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Idiopathic pulmonary fibrosis (IPF) is the most common and highly lethal pulmonary interstitial lung disease. The current study
is aimed at investigating reliable markers suitable for the treatment and identification of IPF. This study constructed the first 5-
methylcytosine- (m5C-) and immune-related prognostic signature (m5CPS) based on coexpressed genes of m5C regulatory
genes and immune-related genes. The m5CPS was established using the training cohort (n = 68) and verified using the test
(n = 44) and validation (n = 64) cohorts. The area under the curve (AUC) values were utilized to evaluate the accuracy of
m5CPS in predicting the survival of IPF patients. The Kaplan-Meier curves and Cox regression analyses were used to assess
the prognostic effect of m5CPS. The AUC was utilized to evaluate the reliability of m5CPS in distinguishing IPF patients from
healthy individuals. In terms of the results, m5CPS could predict the one-, three-, and five-year survival rates of IPF patients
with high accuracy (AUC = :803 – :973). In fact, m5CPS is not only an independent indicator of the poor prognosis of IPF
patients (hazard ratio > 1; p < :05) but can also distinguish IPF patients from healthy individuals (AUC = :862). Also, m5CPS
may affect the immune response and inflammatory response, and it was positively associated with the infiltration levels of
active mast cells (p < :05). In sum, the current study establishes a novel m5CPS for IPF and reveals the role of m5CPS as a
reliable marker for predicting the prognosis and disease status of IPF patients.

1. Introduction

Idiopathic pulmonary fibrosis (IPF) ranks first in incidence
in terms of interstitial lung diseases, given the fact that there
are 5–20 persons per 100,000 suffering from this disease in
the United States and Europe annually [1, 2]. Pirfenidone
and nintedanib, which are approved by the Food and Drug
Administration, are used for the clinical treatment of IPF
because they benefit certain IPF patients by delaying lung
function decline. However, the tolerability of the two drugs
poses difficulty for clinicians; worse still, they are not consid-
ered a cure for IPF. Rather, lung transplantation is the only
way to cure IPF; nevertheless, problems concerning organ
sources and techniques make it significantly difficult to carry
out this treatment [3]. Thus, the predicted five-year survival

probability of IPF patients is about 40%, and most IPF
patients die two to three years after diagnosis [4–6]. Unfor-
tunately, little is known about the efficient markers of IPF
in terms of identifying the prognosis and disease status.
Thus, this issue still requires further investigation.

Ribonucleic acid (RNA) methylations are a series of mod-
ifications constantly occurring in the epigenetics of eukary-
otes, affecting essential genes in the progression of multiple
diseases. Based on analyzing the RNA methylation-related
regulatory genes, a series of prognostic signatures were con-
structed and considered reliable markers for a variety of dis-
eases in previous studies. For instance, a signature developed
based on N6-methyladenosine regulatory genes was identified
as a prognostic risk marker for head and neck squamous cell
carcinoma, and the signature may be related to the level of
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immune infiltration [7]. Another signature consisted of 11
N1-methyladenosine regulatory genes, which also demon-
strated a close association with the prognosis of hepatocellular
carcinoma and may affect the progression of the disease [8].
Conclusively, the application of RNA methylations in prog-
nostic models may improve the understanding of diseases
and provide effective prognostic indicators. Nevertheless,
most of the present studies on RNA methylation modifica-
tions are related to cancers, and some regulatory mecha-
nisms of RNA methylation have been rarely investigated,
such as 5-methylcytosine (m5C) and 7-methylguanosine.
For IPF, no studies on m5C exist. Thus, the research on
m5C may provide novel approaches to the diagnosis and
treatment of IPF.

In this study, for the first time, a reliable prognostic sig-
nature that can be used to predict and identify IPF patients
was constructed based on m5C’s regulatory-related genes
(m5CRGs) and immune-related genes (IRGs). The m5C-
and immune-related prognostic signature (m5CPS) was
established using a training cohort and validated using
another two cohorts. Moreover, corresponding analyses
were also performed to promote the understanding of m5C
in IPF, including prospective information about the clinical

application potential, underlying molecular functions and
signaling pathways, and underlying drugs regarding m5CPS
in IPF.

