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The world is on its path from the post-COVID period, but a fresh wave of the coronavirus infection engulfing most European
countries makes the pandemic catastrophic. Mathematical models are of significant importance in unveiling strategies that
could stem the spread of the disease. In this paper, a deterministic mathematical model of COVID-19 is studied to
characterize a range of feasible control strategies to mitigate the disease. We carried out an analytical investigation of the
model’s dynamic behaviour at its equilibria and observed that the disease-free equilibrium is globally asymptotically stable
when the basic reproduction number, R0 is less than unity. The endemic equilibrium is also shown to be globally
asymptotically stable when R0 > 1. Further, we showed that the model exhibits forward bifurcation around R0 = 1.
Sensitivity analysis was carried out to determine the impact of various factors on the basic reproduction number R0 and
consequently, the spread of the disease. An optimal control problem was formulated from the sensitivity analysis. Cost-
effectiveness analysis is conducted to determine the most cost-effective strategy that can be adopted to control the spread
of COVID-19. The investigation revealed that combining self-protection and environmental control is the most cost-
effective control strategy among the enlisted strategies.

1. Introduction

The world is on its path from the post-COVID fiscal year.
However, a fresh wave of the coronavirus infection engulf-
ing the European countries makes the pandemic cata-
strophic, with most regions grappling with their worst
outbreaks since the pandemic began [1]. Since December
2019, when the coronavirus epidemic was reported in
Hubei in China, the epidemic has threatened the global
well-being of humans by significantly affecting human
resources through sickness and death [2]. Asian countries
such as India, Sri Lanka, and Thailand are battling
COVID-19 containment. The rapid resurgence of the virus
has put enormous pressure on these countries’ health sys-
tems and medical supplies, with some calling for foreign

assistance amid the escalating crisis. Generally, the avail-
ability of vaccines and the introduction of various vaccina-
tion programs have lowered the global daily infection and
death counts, yet the deaths and infections have not
entirely abated [3]. Mathematical models have made an
indelible mark on the fight against infectious diseases by
identifying protocols to respond to hikes in the transmis-
sion dynamics of epidemics [4–12]. Notable works in the
case of COVID-19 have been considered by several
authors. Yang et al. [13] made a generalized prediction
of the coronavirus epidemic in mainland China by consid-
ering an SEIR model that utilized the available data. Zuo
et al. [14] presented a data analysis and comparison
method that concerned institutions could employ for
proper decision making.calibrated the Brazil coronavirus
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pandemic that worked on determining the peak time of
the epidemic. Wu et al. [2] used the available data from
China to establish the possibility of symptomatic people
dying from the coronavirus epidemic. Götz and Heidrich
[15] considered a mathematical model of the COVID-19
epidemic that used data from Germany to estimate the
model’s parameters and established the ascertainment of
official infected cases. In [16], a nonlinear coronavirus
model was considered and utilized to fit China’s data to
estimate the model’s parameters. Abbasi et al. developed
a mathematical model for the novel coronavirus disease
and proved through stability analysis studies that, mitigat-
ing measures alone could not eradicate the disease. Their
conclusion was based on the fact that the endemic equilib-
rium was globally asymptotically stable. Gu et al. [17] pro-
posed a mathematical model that primarily focused on
isolation, quarantine, and hospitalization to study the
transmission dynamics of the novel coronavirus epidemic.
They exploited nonpharmaceutical intervention measures:
social distancing, isolation, contact tracing, and quarantine
to mitigate the spreading of the disease. The authors fur-
ther rebuilt the model into a stochastic model and com-
pared the stochastic model analysis to the deterministic
one. Currie et al. [18] developed a mathematical
COVID-19 model that identified how mathematical
models could influence management decision-making. In
a related study, Huang et al. [19] constructed a mathemat-
ical model with several compartments that calibrated the
model’s parameters with the available data and predicted
the transmissibility of COVID-19. Senapati et al. [20]
designed a nonlinear model that considered India’s data
to estimate the model’s parameters and established the
effectiveness of various protocols ushered in to suppress
the disease. Zhou et al. [21] considered a SEIR COVID-
19 model and applied the available data to estimate the
reproduction number. In [22], a SEIR model was cali-
brated to the available data to derive some vital model
parameters and determine the propagation trend of the
epidemic. Hou et al. [23] proposed a nonlinear SEIR com-
partmental model that assessed the potency of Wuhan’s
quarantine measure during the peaks of the epidemic
and estimated the model’s parameters by fitting the model
to Wuhan’s data. The model proposed by Du and Yuan
[24] examined the propagation trend of the SARS-CoV2
and validated the model with existing Influenza data. Pet-
ropoulos and Makridakis [25] made a generalized predic-
tion of the SARS-CoV2 pandemic pattern in Cyprus and
underlaid strategies for containing the epidemic.

