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Background. Transforming growth factor beta-induced protein (TGFBI, encoded by TGFBI gene), is an extracellular matrix
protein, widely expressed in variety of tissues. It binds to collagens type I, II, and IV and plays important roles in the
interactions of cell with cell, collagen, and matrix. It has been reported to be associated with myocardial fibrosis, and the latter
is an important pathophysiologyical basis of atrial fibrillation (AF). However, the mechanism of TGFBI in AF remains unclear.
We aimed to detect the potential mechanism of TGFBI in AF via bioinformatics analysis. Methods. The microarray dataset of
GSE115574 was examined to detect the genes coexpressed with TGFBI from 14 left atrial tissue samples of AF patients. TGFBI
coexpression genes were then screened using the R package. Using online analytical tools, we determined the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, Gene Ontology (GO) annotation, and protein-
protein interaction (PPI) network of TGFBI and its coexpression genes. The modules and hub genes of the PPI-network were
then identified. Another dataset, GSE79768 was examined to verify the hub genes. DrugBank was used to detect the potential
target drugs. Results. In GSE115574 dataset, a total of 1818 coexpression genes (769 positive and 1049 negative) were
identified, enriched in 120 biological processes (BP), 38 cellular components (CC), 36 molecular functions (MF), and 39 KEGG
pathways. A PPI-network with average 12.2-degree nodes was constructed. The genes clustered in the top module constructed
from this network mainly play a role in PI3K-Akt signaling pathway, viral myocarditis, inflammatory bowel disease, and
platelet activation. CXCLI12, C3, FN1, COLIA2, ACTB, VCAMI, and MMP2 were identified and finally verified as the hub
genes, mainly enriched in pathways like leukocyte transendothelial migration, PI3K-Akt signaling pathway, viral myocarditis,
rheumatoid arthritis, and platelet activation. Pegcetacoplan, ocriplasmin, and carvedilol were the potential target drugs.
Conclusions. We used microdataset to identify the potential functions and mechanisms of the TGFBI and its coexpression
genes in AF patients. Our findings suggest that CXCL12, C3, FNI, COL1A2, ACTB, VCAMI, and MMP2 may be the hub genes.

1. Introduction

Atrial fibrillation (AF) is a complex arrhythmia, which
makes about 5.2 million people suffering palpitations in
the US until 2010 and would increase to 12.1 million in
2030 [1], owning to 25-30% of ischemic stroke [2]. In addi-
tion, persistent atrial fibrillation leads to mitral regurgitation
and decreases up to 25% of left heart ejection function,
aggravating heart failure even results in death [3]. It is esti-
mated that around 6-12 million people will suffer this condi-

tion in the US by 2050 and 17.9 million people in Europe by
2060 [4, 5]. In China, it is estimated that the lifetime risk of
AF is approximately 1 to 5 [6]. Populations of AF bring great
economic burden to patients and countries worldwide. Data
from previous researches shows that, in 18-45 years old AF
patients, the mean cost of AF management in hospitalization
was $7924 in 2015 [7]. To make matters worse, the preva-
lence of AF and the economic burden is still at a high level.
To date, AF is considered as a disorder of electrical activity
in the atrium, and the drive center probably locates in the
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left atrium-pulmonary vein junction. Although catheter
ablation and balloon cryoablation based on circumpulmon-
ary vein electrical dissection isolation show an exciting
effect, but the mechanism of AF remains unclear.

Transforming growth factor beta-induced protein
(TGFBI, HGNC: 11771, Ensembl: ENSG00000120708,
MIM: 601692), also known as CSD, CDB1, EBMD, and
CDGGl, encodes an RGD-containing protein that binds to
type L, II, and IV collagens. In an early study, Li et al. [8]
reported that the expression of TGFBI can be upregulated
by stimulated by TGEF-beta, activating the TGF-beta BMP
signaling pathway and induced the differentiation of bone
marrow stem cells into immature cardiomyocytes. A recent
research confirmed that TGFBI is a candidate marker for
human cardiac fibroblasts in vivo and in vitro [9]. In addi-
tion, Chen et al. [10] reported that TGFBI is a target of
microRNA-21, which plays a role in the regulation of fibro-
sis. In miR-21 knockdown cells, TGFBI was significantly
upregulated, which promoted the formation of fibrosis. It
is well known that AF is an age-related disease, and atrial
fibrosis has emerged as an important pathophysiological
contributor in aging, and has been linked to recurrences
and complications of AF [11]. Thus, TGFBI is likely to play
a role in the process of AF. However, little is known of the
clear mechanism of TGFBI in AF.

In the near decades, microarray-sequencing technology
has rapidly developed and has significantly promoted the
improvement of basic and clinical medicine. The Gene
Expression Omnibus (GEO) database is a large repository,
integrated with a series of high-throughput microarray and
next-generation sequence functional genomic datasets, and
is free for global researchers [12]. Up to now, GEO database
have helped numerous researchers to identify key mecha-
nisms and hub targets of cardiovascular diseases, tumors,
and other diseases [13-15]. The regulation of a pathway
often involves several genes, and there are coexpression rela-
tionships among these genes. In the current study, we aimed
to further understand the mechanism of TGFBI in AF
patients by detecting the TGFBI and its coexpression genes
and their pathways enriched in AF patients.