2. Materials and Methods

2.1. Patient and Clinical Parameter Data. Cell samples from
the bronchoalveolar lavage (BAL) of 176 IPF patients and 20
healthy control persons used in this study were collected
from the Gene Expression Omnibus database with series
number GSE70866, which contained two cohorts—GPL14550
and GPL17077. At the same time, the clinical parameters
(including GAP (gender-age-physiologic) scores, age, and
gender) of the patients in the two cohorts were also obtained.
A log2 (x + 1) algorithm was applied to normalize the gene
expression profile of both the GPL14550 and GPL17077
cohorts.

2.2. Development and Validation of m5CPS. Ten m5CRGs—
DNMT3A (DNA methyltransferase 3 alpha), DNMT3B
(DNA methyltransferase 3 beta), NOP2 (NOP2 nucleolar
protein), NSUN (NOP2/Sun RNA methyltransferase) 2–7,
and TET2 (tet methylcytosine dioxygenase 2)—that were
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Figure 1: The design and main results of this study. IPF: idiopathic pulmonary fibrosis; m5C: 5-methylcytosine.
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obtained from the previous literature [9] and included in the
GPL14550 and GPL17077 cohorts were analyzed in this
study. A Spearman correlation analysis was applied to select
m5CRGs coexpressed genes (m5C-CEGs) based on the
absolute value of ρ > :5 (p < :05). The univariate Cox regres-
sion analysis was utilized to identify prognosis-related genes
(PRGs) of IPF. IRGs (n = 1,793) were obtained from the
ImmPort Portal on March 7, 2022. Candidate genes for the
development of m5CPS were selected in the intersection of
m5C-CEGs, PRGs, and IRGs.

The “sample” algorithm can be used to divide a cohort
into several cohorts randomly, based on which some IPF

patients from the GPL14550 dataset were identified as the
training cohort (n of IPF = 68), and the remainder of IPF
individuals were set as the test cohort (n of IPF = 44).
GPL17077 was considered an independent validation cohort
(n of samples = 64).

The least absolute shrinkage and selection operator
(LASSO) Cox regression was applied to develop m5CPS
for the training cohort (including 68 IPF patients). The area
under the curve (AUC) values of time-dependent receiver
operating characteristic curves [10] were utilized to evaluate
the accuracy of m5CPS in predicting the prognoses of IPF
patients. Both the test (including 44 IPF patients) and
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Figure 2: The expression and prognostic significance of m5C’s regulatory-related genes (m5CRGs) in IPF. (a) Differences in expression of
m5CRGs between IPF and normal bronchoalveolar lavage cells; the p value is calculated based on Wilcoxon rank-sum tests. NSp > 0:05, ∗
p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001. (b) The association between m5CRG expression levels and the prognosis in IPF patients.
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validation (containing 64 IPF patients) cohorts were used to
verify the reliability of m5CPS in IPF.

2.3. The Potential Clinical Value of m5CPS in IPF. The
Kaplan-Meier curves and Cox regression analyses were used
to assess the prognostic effect of m5CRGs and m5CPS. A
nomogram was established to determine whether m5CPS
had potential in clinical application for IPF patients, which
was verified by calibration curves. Decision curve analysis
(DCA) [11] curves were used to determine whether there
would be net benefits for IPF individuals using the nomo-
gram. For an extensive understanding of the clinical signifi-
cance of m5CPS in IPF, the AUC was utilized to evaluate the
reliability of m5CPS in distinguishing IPF patients from
healthy individuals via BAL cells.

2.4. The Underlying Molecular Functions, Signaling Pathways,
and Drug Sensitivity Analyses of m5CPS in IPF. The “limma”
package [12] was used to identify the differential expression
genes (DEGs) between the high-risk and low-risk groups
with an absolute value of log2ðfold changeÞ > 1 and false dis-
covery rate < :05. These DEGs were utilized to investigate
the underlying molecular functions of the gene ontology
and signaling pathways of KEGG (Kyoto Encyclopedia of
Genes and Genomes) [13], which were finished with the
“clusterProfiler” and “GOplot” packages [14, 15].

The infiltration levels of 22 immune cells for each IPF
patient in the training, test, and validation cohorts were
calculated using the CIBERSORT algorithm [16]. The dif-
ference in the infiltration levels of immune cells in the
high-risk and low-risk groups was assessed through the
Wilcoxon rank-sum analysis. The underlying applicable
drugs for IPF patients were explored by using the “onco-
Predict” package [17] based on IC50 (half maximal inhib-
itory concentration).