Optimal control models have received credit from the
scientific community for their contribution in determining
essential measures for pushing down cases of infections
and the spike of new variants [26–33]. In December
2019, when WHO ascertained the existence of the pan-
demic, intriguing optimal control studies have been carried
out that helped to wrestle the epidemic from spreading.
Nana-Kyere et al. [34] presented a coronavirus model that
mainly examined the epidemic’s stability and constructed
an optimal control problem to deduce potent strategies
to curb the disease. Asamoah et al. [35] calibrated their

model to Ghana’s data to estimate some essential parame-
ters that influence the dynamics of the disease. They
extended the model to an optimal control problem to pin-
point strategies that will boost lowering the infected cases
of the pandemic with minimal cost. Tsay et al. [36] stud-
ied the dynamical behaviour of the epidemic by designing
a compartmental model for the disease. They redesigned
the model into the optimal control problem to find strat-
egies to help manage the virus. Kouidere et al. [37] char-
acterized some feasible control strategies that come with
desirable impact in containing the 2019 coronavirus epi-
demic. Perkins and Guido [38] considered an unorthodox
method of handling epidemic without involving drugs to
determine how the coronavirus infection could be man-
aged. They reformulated the model into an optimal con-
trol problem to deduce strategies paramount for
curtailing the disease. A nonlinear COVID-2019 model
was developed to calibrate the model’s parameters by fit-
ting the model to Ethiopia’s data [39]. The mode was
extended into an optimal control problem in order to
determine the effectiveness of treatment controls, personal
protection, and public health education’s in suppressing
the epidemic. Srivastav et al. [40] categorized a compart-
mental COVID-19 model into two main groups of the
aged and young and used the data of Italy and Spain to
estimate some of the model’s parameters. The authors
then considered optimal control methods that developed
strategies for managing the epidemic. Seidu [41] proposed
a SARS-CoV2 mathematical model that captured the
respective roles of mildly symptomatic, severely symptom-
atic, and exposed individuals in the transmission of the
disease. He modified the model to optimal control and
determined the most cost-effective strategy among the
considered strategies through the cost-effectiveness
method. In another related study, Nana-Kyere et al. [42]
proposed a nonlinear mathematical model for the
COVID-19 virus that examined the transmission dynamics
of the disease. They modified the model into an optimal
control problem and solved it to determine whether the
proposed control strategies were potent enough to mitigate
the epidemic from spreading. Agossou et al. [43] assessed
the effects of pharmaceutical and nonpharmaceutical con-
trol strategies on the transmission dynamics of the
COVID-19 epidemic.

The COVID-19 epidemic has attracted a voluminous
amount of information from mathematical models since
the time the disease was confirmed by WHO. Nevertheless,
a significant amount of these pieces of information cannot
be adequately relied on by public health to contain the virus.
The unreliability of these models is because they are not epi-
demiologically well-composed and do not accurately
describe the propagation trends of the disease for the correct
management decision to be taken. This research mainly
focuses on extending the model of Khan et al. [44] into an
optimal control problem by identifying control strategies
for the COVID epidemic and carrying out a socioeconomic
analysis of the identified strategies to boost management
decision-making on the containment of the virus. This has
become necessary as the control model analysis would
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provide policy direction for public health. The paper will add
to the existing knowledge on the epidemic dynamics by
assessing the combined effect of treatment, vaccination,
and disinfection of the environment on the transmission
dynamics of the disease.

The rest of the research is presented as follows: Section
2 “The Model Development” presents the model formula-
tion, model’s parameter definition, invariant region,
boundedness, and stationary points. Section 3 “Qualitative
Analysis” deals with the stability analysis, sensitivity and
bifurcation analysis. In Section 4 “Development of Optimal
Control Model”, we present an optimal control problem for-
mulation and its qualitative analysis. Section 5 “Numerical
Experimentation and Discussion” provides the numerical
solution for the models. In Section 6 “Economic Cost Analysis
of the Control Implementation”, a cost-effectiveness analysis
is carried out to determine the most cost-effective strategy
among the considered strategies. The section also discusses
the simulated results of the work with a recommended
conclusion.