2. Materials and Methods

2.1. Study Design and Dataset Selection. Genes with similar
functions or involved in the same pathways often have coex-
pression relationships. In order to detect the mechanism of
TGFBI in AF, we aimed to screen out the genes with coex-
pression relationship to TGFBI for analysis. Indeed, it was
similar to the analysis of the subanalysis of the coexpression
of blocks in weighted correlation network analysis
(WGCNA) [16]. The difference was that WGCNA screens
coexpression from differentially expressed genes or RNAs,
but the central idea of our study was to take TGFBI as the
central gene and combine its coexpressed genes to detect
their biological functions, cellular localization, and enrich-
ment pathways in AF. The cor function in R package can
be used to detect the correlation coeflicient between two var-
iables  (https://stat.ethz.ch/R-manual/R-devel/library/stats/
html/cor.html). The code for the cor function is as follows:
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cor(x, y = NULL, use = “everything,” method = ¢ (“pearson,”
“kendall,” “spearman”)). The annotation information of the
code was as follows: x: a numeric vector, matrix, or data
frame; y: NULL (default) or a vector, matrix, or data frame
with compatible dimensions to x. The default is equivalent
to y = x (but more efficient); use an optional character string
giving a method for computing covariances in the presence
of missing values. This must be (an abbreviation of) one of
the strings “everything,” “all.obs,” “complete.obs,” “na.or.-
complete,” or “pairwise.complete.obs”; method: a character
string indicating which correlation coefficient (or covari-
ance) is to be computed. One of “pearson” (default), “ken-
dall,” or “spearman” can be abbreviated. In prior study, we
used this method to obtain the mechanism of NPPB and
its coexpressed genes in different patients with heart failure
[17]. Zhang et al. [18] also used cor function to analysed
the correlation ship between the methylation levels and
expression levels of the differentially methylated protein-
coding genes for construction a nomogram survival model
of the lung squamous cell carcinoma.

We selected one microarray dataset for analysis, and
another for validation. The microarray dataset GSE115574
was retrieved from the GEO database. This dataset con-
tained 14 left atrial tissue samples from persistent AF
patients [19]. The expression of all genes in every sample is
shown in Figure 1, and no significant outlier samples were
found. Therefore, the included samples could be used for
further analysis. Another dataset GSE79768, containing 7
left atrial specimens from persistent AF patients, was
retrieved from the GEO database for validation. The flow-
chart is shown in Figure 1. The further analysis were per-
formed via the software RStudio (based on R package,
version 3.6.4), on the platform of Windows 10 system (64-
bit).

2.2. Identification of TGFBI Coexpression Genes and
Pathway Enrichment Analyses. A screening of coexpression
genes for TGFBI from the samples was performed by the
cor function in R (version 3.6.4). In our study, the code
was set as: cor(x, y, method = pearson), x and y represent
the expression levels of TGFBI and other genes, respectively.
The strength of the correlation was represented by the calcu-
lated correlation coefficient. Screening criteria were as fol-
lows: P<0.05 and |Pearson correlation coefficient| > 0.6.
The online database, the Database for Annotation, Visuali-
zation, and Integrated Discovery (DAVID, version 6.8),
was used for GO and KEGG enrichment analyses [20-22].
P value of <0.05 was set as significance. The ggplot2 package
was used for visualization of the results in R (version 3.6.4).

2.3. Integration of the PPI-Network. The STRING (version
10.5) database was used for evaluating the interactions
among the coexpression genes, and a combined interaction
score of > 0.4 was set as significant [23]. In addition, the
top 10 hub genes were identified used Cytoscape plugin
cytoHubba (version 0.1) with the degree ratio ranking
method. Furthermore, the MCODE and ClueGO apps in
Cytoscape were used to identify the modules, namely the
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F1Gure 1: Flowchart of the current study. Orange box presents the expression of genes in every sample of GSE114457. DAVID, the Database

for Annotation, Visualization, and Integrated Discovery.

GO annotation and KEGG pathway enrichment analyses,
respectively, of the PPI-network [24].

3. Results

3.1. Identification of TGFBI Coexpression Genes and
Pathway Enrichment Analyses. A total of 1049 negatively
coexpressed genes and 769 positively coexpressed genes
were identified after cor analysis. These genes were enriched
in a series of BPs, such as collagen fibril organization
(GO:0030199), collagen catabolic process (GO:0030574), cell
adhesion (GO:0007155), and angiogenesis (GO:0001525); 38
CGCs, such as collagen trimer (GO:0005581), proteinaceous
extracellular matrix (GO:0005578), and basement mem-
brane (GO:0005604); 36 MFs, such as collagen binding
(G0:0005518), receptor binding (GO:0005102), and peptide
antigen binding (GO:0042605). As shown in Figure 2(a), the

top 30 GOs were selected for visualization, and the whole
information of the GO results were shown in Table S1.

