current beetle position, maintain the last
beetle position value xm

(6) Repeat formula (2)~(6) until the conditions of itera-
tion number are satisfied. It is considered that the
algorithm has generated the optimal solution and
updated the optimal solution as xbest; use the hyper-
parameters corresponding to the optimal solution
(the LSTM unit number of each hidden layer, batch
size, and learning rate) to build a long and short-
term memory network model

2.4. New Case Prediction Model Based on CEEMDAN-R-
ILSTM-Elman. The basic framework of CEEMDAN-R-
ILSTM-Elman prediction model is shown in Figure 2.

(1) Data Decomposition. Decompose the time series data
of new cases into several IMFs series and residual
series through CEEMDAN algorithm

(2) Reconstruction Sequence. Calculate the permutation
entropy and average period, and divide it into
high-level, medium-level, low-level, and trend series

(3) Component Prediction. Use the long and short-term
memory network model optimized by the IBAS algo-
rithm to predict the high-level components and
trend items, and the Elman neural network is used
for the medium-level and low-level components

(4) Integrated Prediction. The final prediction result of
the original time series data xt can be expressed as
x_t = f ðd̂tð1Þ, d̂tð2Þ,⋯d̂tðKÞÞ, where x̂t represents
the final prediction result at time t, d̂t is the individ-
ual predicted value of the jth component, and f ðd̂tÞ
is the function of ensemble prediction. A simple
and effective addition (ADD) strategy is used to
aggregate four separate prediction results d̂tðjÞðj = 1
, 2⋯ , kÞ to obtain the final combined prediction.
The optimal weight of the ADD method is 1 : 1 : 1 : 1

3. Results and Discussion

3.1. Data Set and Evaluation Indicators. In this paper, the
data of newly confirmed cases of COVID-19 in the BRICS
countries are obtained from Google Cloud Platform
(https://github.com/owid/covid-19-data) collection. The
sampling period is from January 23, 2020, to June 22,
2021, and a total of 517 observations. The data accounting
for 85% of the observation value are used for model training.
The remaining 15% of the samples are used as the test set,
and different statistical methods are used to evaluate the
effectiveness of each model.

In order to evaluate the loss error of model prediction
accuracy, root mean square error (RMSE) and mean abso-
lute percentage error (MAPE) are used. The formulas are
as follows:

MAPE = 1
N
〠
N

t=1

xt − xt
∧

xt

�����
�����, ð10Þ

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

t=1
xt − xt

∧	 
2
s

, ð11Þ

where xt represents the actual value, x
∧
t is the predicted

value of the sample data at time t, and N is the size of the test
set. When the error between MAPE and RMSE becomes
smaller, it proves that the prediction accuracy of the evalua-
tion model is higher.

In addition to the horizontal prediction accuracy,
another key measure of prediction performance is the direc-
tional prediction accuracy, which is evaluated by the direc-
tional statistics (Dstat) [30].

Dstat =
1
N
〠
N

t=1
at × 100%: ð12Þ

When ðx_t+1 − xtÞðxt+1 − xtÞ ≥ 0, at = 1, otherwise, it
equals to 0.

3.2. Descriptive Analysis of the Epidemic

3.2.1. Analysis of the Severity of the Epidemic. India, South
Africa, and Brazil have relatively high population densities,
a large base of poor population, insufficient medical condi-
tions and capabilities, and cannot meet certain conditions
such as isolation, nucleic acid testing, and vaccination. This
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chapter compares and analyzes the epidemic in the BRICS
countries from four aspects: infection rate, mortality rate,
reproduction rate, and vaccination rate. The results are
shown in Figure 3.

From the big outbreak in March 2020 to June 22, 2021,
among the BRICS countries, the total number of cases per
million people, the total number of deaths per million peo-
ple, and the infection rate reached the highest in Brazil, at
84939.326 and 2374.475. It shows that Brazil’s epidemic sit-
uation is the most severe. Russia and China have relatively
advanced medical and health standards and relatively low
mortality rates. The number of people vaccinated per 100
people in China reached the highest at 74.46, and South
Africa reached the lowest at 3.97. The total number of vacci-
nated people was less than 2.5 million, and the reproduction
rate reached the highest at 1.37. It is the most severely
affected country on the African continent. The vaccination
rate in India is 21%. Because India and South Africa have
large populations and poor medical and health conditions,
they cannot reach a certain vaccine level in a short time.
Due to the invasion of the Delta variant, the number of con-
firmed cases and deaths currently experienced by India,
South Africa, and Brazil is still rising at an unprecedented
rate.