2. The Model Development

The aggressiveness of the COVID-19 disease on the
population means that newly designed models need to
identify measures that would help clamp down on the
disease. In this research, we use the COVID-19 model
studied by Khan et al. [44]. The work segregates the
model into eight compartments of Susceptible S, Exposed
E, Infected I, asymptomatically infected A, Quarantined Q
, Hospitalized H, Recovered R, and virus concentration in
the environment M. The model assumes that Susceptible
individuals are recruited into the population at a rate of
Λ persons per unit time. The contact between a naive
susceptible individual on the one hand and the infected
or the asymptomatically infected on the other hand is
given by η1. The parameter ψ represents the transmissi-
bility factor associated with the Asymptomatically infected
persons. The model assumes that, the mortality that
occurs naturally in individuals is given by μ. The param-
eter θ denotes the infection following exposure. The
parameters ω and ρ are the incubation periods of the dis-
ease. The infected, asymptomatically infected, quaran-
tined, and hospitalized individuals have recovery rates,
respectively, given by τ1, τ2, ϕ1, ϕ2. The infected and quar-
antined individuals are hospitalized at rates γ and δ2. The
COVID-19-induced death rates in the infected and hospi-
talized are ξ1 and ξ2. Susceptible individuals contract the
disease at a rate η2 due to a visit to the seafood market
and contacting a viral source there or eating from a
Covid-19-infected animal. The model assumes that the
infected and asymptomatically infected individuals con-
tribute to viral deposits in the seafood market at rate q1
and q2, respectively. The parameter q3 denotes the rate
of removal of coronaviruses from the seafood market.
Finally, the exposed individuals are quarantined at a rate
δ1. Based on these assumptions, the proposed dynamical
COVID-19 model is of the form:

dS
dt

=Λ − μS − η2MS − η1
IS
N

−
ψAS
N

η1,

dE
dt

= η2MS + η1
IS
N

+ ψAS
N

η1 − 1 − θð Þω + θρ + δ1 + μð ÞE,
dI
dt = 1 − θð ÞωE − τ1 + ξ1 + γ + μð ÞI,
dA
dt

= θρE − τ2 + μð ÞA,
dQ
dt

= δ1E − ϕ1 + δ2 + μð ÞQ,
dH
dt

= γI + δ2Q − ϕ2 + ξ2 + μð ÞH,

dR
dt

= τ1I + τ2A + ϕ1Q + ϕ2H − μR,

dM
dt

= q1I + q2A − q3M,

with S 0ð Þ ≥ 0, E 0ð Þ ≥ 0, I 0ð Þ ≥ 0, A 0ð Þ ≥ 0,Q 0ð Þ ≥ 0,
 H 0ð Þ ≥ 0, R 0ð Þ ≥ 0 andM 0ð Þ ≥ 0:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð1Þ

2.1. Qualitative Analysis: Disease-Free Equilibrium and the
R0. In an epidemiological setting, the basic reproduction
number R0, crystallizes the ability of the infection to
spread or die out in the population. The R0 is a measure
of the number of people, on average, each sick person
will infect throughout its period of infectivity. When R0
is above one, the epidemic is generally recognized to be
growing, and when the number is less than one, the out-
break is said to be declining. According to Khan et al.
[44], R0, the basic reproduction number is given by

R0 =
η2Λ 1 − θð Þωq1

μq3R1R2
+ θρη2Λq2

μq3R1R3
+ ψη1θρ

R1R3
+ η1 1 − θð Þω

R1R2
,

ð2Þ

where

R1 = 1 − θð Þω + θρ + δ1 + μð Þ, R2 = τ1 + ξ1 + γ + μð Þ, R3 = τ2 + μð Þ:
ð3Þ

2.2. Endemic Equilibrium. Any system that is not character-
ized by an absence of infection but rather a high transmissibil-
ity rate will eventually result in an endemic state. The model
Equation (1) has a unique endemic equilibrium given as

S∗ = Λ

R0
,

Q∗ = δ1E
∗

ϕ1 + δ2 + μð Þ ,

A∗ = θρE∗,
I∗ = 1 − θð ÞωE∗,

M∗ = q1I
∗ + q2A

∗

q3
,

H∗ = γI∗ + δ2Q
∗

ϕ2 + ξ2 + μ
,

R∗ = τ1I
∗ + τ2A

∗ + ϕ1Q
∗ + ϕ2H

∗

μ
,

E∗ = Λq3 ΛR0 + μð Þ τ1 + ξ1 + γ + μð Þ τ2 + μð Þ
μ η2q1g1 + η2q2g2 + η1q3g3 + η1ψg4ð Þ ,

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð4Þ
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with g1 =Nð1 − θÞωðτ2 + μÞ, g2 =Nθρðτ1 + ξ1 + γ + μÞ,
g3 = ð1 − θÞωðτ2 + μÞ, and g4 = θρðτ1 + ξ1 + γ + μÞ:

Using the analysis from [44] with the notation λ = η2M
S + η1ðIS/NÞ + ðψAS/NÞη1: the endemic equilibrium can be
characterised in terms of R0 as