2.5. Validation Analyses Based on Synthetic Minority
Oversampling Technique Data. Given that limited healthy
samples were included in the current study, more samples
(120 IPF samples versus 120 healthy samples) were pro-
duced based on the GPL14550 cohort using the SMOTE

(synthetic minority oversampling technique) algorithm of
the “DMwR” package. The extensive samples were used to
validate the different expression levels of m5CRGs between
the IPF group and healthy group, the distinct expression
levels of constitutive genes of m5CPS between the IPF group
and healthy group, and the ability of m5CPS to distinguish
IPF patients from healthy individuals.

2.6. Statistical Analysis. A Wilcoxon rank-sum test was
applied in comparing certain risk scores between distinct
groups (e.g., IPF versus control). A Spearman coefficient
was utilized for the correlation analysis. All the analyses
were performed in R (v4.1.0). A flow chart for this study
can be referenced in Figure 1.

3. Results

3.1. The Expression Profile of m5CRGs and Their Correlation
with Prognosis in IPF. Based on the GPL14550 dataset,
upregulated TET2 expression was detected in IPF rather
than healthy BAL cells (p < :05; Figure 2(a)), and the statis-
tical significance of the expression levels of the remaining
nine m5CRGs between the IPF group and healthy group
was not observed (p > :05; Figure 2(a)). Using the SMOTE
data, increased TET2 expression in IPF was validated, and
DNMT3B and NSUN6 were also found to be upregulated
in the IPF group (p < :05; Figure S1).

Those IPF patients with the overexpression of DNMT3A
or NSUN4 were found to have favorable survival as com-
pared to the rest of the patients, while IPF individuals with
elevated NOP2 were found to have poor prognoses (p < :05;
Figure 2(b)). Moreover, the univariate Cox regression analysis
supported these findings, and the multivariate Cox regression
analysis identified that DNMT3A, NSUN4, and NOP2 were
independent prognostic factors for IPF patients (Table 1).

3.2. The Establishment of m5CPS for IPF Patients. According
to the GPL14550 datasets, 8,157 m5C-CEGs (ρ > :5 and p <
:05) and 3,995 IPF-PRGs (p < :05) were selected via the corre-
lation analysis and univariate Cox regression analysis, respec-
tively (Figure 3(a)). Sixty-three candidate genes for developing

Table 1: The Cox regression analyses of m5C’s regulatory-related genes.

Gene
Univariate Cox regression analysis Multivariate Cox regression analysis

Hazard ratio [95% CI] p value Hazard ratio [95% CI] p value

DNMT3A 0.617 [0.387-0.983] 0.042 0.527 [0.313-0.885] 0.016

DNMT3B 0.992 [0.628-1.566] 0.972 — —

NOP2 1.925 [1.207-3.071] 0.006 1.746 [1.068-2.857] 0.026

NSUN2 1.467 [0.926-2.323] 0.102 — —

NSUN3 0.859 [0.545-1.355] 0.513 — —

NSUN4 0.591 [0.373-0.937] 0.025 0.448 [0.273-0.734] 0.001

NSUN5 1.285 [0.806-2.048] 0.292 — —

NSUN6 1.155 [0.733-1.820] 0.534 — —

NSUN7 1.482 [0.936-2.346] 0.093 — —

TET2 0.748 [0.474-1.180] 0.212 — —
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Figure 3: The construction of 5-methylcytosine and immune-related prognosis signature (m5CPS). (a) Sixty-three genes were identified as
candidate genes for m5CPS. m5C-CEGs: m5CRGs coexpressed genes; PRGs: prognosis-related genes; IRGs: immune-related genes. (b) The
least absolute shrinkage and selection operator (LASSO) coefficient profiles of the 63 candidate genes. The coefficient profile plot was
produced against the log (lambda) sequence in the LASSO model. The optimal parameter (lambda) was selected. (c) Coefficients of six
genes in m5CPS. (d) Differential expression levels of some of the six genes between the healthy group (the smaller fan-shaped region)
and the IPF group (the larger fan-shaped region). (e) Coexpression relationship of six genes in the healthy group (the top panel) and the
IPF group (the bottom panel); the Spearman correlation coefficient was used in this panel. ∗p < :05, ∗∗p < :01, ∗∗∗p < :001.

Table 2: The clinical characteristics of the training, test, and validation cohorts.