In addition, a total of 39 KEGG pathways were identi-
fied, such as antigen processing and presentation
(hsa04612), cell adhesion molecules (CAMs, hsa04514), viral
myocarditis (hsa05416), and PI3K-Akt signaling pathway
(hsa04151). The visualization of these KEGG pathways is
shown in Figure 2(b), and the whole information of these
pathways is shown in Table 1.

3.2. PPI-Network Construction and Hub Gene Identification.
As shown in Figure 3(a), the interactions between TGFBI
and its coexpression genes were presented by a PPI-
network with 1465 nodes. The average node degree was
12.2, and the PPI enrichment P value was <1.0E-16. This
finding was saved in TSV format and then imported into
Cytoscape for visualization. With a cutoff criterion of a
degree that is >5 and a K-core >5, three clusters were



Receptor binding | -

Phospholipase inhibitor activity + -

Vascular endothelial growth factor binding -
MHC class II receptor activity 4 -

Integrin binding 4 -

Platelet-derived growth factor binding + -

Peptide antigen binding - -

Calcium ion binding 4 -

Extracellular matrix structural constituent 1 -
Collagen binding 1 -

Integral component of lumenal side of endoplasmic reticulum membrane 4 -
Collagen trimer - -

Plasma membrane + -

Basement membrane + -

Proteinaceous extracellular matrix -

Cell surface 4 -

Extracellular exosome + -

Extracellular region 4 -

Extracellular space 4 -

Extracellular matrix 4 -

Regulation of immune response 4 -
Interferon-gamma-mediated signaling pathway + -
Antigen processing and presentation of exogenous peptide antigen via MHC class I 4 -
Cell adhesion § -

Type I interferon signaling pathway - -

Innate immune response 1 -

Collagen catabolic process 1 -

Antigen processing and presentation 4 -

Collagen fibril organization 4 -

Extracellular matrix organization - -
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FIGURE 2: Go annotation and KEGG pathway of TGFBI and its coexpression genes in atrial fibrillation. (a) Go annotation: the strip
represents the value of —log 10(P) of GO term. (b) KEGG pathway: the size of ball represents the count of enriched genes, and the color

of ball represents the value of —log 10(P) of pathway.

constructed as shown in Figure S1; and it is shown in
Figure 3(c) that the top 10 hub genes of this PPI-network
were also identified (CXCLI12, C3, FN1, COL1A2, ACTB,
VCAM1, MMP2, VWF, BMP4, and CD44), with the degree
ratio ranking method.

We selected the first cluster, which is descripted in
Figure 3(b) for GO and KEGG pathway analyses and found
that the coexpression genes in this cluster enriched in 20
BPs, such as collagen catabolic process (GO:0030574), colla-

gen fibril organization (GO:0030199), and endodermal cell
differentiation (GO:0035987); 18CCs, such as collagen tri-
mer (GO:0005581), plasma membrane (GO:0005886), and
platelet alpha granule lumen (GO:0031093); 5MFs, such as
collagen binding (GO:0005518), and platelet-derived growth
factor binding (G0O:0048407), and 47 KEGG pathways like
viral myocarditis (hsa05416), PI3K-Akt signaling pathway
(hsa04151), rheumatoid arthritis (hsa05323), and Inflamma-
tory bowel disease (IBD, hsa05321). The visualization of the
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TaBLE 1: Pathways enriched by TGFBI and its coexpression genes in AF patients.

Term

Count

Enriched genes
value

hsa05332: Graft versus host disease

hsa04612: Antigen processing and
presentation

hsa05150: Staphylococcus aureus
infection

hsa04514: Cell adhesion molecules
(CAMs)

hsa04940: Type I diabetes mellitus

hsa05330: Allograft rejection

hsa05320: Autoimmune thyroid
disease

hsa04145: Phagosome

hsa05416: Viral myocarditis

hsa04512: ECM-receptor
interaction

hsa04610: Complement and
coagulation cascades

hsa05152: Tuberculosis

hsa05133: Pertussis

hsa05166: HTLV-I infection

hsa04672: Intestinal immune
network for IgA production

hsa04974: Protein digestion and
absorption

hsa04670: Leukocyte
transendothelial migration

hsa04151: PI3K-Akt signaling
pathway

hsa04810: Regulation of actin
cytoskeleton

hsa05322: Systemic lupus
erythematosus

hsa05200: Pathways in cancer

hsa04510: Focal adhesion

13

19

16

26

14

13

15

26

15

17

14

23

13

28

10

14

16

33

23

17

36

22

9.14E- HLA-DQBI1/HLA-A/HLA-C/HLA-B/HLA-DMB/HLA-E/HLA-DMA/HLA-G/HLA-

08 F/HLA-DPA1/HLA-DPB1/CD28/HLA-DRA

1 13E- HLA-DQB1/PDIA3/KIR2DS5/HLA-A/HLA-C/HLA-B/KIR2DS3/HLA-DMB/HLA-
'07 E/HLA-DMA/RFXANK/CD74/HLA-G/HLA-F/CD4/HLA-DPA1/HLA-DPB1/