3.2.2. Spearman Correlation Test of Factors Affecting the
Epidemic. To better analyze and predict the epidemic trend

Input parameter vector

Set the starting point of the iteration and initialize
the parameters 

Determine whether to
update the long-horned beetle

position according to the acceptance
probability P 

Calculate fitness
value 

Obtain optimal weights and
thresholds 

Yes No

Calculate the coordinates of the left and right whiskers of
longhorn beetle and the corresponding appropriate values 

Change the step length method to update the
left and right positions of the beetle 

Update location Maintain previous
position 

Whether the termination
conditions are met 

Yes

Figure 1: The structure diagram of the long short-term memory network model optimized by the improved beetle algorithm.

COVID-19 new case data

CEEMADAN decomposition
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Component reconstruction

Sequence addition

...IMF2 IMFn-1 IMFn

High level Medium level

ILSTM

Trend levelLow level

Elman ILSTMElman

Prediction results of new COVID-19 cases

Figure 2: The basic framework of the CEEMDAN-R-ILSTM-
Elman prediction model.
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Figure 3: Continued.
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of COVID-19, this section uses Spearman correlation analy-
sis to capture the COVID-19 infection rate and mortality
rate and influencing factors (average age of the population,
handwashing facilities, number of beds per 1,000 people,
and vaccination rate et al.). The Spearman correlation is
used to capture the correlation between variables, which
ranges from -1 to +1. The Spearman correlation coefficient
is calculated as the product of the covariance of the two var-
iables divided by the standard deviation of each data sample,
which normalizes the covariance between the two variables
to give an interpretable score. The Spearman correlation test
results are shown in Figure 4.

The analysis of the correlation heat map shows that the
COVID-19 infection rate depends on the two characteristics
of handwashing facilities and strict social measures, and the
correlation coefficients are -0.65 and -0.67, respectively. The

more handwashing facilities, the lower the infection rate,
because there are a large number of slum areas in India,
South Africa, and Brazil, and sanitary facilities such as hand-
washing are extremely backward. Strict social measures have
reduced large-scale gatherings and reduced the infection
rate. Mortality is strongly correlated with GDP per capita,
extreme poverty index, handwashing facilities, beds per
1,000 people, and vaccination rates. The correlation coeffi-
cients are -0.52, -0.85, -0.65, and -0.67. It shows that medical
conditions have a very high impact on the mortality rate. If
the economy is low, it is impossible to purchase a large num-
ber of vaccines, resulting in a low vaccination rate and
resulting in the death rate cannot be reduced. Handwashing
facilities are one of the most important measures, which
have a greater impact on reducing infection rates and
mortality. However, the relationship between vaccination
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Figure 3: Analysis of infection rate, death rate, reproduction rate, and vaccination rate in each country.
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rate and infection rate is weak, because the current vaccina-
tion rate is low and the impact on the infection rate is
relatively low.

3.2.3. Analysis of the Impact of Strict Social Policies on the
Epidemic. In many cases, people infected with COVID-19

do not have any symptoms in the early stages, so they do
not know their condition and continue to interact with other
people. Travel restrictions and facility closures can prevent
them from contacting others and spreading the coronavirus
to a certain extent, but they cannot completely prevent them.
Social distancing measures require everyone to stay indoors.
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Figure 4: Spearman correlation analysis between the factors affecting the epidemic and the infection rate and mortality rate.
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Figure 5: Continued.
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Figure 5: Continued.
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Figure 5: Analysis of the impact of strict social policies and vaccination rates on new cases and new deaths.
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Therefore, social distancing measures are considered the
most effective measures to prevent infection in the commu-
nity. This article analyzes the impact of strict social policies
and vaccination in the BRICS countries on the spread of
the epidemic. The result is shown in Figure 5.

According to the above analysis results, after the imple-
mentation of strict social measures, the number of
COVID-19 cases confirmed daily has decreased. Within
one month after the implementation of the most stringent
socially strict measures, the number of daily confirmed cases
in most countries reached a peak and began to decline. It can
be observed that the number of months from the first two
rounds of outbreaks to recovery in South Africa, Brazil,
India, and Russia was 4, 4, 5, 1, and 2, 3, 2, and 2, respec-
tively. At the same time, the time required for daily deaths
to decline is 2 weeks slower than the time required for daily
confirmed cases in these countries to start to decline. The
effectiveness of strict social measures on the spread of
COVID-19 differs among the 5 countries. This difference
may be due to the different levels of time intervals of the
strict social measures promulgated.