Clinical characteristics
Training cohort Test cohort Validation cohort

Number Percentage Number Percentage Number Percentage

Status
Alive 18 26.5% 18 40.9% 40 62.5%

Dead 50 73.5% 26 59.1% 24 37.5%

Gender
Female 11 16.2% 8 18.2% 13 20.3%

Male 57 83.8% 36 81.8% 51 79.7%

Age (years)
<65 26 38.2% 11 25.0% 22 34.4%

≥65 42 61.8% 33 75.0% 42 65.6%

GAPa stages

I 15 22.1% 16 36.4% 25 39.1%

II 33 48.5% 19 43.2% 31 48.4%

III 20 29.4% 9 20.5% 8 12.5%
aGender-age-physiologic variables.
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Figure 4: Continued.
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the m5CPS were identified from the intersection of m5C-
CEGs, IPF-PRGs, and IRGs (Figure 3(a)). Those IPF patients
from the GPL14550 cohort were divided into the training
cohort (n = 68, 60%) and test cohort (n = 44, 40%), while
patients from the GPL17077 cohort were identified as the val-
idation set for verifying the m5CPS (n = 64). The characteris-
tics of the training, test, and validation cohorts can be viewed
in Table 2.

Using the least absolute shrinkage and selection operator
Cox regression algorithm, the m5CPS was established based
on the training set (Figure 3(b)). The m5CPS consisted of six
genes—AKT3 (AKT serine/threonine kinase 3), CMTM8
(CKLF like MARVEL transmembrane domain containing
8), IRF9 (interferon regulatory factor 9), RORA (RAR related
orphan receptor A), TNFRSF12A (TNF receptor superfamily
member 12A), and VAV3 (vav guanine nucleotide exchange
factor 3), the coefficients of which are shown in Figure 3(c).
Among the six genes, differential expression levels on the
part of AKT3, IRF9, RORA, and TNFRSF12A were observed
between the healthy group and the IPF group (p < :05;
Figure 3(d)); this result was also supported by the SMOTE
data (p < :05; Figure S2). The expression correlation of
these six genes was not significant in the healthy group,
while it was conspicuous in the IPF group (Figure 3(e)).

3.3. Prediction Accuracy and Prognostic Effect of m5CPS.
Clearly, m5CPS demonstrated conspicuous accuracy in pre-
dicting both the short-term (one-year) and long-term
(three-year and five-year) survival of patients from the train-
ing cohort (AUC = :803 – :973), and such a phenomenon
was also observed in the test and validation cohorts
(AUC = :642 – :829) (Figure 4(a)). Moreover, m5CPS was
more excellent than any single constitutive gene of m5CPS
in terms of predicting the one-year survival of IPF individ-
uals (AUC = :796 – :829; Figure 4(b)).

None of the three features—GAP, gender, or age—was
found to be different between IPF patients with a high-risk
score and IPF patients with a low-risk score in all of the

training, test, and validation cohorts, while the difference
in CMTM8 and TNFRSF12A expression levels between the
high-risk score group and the low-risk score group was
detected (Figure 4(c)). In all of the training, test, and valida-
tion cohorts, more surviving individuals were observed in
the group with a low-risk score (Figure 4(d)).

Based on the results of the training, test, and validation
cohorts, a high m5CPS score indicated a pessimistic median
survival time for IPF patients via the Kaplan-Meier curves
(p < :05; Figure 5(a)). In the univariate Cox regression anal-
yses, GAP, TNFRSF12A, and m5CPS risk scores were identi-
fied as prognostic risk factors for IPF patients in all of the
training, test, and validation cohorts (hazard ratio > 1, p <
:05; Figure 5(b)). Further multivariate Cox regression analy-
ses confirmed the m5CPS risk score as an independent risk
factor in IPF based on the three cohorts (hazard ratio > 1, p <
:05; Figure 5(c)).

3.4. The Clinical Application Potential of m5CPS in IPF. The
nomogram consisted of the two factors related to the prog-
nosis of IPF in the univariate Cox regression analysis, GAP
scores and m5CPS risk scores, and was constructed to
explore the application potential of the signature in a clinical
setting. Taking the IPF individual with the identity docu-
ment “GSM1820848” as an example, the predicted probabil-
ities (based on the nomogram) of his survival for less than
one, three, and five years were 0.0896, 0.434, and 0.665,
respectively (Figure 6(a)), which were calculated based on
his clinical parameters—GAP score = 4 and m5CPS risk
score = 1:440. By the calibration curves, although the nomo-
gram did not show high accuracy in predicting three- and
five-year survival, a reliable one-year survival rate can be
predicted for IPF patients (Figure 6(b)). Moreover, it can
be seen from the DCA that IPF patients will derive signifi-
cant net benefits from the nomogram in terms of predicting
survival probabilities (Figure 6(c)).