KIR2DL3/HLA-DRA

1.37E- HLA-DQB1/C3AR1/C3/CIR/ITGB2/C1S/HLA-DMB/HLA-DMA/C1QA/C1QB/
07 FCGR2B/HLA-DPA1/FCGR2A/CFI/HLA-DPB1/HLA-DRA

2 13E CLDNS8/CLDN16/HLA-DQB1/ITGB2/HLA-DMB/HLA-DMA/CDHS5/CLDN14/
'07 " SDC3/VCAMI1/CD4/HLA-DPB1/CD28/ICAM2/HLA-A/CD99/HLA-C/CLDN20/

HLA-B/HLA-E/HLA-G/HLA-F/NCAM2/VCAN/HLA-DPA1/HLA-DRA

2.35E- HLA-DQBI1/HLA-A/HLA-C/HLA-B/HLA-DMB/HLA-E/HLA-DMA/HLA-G/HLA-
07 F/CPE/HLA-DPA1/HLA-DPB1/CD28/HLA-DRA

3.89E- HLA-DQBI1/HLA-A/HLA-C/HLA-B/HLA-DMB/HLA-E/HLA-DMA/HLA-G/HLA-
07 F/HLA-DPA1/HLA-DPB1/CD28/HLA-DRA

5.51E- HLA-DQB1/HLA-A/HLA-C/HLA-B/HLA-DMB/HLA-E/HLA-DMA/HLA-G/HLA-

07 F/IFNA4/HLA-DPA1/IFNA14/HLA-DPB1/HLA-DRA/CD28
6.30E- HLA-DQB1/C3/C1R/ITGB2/HLA-DMB/HLA-DMA/STX12/HLA-DPB1/THBS2/
' 07 TUBA1B/ACTB/MRC1/NCF2/HLA-A/COLEC12/HLA-C/HLA-B/HLA-E/HLA-G/
HLA-F/FCGR2B/CD209/HLA-DPA1/FCGR2A/CD14/HLA-DRA
1.85E- ACTB/HLA-DQB1/HLA-A/ITGB2/HLA-C/HLA-B/HLA-DMB/HLA-E/HLA-
06 DMA/HLA-G/HLA-F/HLA-DPA1/HLA-DPB1/HLA-DRA/CD28
1.93E- COL4A2/COL4A1/COL3A1/ITGA1/COL5A2/VWF/LAMA4/LAMA3/GP6/CD44/
05 COL6A5/COL6A3/COL1A2/COL6A1/LAMB1/THBS2/FN1

8.99E- F13B/C1QA/C7/VWEF/C3AR1/C1QB/THBD/SERPINF2/C3/TFPI/SERPING1/C1R/

05 CFI/C1S

3.06E- MRC1/HLA-DQB1/SPHK2/C3/CEBPG/TIRAP/ITGB2/HLA-DMB/HLA-DMA/

' 04 RFXANK/CD74/TNFRSF1A/FCGR2B/CD209/IFNA4/FCER1G/HLA-DPA1/
IFNA14/FCGR2A/PPP3CA/HLA-DPB1/CD14/HLA-DRA

8.02E- C1QA/C1QB/GNAI3/C3/IRF1/TIRAP/PYCARD/ITGB2/SERPING1/C1R/C1S/

04 CASP1/CD14
HLA-DQB1/WNT16/NRP1/ADCY8/ITGB2/HLA-DMB/HLA-DMA/VCAM1/

8.39E- TNFRSF1A/CDKN2A/PPP3CA/HLA-DPB1/EGR1/FZD9/IL2RB/LTBR/HLA-A/

04 HLA-C/HLA-B/HLA-E/FZD4/HLA-G/HLA-F/ETS2/PDGFRA/PDGFRB/HLA-
DPA1/HLA-DRA

9.65E-  HLA-DQBI1/LTBR/HLA-DPA1/TNFSF13/HLA-DPB1/HLA-DMB/HLA-DMA/
04 CXCL12/HLA-DRA/CD28

1.07E- COL4A2/COL14A1/COL4A1/COL7A1/COL6A5/COL3A1/COL6A3/PRCP/
03 COL1A2/COL15A1/COL6A1/CPB1/COL5A2/SLC7A7

1.68E-  ACTB/CLDN16/CLDN8/MYL7/GNAI3/NCF2/CD99/ITGB2/CLDN20/MMP2/
03 CXCL12/CLDN14/CDH5/VCAM1/RAP1B/MSN

FGFR1/FGFR4/COL3A1/GNG11/LPAR1/G6PC2/COL6A5/IL4R/IFNA4/COL6A3/
2.83E- CREB3L2/COL6A1/LAMB1/THBS2/CSF1R/EN1/IL2RB/COL4A2/COL4A1/ITGA1/

03 FGF21/FGF20/COL5A2/VWEF/GNGT1/LAMA4/LAMA3/GNB1/LPAR6/COL1A2/
PDGFRA/PDGFRB/IFNA14
3.00E ACTB/FGFR1/MYL7/FGFR4/ARHGEF7/ITGA1/IQGAP2/ITGB2/ARPC5/FGF21/
' 03 ) FGF20/IQGAP1/ARPC1B/PAK3/ARPC2/TIAM1/SCIN/PDGFRA/PDGFRB/