In South Africa, with the implementation of level one to
three levels of social measures, the number of new cases per
day decreased rapidly after reaching the peak. At the same
time, the interval between the peaks of the three outbreaks
in South Africa is 6 months, and the peak of the second
round of new cases is 1.58 times that of the first round. In
India, due to the mutation of the virus, rapid transmission,
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Figure 6: CEEMDAN decomposition results of new daily cases. (a) Brazil. (b) Russia. (c) China. (d) South Africa. (e) India.

Table 1: Complexity and periodic analysis of IMFs in South Africa.

Mode PE value Complexity Main timescale

IMF1 0.9943 High level 3.209

IMF2 0.9227 High level 4.872

IMF3 0.8750 High level 5.901

IMF4 0.8081 High level 7.661

IMF5 0.6193 Medium level 18.635

IMF6 0.4656 Low level 73.512

IMF7 0.4326 Low level 118.750

IMF8 0.4123 Low level 197.917

IMF9 0.4014 Low level 475

Residue 0.1032 Trend level >sample size
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and strong infectivity, the daily highest case of the second
round of the epidemic was 4.23 times that of the first round,
and the number of deaths also reached 3.68 times, resulting
in the effect of social distancing measures on the interrup-
tion of the epidemic is weak. In Brazil, due to the
government’s failure to issue social distancing measures in
a timely manner and the implementation of social distancing
measures at a low level, this resulted in a large-scale outbreak
of the epidemic, which was severe throughout the year. The
peak of new cases in the third round was 1.43 times that of
the first round. The peak of death cases was 2.48 times that
of the first round. This may be due to the mutation of the
virus.

With the start of vaccination work in various countries,
the population of the first phase of vaccination will be anti-
medical personnel and front-line workers. Russia started
vaccination in December last year at the earliest, so the Rus-
sian epidemic situation has slowed down since then. India’s
low vaccination rate due to the popular Big Kettle Festival
and other reasons led to the second major outbreak of the
epidemic. Brazil and South Africa’s new coronavirus vacci-
nation programs are being promoted among middle-aged
and elderly people, and the average age of patients who die
from the new coronavirus has dropped.

3.3. CEEMDAN Decomposition and Reconstruction of New
Case Data. To overcome the problems of EMD and EEMD
modal aliasing, the CEEMDAN algorithm adds adaptive
Gaussian white noise at each stage of the new case data,
and the original new case can be decomposed into multiple
modal components by calculating. The decomposition pro-
cess is complete, and the error is extremely low. We use
the MATLAB tool to decompose the data of new COVID-
19 cases in various countries by CEEMDAN, select the
appropriate noise standard deviation, the number of imple-
mentations, and the maximum number of screening
iterations allowed, so that the CEEMDAN decomposition
results of the new cases in BRICS countries are obtained as
shown in Figure 6.

After decomposing the original data of COVID-19 by
CEEMDAN, the unstable and nonlinear characteristics of
the data have been arranged in order from the highest level
to the lowest level. The original sequence is decomposed into
7or 8 subsequences and a trend component, which are inde-
pendent of each other. IMF1-3 seems to just randomly walk
around zero, which is a high-level component of the series of
new daily cases. Except for the trend item, the other IMFs
exhibit a certain cyclical nature which are different from
each other.

The reconstructed component sequence can reveal the
main characteristics of the daily data fluctuation of new
COVID-19 cases, determine the movement law of the recon-
structed sequence, the influencing factors, and give an
explanation. First, calculate the total number of maximum
points and minimum points for each IMF within the range
of the sample space, and then divide the total number of
points in the sample space (days) by the total number of
maximum points and minimum points as the average
period. Because the residual sequence is a monotonous

Table 2: Complexity and periodic analysis of IMFs in Brazil.

Mode PE value Complexity Main timescale

IMF1 0.9907 High level 3.09803

IMF2 0.8835 High level 5.71084

IMF3 0.8588 High level 6.285

IMF4 0.6843 Medium level 20.8979

IMF5 0.6005 Medium level 35.6086

IMF6 0.4141 Low level 112.2954

IMF7 0.4281 Low level 167.416

Residue 0.0611 Trend level >sample size

Table 3: Complexity and periodic analysis of IMFs in India.