Through AUC values, m5CPS and its constitutive genes
in terms of distinguishing IPF patients from healthy persons
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Figure 4: The prediction accuracy and prognostic value of m5CPS in IPF. (a) The accuracy of m5CPS in predicting the one-, three-, and
five-year survival of IPF patients. (b) The accuracy of m5CPS and single genes in predicting the one-year survival of IPF patients. (c)
Heatmaps of the expression profile of m5CPS and clinical characteristics in the training, test, and validation cohorts. GAP: gender-age-
physiologic variables. ∗p < :05, ∗∗p < :01, and ∗∗∗p < :001. (d) Risk plots of the training, test, and validation cohorts.
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Figure 5: Continued.
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were evaluated. As a result, AKT3, RORA, TNFRSF12A, and
the m5CPS risk score made it feasible to screen IPF patients
via detecting BAL cell samples (AUC ≥ :797), and among
these factors, the m5CPS risk score showed the optimal
effect in terms of screening for IPF patients (AUC = :862;
Figure 7). Notably, the analysis results based on the SMOTE
data also supported the ability of m5CPS to distinguish IPF
patients from the healthy (Figure S3).

3.5. The Underlying Molecular Functions and Signaling
Pathways of m5CPS and the Drug Sensitivity Analysis for
the Signature. Using gene ontology analysis based on DEGs
between the high-risk and low-risk groups for all of the
training, test, and validation cohorts, m5CPS may affect six
types of functions, such as chemokine activity (Figures 8(a)
and 8(b)). From the perspective of the KEGG signaling path-
ways, m5CPS was shown identified to participate in two
pathways—“cytokine-cytokine receptor interaction” and
“viral protein interaction with cytokine and cytokine recep-
tor”—based on the results of the training, test, and validation
cohorts (Figures 8(c) and 8(d)).

The association of m5CPS with 22 kinds of immune
cells was analyzed. Ultimately, there was a positive correla-
tion between the m5CPS risk score and the infiltration
levels of active mast cells in all of three cohorts, and such
a finding was also supported by the negative relationship
between the m5CPS risk score and the infiltration levels
of resting mast cells in both of the training and test
cohorts (Figure 8(e)).

At present, the effect of drug therapy on IPF is still not
ideal, so it is necessary to explore drugs that may be sensitive
to IPF patients. With the internal algorithm of the “oncoPre-
dict” package based on IC50 and based on the training cohort,
this study predicted that IPF patients with a highm5CPS score
would be sensitive to eight drugs (p < :01; Figure 9). Similarly,
IPF individuals with a high m5CPS score were predicted to be
sensitive to twelve and eight drugs using the training and
validation cohorts, respectively (p < :01; Figure 9). Using all
the three cohorts, IPF patients with high m5CPS scores were
consistently identified to be sensitive to eight drugs—axitinib,
ZM447439, AZD1332, linsitinib, alpelisib, taselisib, WZ4003,
and NVP.ADW742 (Figure 9).

4. Discussion

As mentioned above, IPF is the most common and highly
lethal pulmonary interstitial lung disease. Although pirfeni-
done and nintedanib have been applied to certain IPF
patients in clinical settings, the effectiveness of drug treat-
ment for IPF patients is still unsatisfactory. Nothing but lung
transplantation can cure IPF; however, the lack of organ
sources limits the feasibility of performing this operation.
Thus, more effort must be made to investigate reliable
markers that may be suitable for the treatment and identifi-
cation of IPF. m5C is mainly enriched in some important
functional regions (e.g., the translation initiation site) of spe-
cific molecules (e.g., mRNA and long noncoding RNA) and
thereby affects a series of biological functions, such as RNA
stabilization and translation [18–21]. Also, IRGs can affect
important biological processes, such as immune cell infiltra-
tion and immune response. Although immune imbalance
and continuous inflammatory response were considered to
be important links in the process of fibrosis [22, 23], few
reports about them on IPF can be consulted.