CYFIP1/TMSB4X/MSN/FN1
3.01E- HLA-DQB1/C7/HIST1H4L/C3/GRIN2A/C1R/C1S/H2AF]/HLA-DMB/HLA-DMA/

03 CIQA/C1QB/HLA-DPA1/FCGR2A/HLA-DPB1/HLA-DRA/CD28
DCC/FGFR1/WNT16/GNAI3/ADCY8/GNG11/LPAR1/MMP2/CXCL12/CDKN2A/
3.61E- LAMBI1/TRAF5/TRAF4/CSF1R/EN1/FZD9/BMP4/PTGER2/COL4A2/COL4A1/
03 PTGER4/EPAS1/LEF1/FGF21/FGF20/MECOM/FZD4/GNGT1/LAMA4/LAMA3/

GNAQ/GNB1/LPAR6/RASSF1/PDGFRA/PDGFRB
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TastLE 1: Continued.
Term Count Enriched genes
value
5.09E- ACTB/MYL7/COL4A2/COL4A1/COL3A1/ITGA1/FLNB/COL5A2/VWF/LAMA4/
03 LAMA3/PAK3/COL6A5/COL6A3/COL1A2/PDGFRA/COL6A1/PDGFRB/RAP1B/
LAMBI/THBS2/FN1
hsa05310: Asthma 7 S'A(L;;E_ HLA-DQB1/FCER1IG/HLA-DPA1/HLA-DPB1/HLA-DMB/HLA-DMA/HLA-DRA
hsa00590: Arachidonic acid 6.18E- AKR1C3/GGT5/PLA2G4A/PTGIS/ALOX12B/GGT1/ALOX5/CBR3/LTC4S/
metabolism 10 03 PLA2G2F
hsa04611: Platelet activation 15 1.30E- ACTB/GNAI3/ADCY8/COL3A1/COL5A2/VWEF/PLA2G4A/GP6/GNAQ/VAMPS8/
02 COL1A2/FCER1IG/RAP1B/FCGR2A/LCP2
hsa05140: Leishmaniasis 10 1.63E- HLA-DQBI1/NCF2/C3/HLA-DPA1/ITGB2/FCGR2A/HLA-DPB1/HLA-DMB/HLA-
02 DMA/HLA-DRA
hsa04666: Fc gamma R-mediated 11 1.76E-  ARPCI1B/FCGR2B/SPHK2/ARPC2/SCIN/ASAP2/MARCKS/FCGR2A/INPP5D/
phagocytosis 02 ARPC5/PLPP3
hsa05169: Epstein-Barr virus 14 1.77E- HLA-DQB1/CD44/FCER2/VIM/HLA-A/HLA-C/HLA-DPA1/HLA-B/HLA-DPB1/
infection 02 HLA-E/TRAF5/HLA-G/HLA-DRA/HLA-F
. " 2.37E- HLA-DQBI1/CTSK/HLA-DPA1/ITGB2/TNFSF13/HLA-DPB1/HLA-DMB/HLA-
hsa05323: Rheumatoid arthritis 11 02 Q DMA/CXCL12/HLA-DRA/CD28
hsa05321: Inflammatory bowel 9 2.47E- MAF/HLA-DQB1/ILAR/HLA-DPA1/HLA-DPB1/HLA-DMB/IL21/HLA-DMA/
disease (IBD) 02 HLA-DRA
2 57E.- HLA-DQB1/C3/HLA-A/HLA-C/HLA-B/HLA-DMB/HLA-E/HLA-DMA/HLA-G/
hsa05168: Herpes simplex infection 18 02 CD74/HLA—F/TNFRSF1A/IFNA4/HLAISEII;A1/IFNA14/HLA—DPB1/TRAF5/HLA—
hsa04380: Osteoclast differentiation 14 3'%(;]3_ NOX3/NCF2/N1? é( égNAI/:II}SE ;éﬁ\(jECBEQ/CgSSg%/I%ES Cl)/}l;}g GR2B/OSCAR/
hsa05146: Amocbiasis 12 331E- COL4A2/LAMA4/LAMA3/COL4A1/GNAQ/COL3A1/COL1A2/ITGB2/LAMB1/
02 COL5A2/CD14/FN1
hsa04650: Natural killer cell 13 3.84E- CD244/TNFSF10/KIR2DS5/ICAM2/IFNA4/FCER1G/IFNA14/ITGB2/PPP3CA/
mediated cytotoxicity 02 KIR2DS3/KIR2DL3/LCP2/TYROBP
hsa04390: Hippo signaling pathway 15 4.12E- ACTB/BMP4/FZD9/WNT16/LEF1/ITGB2/WWTR1/FZD4/FRMD1/AFP/CRB1/
02 ID2/ID1/RASSF1/TEAD4
hsa05145: Toxoplasmosis 1 4.18E- HLA-DQB1/TNFRSF1A/LAMA4/LAMA3/GNAI3/HLA-DPA1/ALOX5/HLA-
02 DPB1/HLA-DMB/LAMB1/HLA-DMA/HLA-DRA
hsa04015: Rapl signaling pathway 19 4.43E-  ACTB/FGFR1/FGFR4/GNAI3/ADCY8/GRIN2A/ITGB2/LPAR1/FGF21/FGF20/
02 GNAQ/ID1/TIAM1/PDGFRA/RAPGEF5/PDGFRB/RAP1B/LCP2/CSF1R
4.66E- FGFR1/FGFR4/GRIN2A/GNG11/FGF21/FGF20/RGL1/GNGT1/PLA2G4A/PAK3/
hsa04014: Ras signaling pathway 20 02 GNB1/TIAM1/RASSF1/ETS2/PDGFRA/RAPGEF5/PDGFRB/RAP1B/PLA2G2F/
CSF1R
hsa04360: Axon guidance 13 497E- DCC/NRP1/GNAI3/PLXNA1/EFNB2/CXCL12/EPHBI1/SLIT2/SEMA5A/ROBO1/
02 PAK3/UNC5D/PPP3CA