Mode PE value Complexity Main timescale

IMF1 0.9978 High level 3.0267

IMF2 0.9704 High level 3.9689

IMF3 0.9543 High level 4.3589

IMF4 0.8608 High level 6.4153

IMF5 0.6832 Medium level 13.975

IMF6 0.5377 Medium level 31.875

IMF7 0.4612 Low level 78.928

IMF8 0.4191 Low level 212.5

Residue 0.1507 Trend level >sample size

Table 4: Complexity and periodic analysis of IMFs in Russia.

Mode PE value Complexity Main timescale

IMF1 0.9934 High level 2.76630

IMF2 0.8413 High level 6.69736

IMF3 0.7113 High level 11.5681

IMF4 0.5635 Medium level 26.7894

IMF5 0.4579 Medium level 78.7738

IMF6 0.4213 Low level 212.083

IMF7 0.3470 Low level 254.065

Residue 0.0211 Trend level >sample size

Table 5: Complexity and periodic analysis of IMFs in China.

Mode PE value Complexity Main timescale

IMF1 0.998 High level 2.85631

IMF2 0.9681 High level 3.9769

IMF3 0.9892 High level 3.4697

IMF4 0.8675 High level 6.0823

IMF5 0.6574 Medium level 14.7714

IMF6 0.5669 Medium level 25.85

IMF7 0.4599 Low level 80.0119

IMF8 0.437 Low level 116.325

IMF9 0.4063 Low level 387.75

Residue 0.096 Trend level >sample size
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Figure 7: Representation of IMFs reconstruction sequence. (a) South Africa. (b) Brazil. (c) India. (d) Russia. (e) China.
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overall trend, there is no periodicity. For the complexity
feature, the PE measurement is used to calculate the permu-
tation entropy value, in which the embedding dimension
and time delay are set to 4 and 1. The complexity and peri-
odicity analyses of IMFs of new cases in BRIC countries are
shown in Tables 1–5.

It can be seen from Tables 1–5 that the PE value of each
country’s sequence decomposed by CEEMDAN from IMF1
to the residual gradually decreases from about 1.0 to 0.1.
For the data decomposed in South Africa, the PE values of
IMF1-4 are all above the threshold value of 0.8, indicating
that these sequences may have a higher degree of complex-
ity. The PE value of IMF5 is a threshold between 0.5-0.7,
indicating that the sequence may have relatively medium
complexity. In contrast, IMF6-9 and residuals are at a rela-
tively low level of complexity because their PE values are
below the threshold 0.5. Similar results can be found for
the Indian data, that is, the IMF1-4 test is highly complex
because the PE value is higher than 0.7, while the IMF5-6
is between 0.5 and 0.7, and the IMF7-8 and the residual
are relatively regular. The same is true for Brazil, India,
China, and Russia. For the signal period characteristics, the
average period of the high-level sequence IMF1-4 is about
15 days for the data of South Africa and India, the average
period of the medium level sequence IMF5 is less than 2
months, and the low-level sequence IMF6-9 is greater than
60 days. Each IMF is reconstructed into four types of
sequences with different complexity and periodicity to avoid
directly using IMFs sequence prediction, error amplification,

and cyclic mixing. The reconstructed sequence of each level
component is compared with the initial sequence, and the
fluctuation characteristics of the reconstructed sequence
are also compared. The results are shown in Figure 7.

As shown in Figure 7, the trend item is the most impor-
tant component in analyzing the long-term trend of new
COVID-19 case data, and it plays a decisive role in long-
term fluctuations. The upward trend component is
synchronized with the trend growth of the new case data.
Although the new cases will fluctuate greatly due to the
influence of social isolation and medical level, the trend item
represents the long-term trend of new cases that is not
affected by other factors.

For low-level components, the period is approximately
7.2 months. It can be seen from the figure that the trend of
the low-level sequence is consistent with the newly added
case sequence. And each fluctuation point corresponds to
the peak of new cases in each round of the epidemic. Sepa-
rating low-level sequences is essential for predicting the
number of new cases. The reconstructed low-level sequence
can effectively reflect the long-term fluctuations in the data
of the new COVID-19 cases. This paper believes that the
low-level sequence mainly reflects fixed factors such as med-
ical level, population density, and handwashing facilities.