Considering the potentially important role of m5CRGs
and IRGs in IPF and the lack of key substances in clinical
treatment of IPF, this study constructed the firstm5CPS based
on m5C-CEGs and IRGs and revealed the clinical value of
m5CPS. In fact, m5CPS could predict the short-term and
long-term survival rates of IPF patients with high accuracy.
It is not only an indicator of poor prognoses for IPF patients
but can also distinguish between IPF patients and healthy
individuals. These potential clinical values on the part of
m5CPS were identified in the training set and verified in the
test and validation cohorts. Our study also revealed the poten-
tial molecular functions and signaling pathways for m5CPS
regarding IPF, which may increase the understanding of the
mechanism of m5C and IRGs in IPF to some extent. Finally,
this study also investigated novel drugs that may apply to
patients with high m5CPS scores, providing clues for
drug-related research.

Previous studies have suggested the feasibility of the
application of a prognostic signature in patients with IPF.
For example, Li et al. [24] constructed a hypoxia- and
immune-related prognostic signature and revealed that the
signature was associated with the prognosis of IPF patients.
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Figure 5: The prognostic value of m5CPS and clinical characteristics in IPF. (a) Kaplan-Meier curves. (b) Univariate Cox regression
analysis. (c) Multivariate Cox regression analysis.
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Figure 6: An application of the m5CPS in the nomogram. (a) The nomogram based on the GAP and m5CPS, the red dots in the nomogram
represent the clinical features of patient GSM1820740. (b) Calibration curves assess the accuracy of the nomogram in predicting the survival
probabilities of IPF individuals. (c) Decision curve analysis (DCA) demonstrates the positive net benefits of the nomogram for IPF patients.
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However, they did not explore whether the signature had
independent prognostic value (e.g., the signature was unaf-
fected by clinical parameters such as GAP), which was
observed for m5CPS in our study. Moreover, the prognosis
signature constructed by Li et al. [24] was composed of nine
genes, which was more complex than the m5CPS composed
of six genes in our study. He et al. [25] and Li et al. [26]
developed ferroptosis-related prognostic signatures for IPF.
Both of these two signatures were shown to have indepen-
dent prognostic value for IPF patients. However, neither
He et al. [25] nor Li et al. [26] revealed whether their signa-
tures have the potential to distinguish IPF patients from
healthy individuals, and they also did not use the risk score
for signatures to explore drugs that might be applicable to
patients with IPF, both of which have been accomplished
in our study. Thus, our study adopts the novel perspective
on m5C, which may have certain novelties and advantages.

In cases of IPF, m5CPS demonstrated conspicuous clin-
ical value. Crucially, IPF is the pulmonary interstitial disease
with the worst prognosis, so it is necessary to explore effec-
tive indicators that can be directly used to predict the prog-
noses of IPF patients. The m5CPS constructed in our study
may be such a biomarker because it has represented high
accuracy in predicting one-, three-, and five-year survival
in IPF patients, and the results of the training, test, and val-
idation cohorts supported such a finding. Indeed, previous
reports have revealed several prognostic markers for IPF.
For example, Nakanishi et al. [27] identified the association
of IL-18 binding protein with the survival of IPF patients
and the gene’s role as an underlying indicator of the progno-
sis of IPF. Sawazumi et al. [28] also found that HNF4α
expression represented prognostic risk signaling for IPF.
However, confirming the efficacy of using a single molecule
as a marker may require multiqueue verification. For

instance, TNFRSF12A was determined to be an independent
risk marker for the prognosis of IPF individuals in the train-
ing cohort; nevertheless, neither the test cohort nor the val-
idation cohort supported this finding. Instead, the m5CPS
consisting of six genes was shown to be a reliable biomarker
in all three cohorts. Moreover, a biomarker consisting of sev-
eral molecules may have advantages in some respects. For
instance, m5CPS was more excellent than any single consti-
tutive gene of m5CPS in terms of predicting the one-year
survival of IPF individuals in our study. Moreover, the
nomogram consisting of GAP score and m5CPS risk score
can be applied directly to effectively predict the short-time
survival probabilities of IPF patients. In addition to the prog-
nostic effect, m5CPS made it feasible to screen IPF persons
from the healthy by using BAL cells with high accuracy.
However, more efforts should be made to verify the screen-
ing effect of m5CPS for IPF via more convenient detection
methods. For example, Aoshima et al. [29] focused on dis-
tinguishing IPF patients from non-IPF persons via serum
gremlin-1, and it is more convenient for clinicians to collect
serum samples than BAL cells. In sum, m5CPS may be an
essential marker for evaluating the prognosis and disease
status of IPF patients.