mentioned GOs and KEGG pathways is shown in Figure 4,
and the whole information of them is shown in Table S2.

3.3. Verification of the Hub Gene. The correlations between
the hub genes and TGFBI were verified in GSE79768 dataset.
We used cor analysis to detect the correlation value between
the coexpression gene and TGFBI in GSE79768. As shown in
Table 2, except for VWF, BMP4, and CD44, the correlations
between TGFBI with CXCL12, C3, FN1, COLIA2, ACTB,
VCAMI, and MMP2 were consistent with the results in
GSE115574 dataset as they were all positively correlative
and the P value <0.05.

3.4. Pathways and the Verified Hub Genes. It is descripted in
Figure 5, the verified hub genes were enriched in different
and/or same KEGG pathways. CXCL12, ACTB, and MMP2
were enriched in leukocyte transendothelial migration
(hsa04670). FN1 and COLI1A2 were both enriched in PI3K-
Akt signaling pathway (hsa04151), amoebiasis (hsa05146),
and focal adhesion (hsa04510). In addition, CXCLI2 was
enriched in rheumatoid arthritis (hsa05323), and C3 was
enriched in leishmaniasis (hsa05140).

3.5. Potential Drugs Targeted by the Verified Hub Genes. To
detect the potential drugs of the hub genes, we used the
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FIGURE 3: PPI-network of TGFBI and its coexpression genes in atrial fibrillation and hub genes. (a) PPI-network constructed based on
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online database DrugBank (http://www.drugbank.ca) to
identify the drug that targeted by the verified hub gene.
DrugBank is an online and free-access database, integrating
the mechanisms, targets, and interactions of the drugs [25].
We selected the genes, which have a complete record of
actions and have gotten the approval for presentation in
Table 3.

4. Discussion

The rapid development of sequencing technology has helped
researchers to gain a deeper understanding of several com-
prehensive diseases, such as cardiovascular diseases, tumors,
and autoimmune diseases. The mechanism of AF remains
not well clear. In the current study, we identified the poten-

tial mechanism of TGFBI and its coexpression genes in AF
patients, and verified the hub genes, hoping to provide refer-
ence for the further study of AF.

It is descripted in Figure 6 that TGFBI is located in
5q31.1, and it expresses in several organs like heart, liver,
colon, urinary bladder, and so on (https://www.ncbinlm
.nih.gov/gene/7045). In early studies, the research of TGFBI
mainly focused on corneal dystrophy as it is a primary
disease-causing gene of corneal dystrophy, leading to protein
deposits on the cornea then cause blindness [26, 27]. In
addition, it is also a star gene owing to its important effect
on the outcome of cancer and the sensitivity to chemother-
apeutic drugs. It affects the progress of tumor main because
it would promote cell proliferation, migration, and change
the microenvironment [28, 29]. However, the function of
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TaBLE 2: Validation of the correlations between the hub genes and
TGFBI.

Gene Degree rank GSE115574 GSE79768
cor p cor p
CXCL12* 6 0915 4.61E-06 0.839 1.82E-02
ae 6 0.733 2.87E-03 0.857 1.38E-02
FNI * 1 0.807 4.86E-04 0.813 2.60E-02
COLIA2 ™ 6 0.821 3.18E-04 0.801 3.04E-02
ACTB * 4 0.770 1.28E-03 0.842 1.74E-02
VCAMI * 6 0.768 1.33E-03 0.757 4.87E-02
MMP2 * 3 0922 2.73E-06 0917 3.68E-03
VWF 10 0.770  1.29E-03 0.625 1.34E-01
BMP4 5 0.746  2.18E-03 0.527 2.24E-01
CD44 2 0.856 9.24E-05 0.619 1.38E-01

*P < 0.05in both dataset. cor: Pearson correlation value.