For medium-level components, the period is about 1-2
months. It can be seen from the graph that the IF sequence
is shaped as a sine or cosine wave, matching the different
levels of social distancing measures in place at each stage.
This paper argues that the intermediate frequency series
mainly reflects social isolation measures and variable factors
such as accidental importation and large-scale religious
gatherings or marches.

For high-level components, the period is about half a
month. Although the high-frequency component has little
effect on the new cases of COVID-19, with high volatility
and insignificant regularity, its cumulative effect cannot be
ignored. With the mutation of the COVID-19 virus and
the universal vaccination of vaccines, due to the current
implementation of phased vaccination policies in various
countries, medical staff and the elderly are generally given
priority for vaccination to reduce the transmission rate and
case fatality rate, and the cumulative impact of short-term
fluctuations is increasing.

3.4. Analysis of Prediction Results and Model Selection of
Each Sequence

3.4.1. Model Parameter Settings. This article selects about
85% of the new COVID-19 cases in each of the BRICS coun-
tries for model training, and the rest is used for testing about
15% of the total data. Using the adaptive beetle antennae
search algorithm to optimize the number of two hidden
layer units, the batch size and learning rate of each LSTM
model of the high, medium, low level, and trend items, so
that reduce the workload of manual tuning and ensure the
accuracy of the forecast. The Adam algorithm is used to
train the model. The value range of hyperparameters is set
as follows: the number of hidden layer units value range
[10,50], the batch size value range [1,64], and the learning

Table 6: Comparison of different model effects.

Model RMSE MAPE CPU time/s

LSTM 29.26 0.095 125.9

BAS-LSTM 20.38 0.075 180.6

IBAS-LSTM 12.65 0.058 200.5

Table 7: Hyperparameters of each sequence model optimized by
IBAS-LSTM.

Component
Hidden size

N1
Hidden size

N2
Batch
size

LearnRate

High level 43.5 24.5 38 0.00165

Medium
level

41 28 14.5 0.00075

Low level 31 29.5 53.5 0.0002

Trend level 18 30 47 0.0005

Table 8: Hyperparameters of each sequence model optimized by
Elman.

Component Hidden sizes TrainParam.Epochs

High level 10 100

Medium level 5 100

Low level 5 100

Trend level 8 100
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Figure 9: Representation of the prediction results of each component. (a, c, e, g) South Africa. (b, d, f, h) Brazil. (i, k, m, o) India. (j, l, n, p)
Russia. (q, r, s, t) China.

Table 9: The prediction error RMSE of each model.

Model South Africa India Brazil Russia China

CEEMDAN-R-ILSTM-Elman 8.26 8.89 8.59 7.98 10.56

CEEMDAN-R-Elman 13.39 13.23 13.35 13.47 14.77

CEEMDAN-R-ILSTM 11.96 11.26 12.46 11.21 12.96

CEEMDAN-R-LSTM 12.57 14.15 12.90 12.76 14.23

CEEMDAN-R-LSTM-ARIMA 12.25 13.25 12.18 11.86 13.60

CEEMDAN-R-LSTM-Elman 10.05 10.59 11.09 10.12 12.50

Table 10: The prediction error MAPE of each model.

Model South Africa India Brazil Russia China

CEEMDAN-R-ILSTM-Elman 0.057 0.059 0.053 0.051 0.078

CEEMDAN-R-Elman 0.082 0.079 0.092 0.090 0.099

CEEMDAN-R-ILSTM 0.072 0.069 0.086 0.084 0.091

CEEMDAN-R-LSTM 0.077 0.073 0.088 0.089 0.095

CEEMDAN-R-LSTM-ARIMA 0.075 0.066 0.079 0.085 0.096

CEEMDAN-R-LSTM-Elman 0.069 0.061 0.062 0.072 0.087

Table 11: The prediction accuracy Dstat of each model.