Although m5CRGs and IRGs are relevant to fibrosis [22,
23, 30], little is known about their mechanisms in IPF, which
were explored in our study. A series of essential molecular
functions may be linked to the role of m5CPS play in IPF.
These include chemokine activity, chemokine receptor bind-
ing, cytokine activity, cytokine receptor binding, receptor-
ligand activity, and signaling receptor activator activity. This
makes sense because all of the constitutive genes—AKT3
[31], CMTM8 [32], IRF9 [33], RORA [34], TNFRSF12A
[35], and VAV3 [36]—of m5CPS participated in the chemo-
kines, cytokines, or signaling receptor activator activity-
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Figure 7: The accuracy of m5CPS and its constitutive genes in terms of distinguishing IPF bronchoalveolar lavage from healthy lung
bronchoalveolar lavage. AUC: area under the curve.
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related molecular biological processes. This suggests that
m5CPS may affect the immune response and inflammatory
response, which was also supported by the two KEGG sig-
naling pathways—“cytokine-cytokine receptor interaction”
and “viral protein interaction with cytokine and cytokine
receptor”—m5CRGs may take part in. In terms of the asso-
ciation with immune cells, Galati et al. [37] identified a
decline in dendritic cells in the blood of IPF patients
and the prognostic role of such for the disease. Cha
et al. [38] also revealed elevated mast cells in IPF lung tis-
sues as compared to normal lung tissues. Furthermore,

among the 22 kinds of immune cells tested in our study,
the m5CPS risk score was positively associated with the
infiltration levels of active mast cells in all of the training,
test, and validation cohorts. Thus, the previous results and
our study suggested the important roles of mast cells in
IPF, particularly for patients with high-risk scores. Lastly,
considering that the effect of drug therapy for IPF remains
poor, our study identified that IPF patients with high
m5CPS scores were sensitive to eight drugs: axitinib,
ZM447439, AZD1332, linsitinib, alpelisib, taselisib, WZ4003,
and NVP.ADW742.
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Figure 8: The potential molecular mechanisms of m5CPS in IPF. (a) Selection of overlap molecular functions of m5CPS in the three
cohorts. (b) The overlap molecular functions of m5CPS in the three cohorts; the panel was drawn based on the validation cohort. (c)
KEGG signaling pathways of m5CPS based on the three cohorts. (d) Selection of KEGG signaling pathways of m5CPS in the three
cohorts. (e) The immune cell fraction levels between patients with high- and low-risk scores; p value was calculated based on Wilcoxon
rank-sum tests.
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Figure 9: The underlying target drugs for m5CPS. p values were calculated based on Wilcoxon rank-sum tests. ∗∗p < 0:01 and ∗∗∗p < 0:001.
The high-risk and low-risk groups were defined based on the median risk score of each cohort; for example, for patients included in the
training cohort, those with not less than the median risk score of the whole cohort were assigned to the high-risk group.
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Several limitations of this study must be emphasized.
Above all, we failed to collect more samples from the multi-
center to verify the clinical value of m5CPS. Due to the lack
of clinical parameters (e.g., pulmonary function) for IPF
patients, the application of m5CPS in IPF patients is rela-
tively limited. It is also necessary to explore and verify the
potential molecular mechanism of m5CPS in vitro and
in vivo in the future.

5. Conclusions

This study develops a novel m5CPS for IPF. The m5CPS
may serve as a prediction and prognosis marker for IPF
patients. This research also investigates the underlying
mechanisms of IPF from the perspective of m5CRGs and
IRGs, which may contribute to the understanding of IPF.
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Supplementary 1. Figure S1: using synthetic minority over-
sampling technique data, differences in expression on the
part of m5CRGs between IPF and normal bronchoalveo-
lar lavage cells; the p value is calculated based on the
Wilcoxon rank-sum tests. NSp > 0:05; ∗p < 0:05; ∗∗p < 0:01;
∗∗∗p < 0:001.
Supplementary 2. Figure S2: using synthetic minority over-
sampling technique data, differential expression levels of
six genes between the healthy group (the bottom fan-
shaped region) and IPF group (the top fan-shaped region).

Supplementary 3. Figure S3: using synthetic minority over-
sampling technique data, the accuracy of m5CPS and its
constitutive genes in distinguishing IPF bronchoalveolar
lavage from healthy lung bronchoalveolar lavage. AUC: area
under the curve.
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