TGFBI in heart remains unclear. An early study suggested
that in diseased heart, the expression of TGFBI mRNA
induced [30]. Similarly, Schwanekamp et al. [31] reported
that the expression of TGFBI in the heart increased after
injury. What is more, in a plasma proteome profiling, TGFBI
has a potential role in extracellular matrix remodeling in
fibrosis [32]. A recent study further confirmed that TGFBI
and ADAMI9 were associated with the TGF-f1 pathway
and cardiac fibrosis [33]. Thus, TGFBI probably plays a role
in myocardial fibrosis.

Myocardial fibrosis is a key pathophysiological mecha-
nism of heart failure and arrhythmia. Cardiac fibrosis gets
the pathological feature with disorder of cardiac muscle cells
and notable increasing of collagen fibers. Disordered myo-
cardium and interwoven collagen fibers lead to the uncoor-
dinated conduction of power induced by systole and
diastole, and anisotropy of action potentials, which lead to
the decrease of heart function and the risk of arrhythmias
[34, 35]. As is known, genes with similar functions often
show coexpression relationships and then coregulate biolog-
ical functions. We found that TGFBI and its coexpression
genes enriched in several GOs and pathways like collagen
fibril organization, PI3K-Akt pathway, and viral myocardi-
tis. PI3K-Akt pathway has been reported regulating myocar-
dial fibrosis. FNI and COLIA2 genes are both enriched in
this pathway. Huang et al. [36] reported that miR-144-3p/
EN1 and miR-9-3p/EN1 pathways may play an important
role in myocardial fibrosis. In addition, FN1 takes part in
the cardiac endothelial cell dysfunction induced by
myofibroblast-derived exosomes. Actually, FNI has been
used as a myocardial fibrosis marker in research [37, 38].
The gene ACTB, encoding one of six different actin proteins,
which are involved in structure, integrity, cell motility, and
intercellular signaling, was enriched in the viral myocarditis
pathway. Viral myocarditis is the result of direct damage to
the myocardium by virus and indirect damage to the myo-
cardium by immune response. These damage leads to edema
and necrosis of the myocardial cell and proliferation and
fibrosis of interstitial cell [39]. Thus, these genes may play

a role in the regulation of myocardial fibrosis and then
increase the risk of arrhythmia.

Recent studies gave increasing suggestion of the associa-
tion of immune-related diseases (IRD) and AF. A nation-
wide population-based study with 37,696 patients with IBD
showed that patients with IBD got a 36% (95% confidence
interval = 20%-54%) higher risk of AF than controls [40].
Similarly, patients with systemic lupus erythematosus
(SLE) have also been reported to get a higher risk of AF
compared to controls (Hazard ratio =2.84, 95% CI=2.50
-3.23) [41]. When it comes to the systemic sclerosis (SSc),
they may get a higher risk of AF at 1.75 times of the controls
(95% CI=1.51-2.04), what is more, SSc could affect the
heart and then lead to myocardial fibrosis, which would pro-
mote the formation of AF [42, 43]. Rheumatoid arthritis
(RA), another autoimmune disease, has been suggested to
increase the risk of AF [44]. In an early study, researchers
reported that systemic inflammatory can lead to epicardial
adipose tissue expansion and inflammation, and then cause
the enlarger, fibrotic, and noncompliant of the left atrium,
finally results in AF [45]. IL-6 is a crucial prerequisite for
fibrosis of cardiac myocytes, when it causes the decrease
expression of Cx40 and Cx43, it is strongly correlated with
the high expression of collagen fibrin I and collagen fibrin
III via the pSTAT3 pathway [46]. The expression of IL-6
increases in several IRDs, and it may be the reason that it
could be suggested as a biomarker of AF [47-49]. In this
study, we found that the hub gene C3 was enriched in SLE,
and CXCLI2 was enriched in rheumatoid arthritis. The
expression of these genes may affect the activation of the
autoimmune system, and then promotes the remodeling of
the atrium, which leads to AF.

Targeted drugs of the hub genes were also identified in
this study. The complement system is an important part of
the human immune system and is involved in the inflamma-
tory response. Pegcetacopla, a PEGylated peptide targeting
C3, is an inhibitor of hemolysis used in clinics. It can
improve hemoglobin, clinical outcome, and hematologic
outcome via effect control of intravascular hemolysis as well
as extravascular hemolysis [50]. C3 has also been reported
associated with age and hypertension, which is known as
the risk of AF. In addition, dipeptidyl peptidase III can pre-
vent heart from inflammatory cell infiltration and fibrosis
via cleavage of a peptide that is a part of C3 [51, 52]. How-
ever, little is known of the use of pegcetacopla in the treat-
ment of heart disease. Carvedilol is one of the calcium
channel blockers, and it could alter circulating miR-1 and
miR-214, which are suggested in the processes of myocyte
hypertrophy and apoptosis and release myocardial fibrosis
[53, 54]. In addition, it can provide prevention of
chemotherapy-related cardiotoxicity [55]. Thus, carvedilol
may be an ideal antifibrosis target drug. Vitreomacular
adhesion (VMA) is an eye disease, and it always leads to
visual impairment, even loss of vision when it gets worse
with vitreomacular traction (VMT). Pharmacological vitreo-
lysis was an alternative treatment for VMA. Recently, a new
drug named ocriplasmin, a recombinant DNA molecule
based on autologous plasmin, was developed to catalyze
the breakdown of the bond of laminin and fibronectin,