Model South Africa India Brazil Russia China

CEEMDAN-R-ILSTM-Elman 0.82 0.80 0.85 0.79 0.70

CEEMDAN-R-Elman 0.68 0.63 0.64 0.65 0.52

CEEMDAN-R-ILSTM 0.74 0.71 0.71 0.70 0.61

CEEMDAN-R-LSTM 0.71 0.63 0.67 0.61 0.55

CEEMDAN-R-LSTM-ARIMA 0.73 0.62 0.68 0.67 0.58

CEEMDAN-R-LSTM-Elman 0.76 0.72 0.75 0.70 0.64
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rate value range [0.0001,0.002]. The optimization dimension
of the adaptive beetle antennae search algorithm is 4, and the
initial step size is 1. Set the maximum number of iterations
of the beetle antennae search algorithm to 100. The mean
absolute error function of the training set is used as the fit-
ness function. Elman algorithm uses trainingdx function
for training.

3.4.2. Performance Analysis of the Improved Beetle Antennae
Search Algorithm. To further compare the advantages and
disadvantages of the BAS algorithm and the IBAS algorithm,
this paper selects the high-level sequence to test the model.
Figure 8 shows the optimal iterative convergence curves of
the two algorithms. At the same time, the accuracy of the
model is described from the three perspectives of root mean
square error (RMSE), mean absolute percentage error
(MAPE), and the CPU running time during the iteration.
The results are shown in Table 6.

It can be seen from Figure 8 that the IBAS algorithm
achieves ideal accuracy at approximately 42nd iteration,
and the BAS algorithm also achieves the optimal solution

at the 55th iteration. The single iteration time of IBAS algo-
rithm is much shorter than that of BAS algorithm, which
shows that IBAS converges faster. From Table 6, it can be
concluded that the overall running time of the IBAS-LSTM
(ILSTM) algorithm and BAS-LSTM is about 200.5 s and
180.6 s. From the perspective of model prediction accuracy,
the fitting results of the IBAS-LSTM algorithm are better
than the other two algorithms. The percentage error MAPE
is reduced by about 1.7% and 3.7%. Therefore, the use of the
improved BAS algorithm to optimize the LSTM network
effectively solves the problems of the traditional LSTM algo-
rithm, such as the large random initial value, easy to fall into
the local optimum, and slower convergence. According to
the optimization process in Section 2.3.3, the hyperpara-
meters of each submodel are optimized, and the results are
shown in Table 7. At the same time, the relevant parameters
of Elman are shown in Table 8.

3.4.3. Comparative Analysis of Each Sequence Prediction
Model. To verify the superiority of the combined prediction
model compared to other models, the high, middle, low
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Figure 10: Forecast results of the number of new cases in the BRICS countries in the next two months. (a) South Africa. (b) Brazil. (c) India.
(d) Russia. (e) China.
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level, and trend components are trained and verified using
different benchmark models, Elman, ARIMA, LSTM,
ILSTM, and the results are as follows shown in Figure 9.

As shown in Figure 9, by using Elman, ARIMA, LSTM,
and ILSTM to train and verify the high, middle, low level,
and trend components of new cases in various countries, it
can be concluded that the model fitting effect is the best
when the ILSTM model is used to predict the high level
and trend components, and the Elman model predicts the
medium and low-level components.

3.5. Analysis of the Prediction Results of the Integrated Model.
This paper adopts the root mean square error (RMSE), mean
absolute percentage error (MAPE), and direction statistics
(Dstat), respectively, to compare the prediction accuracy of
proposed CEEMDAN-R-ILSTM-Elman model with CEEM-
DAN-R-LSTM-Elman, CEEMDAN-R-LSTM-ARIMA,
CEEMDAN-R-ILSTM, CEEMDAN-R-LSTM, and
CEEMDAN-R-Elman for new COVID-19 cases in various
countries. The evaluation index results of each model are
shown in Tables 9–11.

In South Africa, compared with the CEEMDAN-R-
LSTM-Elman, the RMSE and MAPE of CEEMDAN-R-
ILSTM-Elman prediction model have been reduced by
20.73% and 21.64%, respectively, and the directional accu-
racy indicators have increased by 8.24%. The RMSE and
MAPE of CEEMDAN-R-ILSTM, compared with the
CEEMDAN-R-LSTM model, are reduced by 6.94% and
5.12%, respectively, and the directional accuracy is increased
by 4.7%. It indicates that the optimization speed and predic-
tion accuracy of high-level sequence and trend sequence are
effectively improved by optimizing the LSTM model
through the IBAS algorithm. Compared with the CEEM-
DAN-R-LSTM-ARIMA, the RMSE and MAPE values of
the CEEMDAN-R-LSTM-Elman model are reduced by
9.75% and 21.87%, respectively, and the directional accuracy
index is increased by 3.95%. The Elman decomposition
method can effectively improve the prediction accuracy of
high, medium, and low-level series, since the traditional
linear approach is not suitable for complex nonlinear time-
series predictions.