10

Gene

CXCL12
c3
EN1
“ .
-

COL1A2 S
ACTB
VCAMI
MMP2

Computational and Mathematical Methods in Medicine

Pathway

hsa04672
hsa04670

hsa05200

hsa05323
hsa04360
hsa05150

hsa04514

hsa04145

hsa04610
hsa05152
hsa05133
hsa00590
hsa05322
hsa05140
hsa05168

e —— | 15204512

\ hsa04151

hsa04810

hsa04510

hsa05146
hsa04974
hsa04611
hsa05416
hsa04390
hsa04015
hsa05166

FIGURE 5: Sankey diagram of the hub genes and the KEGG pathways they enriched in. The band on the left represents the core gene; and the
band on the right represents the pathway the hub gene enriched in. The width of the cloth connecting the two strips represents the P value.

TasLE 3: Target drug of the hub genes.

Gene Drug ID Name Status Actions
DB00028 Human immunoglobulin G Approved Binder

3 DB14533 Zinc chloride Approved Inhibitor, ligand
DB14548 Zinc sulfate Approved Inhibitor, ligand
DB16694 Pegcetacoplan Approved Binder, regulator
DB08888 Ocriplasmin Approved Cleavage

FN1 DB14533 Zinc chloride Approved Modulator, ligand
DB14548 Zinc sulfate Approved Modulator, ligand
DB01136 Carvedilol Approved Inhibitor

VCAMI
DB11338 Clove oil Approved Antagonist

maintaining vitreous adhesion [56]. The blood clots caused
by AF are usually venous thrombosis, and fibrinolysis
enzymes and clotting factor inhibitors are common treat-
ments. However, whether ocriplasmin would be an effect
component of anticoagulant or thrombolytic therapy still
needs further researches to detect.

With the progress of technology and the continuous evo-
lution of algorithms, our understanding of complex diseases
is further deepened. Several related works provide powerful
boost to medical research. Su et al. [57] reported a frame-
work using horizontal and vertical multiverse optimization,
providing an effective segmentation method for diagnosing
Coronavirus Disease 2019 (COVID-19). Similarly, Qi et al.
[58] reported a directional mutation and crossover boosted
ant colony optimization for diagnosing COVID-19. In addi-
tion, saliency detection network with neutrosophic enhance-
ment have been reported to be an effective approach to
colorectal polyp region extraction [59]. Bioinformatics has

developed rapidly in the last decade, and it was not only
owing to the development of sequencing technology but also
to the update of algorithms. No matter what the specific
mechanism is, at present, the cause of AF is basically consid-
ered as cardiac fibrosis induced by atrial remodel. In the cur-
rent study, we detected the potential mechanism of TGFBI
and its coexpression genes of AF and found that they may
induce cardiac fibrosis via several pathways. The identified
hub genes may be potential targets for the interference of
AF.

Based on our finding, our future work was designed as fol-
lows. Firstly, we aim to cooperate with surgeons, collecting
several LAAs of AF patients, and verify the correlation of the
expression levels of TGFBI and the identified hub genes via
reverse transcription-polymerase chain reaction (RT-qPCR).
Secondly, measuring the expression of proteins in the down-
stream of the pathway they enriched in via knocking down
or overexpressing these genes to verify their function. Thirdly,
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FIGURE 6: Location and expression about TGFBI. (a) Location of TGFBI in chromosome. (b) Expression of TGFBI in different samples.

after the intervention of the extracted cardiomyocytes from
the LAAs with the predicted targeted drugs, the effect on the
expression of these genes and proteins was evaluated by RT-
qPCR and western blot. In addition, we aimed to construct
an AF animal model with pacemaker via persistent rapid atrial
stimulation to repeat the experiment. Finally, several represen-
tative computational intelligence algorithms, like monarch
butterfly optimization (MBO) [60], earthworm optimization
algorithm (EWA) [61], elephant herding optimization
(EHO) [62], slime mould algorithm (SMA) [63], hunger
games search (HGS) [64], RUNge Kutta optimizer (RUN)
[65], colony predation algorithm (CPA) [66], and Harris
hawks optimization (HHO) [67, 68] could be used to opti-
mized our analysis.

5. Conclusions

In the current study, we used TGFBI and its coexpression
genes to identify the potential molecular mechanisms of
AF. These findings may help elucidate the functions of these
genes in AF and provide a target of AF management. How-
ever, there were several limitations of the current study.
First, the sample-size is not large as other randomized con-
trolled study. Second, the results of this study were mainly
based on bioinformatic analysis, and further experiments
are needed to confirm both in vivo and in vitro. Finally, sev-
eral potential factors that participant in the formation of AF
may not be included. Fortunately, with the development of
algorithms, several representative computational intelligence
algorithms like MBO, EWA, EHO, SMA, HGS, RUN, CPA,
and HHO may be used to solve the problems. In the future,
the results of our study will be further verified by more opti-
mized algorithms, expanded samples, and experiments both
in vivo and in vitro.
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