It shows that the CEEMDAN-R-ILSTM-Elman predic-
tion model proposed in this paper improves the efficiency
and accuracy of prediction of new COVID-19 cases. Since
the fluctuation characteristics of China’s epidemic data are
greatly affected by various measures, the effect of its model
is relatively poor. Finally, the prediction results of the above
subsequences are integrated. At the same time, to further
confirm the effectiveness of the model in predicting the data
of new daily cases with nonlinear and noisy characteristics,
the CEEMDAN-R-ILSTM-Elman model proposed in this
paper is used for predicting the new cases of COVID-19 in
various countries in the next two months, and the results
are shown in Figure 10.

As shown in Figure 10, with various social distancing
orders and vaccination measures in different countries, the
spread of COVID-19 varies greatly among the five countries.
The number of new cases in India reached the peak of the
second round of the epidemic in May this year, at 418,800,

which is 4.23 times the peak of the first wave and will slow
down in July or August. The Russian epidemic will usher
in the third wave of epidemic peaks in the next between July
and August, and daily new cases will increase exponentially.
When the peak is equal to the peak of the second wave of
about 29,000, it will slow down. At the same time, South
Africa will also usher in the third wave of epidemic peaks
in the next two months, and the peak will exceed the previ-
ous peak of the second wave of epidemics, reaching 1.24
times. The increasing number of new cases in Brazil will
start to slow after July. Due to the difficult implementation
of Brazil’s epidemic policy, the pandemic situation in Brazil
will be severe throughout the whole year. The number of
new cases reached a peak of 129,025 at the end of June.
The failure of countries to implement the universal vaccina-
tion policy and social distancing measures in a timely
manner caused another major outbreak of the epidemic. In
addition to the lower vaccination rate, the delta mutant
strain has become an important risk. This strain is more
contagious, resulting in a rebound in the epidemic in many
countries whose rates of infection and deaths reach its peak
again.

Due to economic development, population density, and
other social factors, the governments of South Africa, India,
and Brazil have been unable to consistently implement the
highest-level social distancing measures, support relevant
medical facilities, and purchase large amounts of vaccines,
it results in the more severe epidemic situation in a global
pandemic. In contrast, China began to issue the highest level
of social distancing order in one week when the viruses were
found and effectively controlled the spread of the virus
within three months. Later, due to overseas imports and
other reasons, the epidemic rebounded in very few areas,
but the spread of the epidemic was quickly contained.

4. Conclusions

In view of the nonlinearity and large volatility of the data of
the new COVID-19 cases, we propose the CEEMDAN-R-
ILSTM-Elman model, which reduces the impact of the
original nonstationary sequence on the prediction accuracy
and improves the convergence speed and prediction accu-
racy by comparing with the CEEMDAN-R-LSTM-Elman,
CEEMDAN-R-LSTM-ARIMA, and other models. Accord-
ing to the reconstruction components of high, medium,
low level, and trend items, it is much better to analyze the
influence of social isolation measures, medical conditions,
vaccination, and other factors on the spread of the epidemic
and effectively reduce the errors caused by multisequence
forecasts. The improved beetle antennae search algorithm
is used to automatically optimize the hyperparameters of
the LSTM model, which effectively improves the prediction
accuracy and modeling efficiency.

At the same time, the epidemic situation of various
countries in the next two months is analyzed and predicted,
although the spread of the epidemic in various countries will
slow down in the next two months, the overall situation is
still quite severe. In the BRICS countries, the daily new
COVID-19 and death cases are affected by the social
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economy, demographic status, sanitary conditions, strict
social policies, vaccination, and other resources and policies.
As the virus continues to mutate, countries should
strengthen cooperation to reduce socioeconomic inequality
and strengthen the operation of the medical and health sys-
tem to jointly defeat the epidemic. The research will help the
five countries to formulate relevant policies to reduce the
spread of the epidemic under the current severe situation
of the COVID-19 epidemic. In the future, we will conduct
dynamic model simulink simulations based on different
COVID-19 influencing factors to forecast the spread of the
epidemic and contribute to the effective containment of the
spread of COVID-19 in the BRICS countries.
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