F λ∗∗ð Þ = l1 λ∗∗ð Þ2+l2λ∗∗ + l3, ð5Þ

where

l1 = k1k2k3q3 k3 δ1k2 δ2 μ + ϕ2ð Þ + k5 μ + ϕ1ð Þð Þ + k4k6ð Þ + θk2k4k5ρ μ + τ2ð Þð Þ,
l2 = k1k2k3μq3 k3 δ1k2 δ2 μ + ϕ2ð Þ + k5 μ + ϕ1ð Þð Þ + k4k8ð Þ + θk2k4k5ρ −η1ψ + μ + τ2ð Þð Þ

  + η2k7Λ 1 − θð Þk3q1ω − θk2ρq2ð Þ + k21k
2
2k4k5k

2
3μq3,

l3 = k21k
2
2k

2
3k4k5μ

2q3 1 −R0ð Þ,
k1 = δ1 + θρ + 1 − θð Þω + μ, k2 = γ + μ + ξ1 + τ1, k3 = μ + τ2,

k4 = δ2 + μ + ϕ1, k5 = μ + ξ2 + ϕ2,
k6 = γ 1 − θð Þω μ + ϕ2ð Þ + k5 1 − θð Þω μ + τ1ð Þ + k2μð Þ,

k7 = k3 −δ1k2 δ2 μ + ϕ2ð Þ + k5 μ + ϕ1ð Þð Þ − k4k6ð Þ − θk2k4k5ρ μ + τ2ð Þ,
k8 = γ 1 − θð Þω μ + ϕ2ð Þ + k5 1 − θð Þω −η1 + μ + τ1ð Þ + k2μð Þ:

ð6Þ

The Equation (5) is used to generate the bifurcation plot
in Figure 1, which was not done in [44].

3. Qualitative Analysis: Global Stability-Disease
Free Equilibrium

In performing the global qualitative analysis, we employed
the method of Castillo-Chavez et al. [45] to investigate the
global stability of the state Equation (1) at the disease-free
equilibrium. Following Castillo-Chavez et al. [45], the
COVID-19 model Equation (1) can be restructured as fol-
lows:

dy1
dt

=W1 y1, y2ð Þ,
dy2
dt

=W2 y1, y2ð Þ,W2 y1, 0ð Þ = 0,
ð7Þ

with y1 = ðS, RÞ representing the uninfected population, and
y2 = ðE, I, A,Q,H,MÞ denoting the infected. The disease-
free equilibrium point is given by.

If the following criteria are satisfied, the point U1 =
ðy01, 0Þ is a globally asymptotically stable equilibrium for
the model (1).

F1: Given dy1/dt =W1ðy1, 0Þ, ðy01Þ is globally asymptoti-
cally stable.

F2: Wðy1, y2Þ =Dy2 − ~W2ðy1, y2Þ, where ~W2ðy1, y2Þ ≥ 0
for ðy1, y2Þ ∈ ζ:

Theorem 1. The point U1 = ðy01, 0Þ is globally asymptotically
stable equilibrium whenever R0 < 1.

Proof. Considering the model Equation (1), we generate
W1ðy1, y2Þ and W2ðy1, y2Þ as;

W1 y1, y2ð Þ = Λ − μS − η2MS − η1
IS
N

−
ψAS
N

η1

τ1I + τ2A + ϕ1Q + ϕ2H − μR

0
@

1
A,

W2 y1, y2ð Þ =

η2MS + η1
IS
N

+ ψAS
N

η1 − 1 − θð Þω + θρ + δ1 + μð ÞE
1 − θð ÞωE − τ1 + ξ1 + γ + μð ÞI

θρE − τ2 + μð ÞA
δ1E − ϕ1 + δ2 + μð ÞQ

γI + δ2Q − ϕ2 + ξ2 + μð ÞH
q1I + q2A − q3M

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

ð8Þ

With S = S0, I = I0, A = A0, R = R0 and M =M0 then
W1ðy1, 0Þ becomes

W1 y1, y2ð Þ = Λ − μS0 − η2M0S0 − η1
I0S0
N

−
ψA0S0
N

η1

τ1I0 + τ2A0 + ϕ1Q0 + ϕ2H0 − μR0

0
@

1
A:

ð9Þ

It can be shown from (9) that as t⟶∞, y1 ⟶ y01.
Hence y1 = y01 is globally asymptotically stable, which sat-
isfies condition one. Now, ascertaining whether condition
ðF2Þ would be satisfied, we consider Wðy1, y2Þ =Dy2 −
~W2ðy1, y2Þ. Thus, we have

W1 y1, y2ð Þ =

−k1
η1
N
S0

ψη1
N

S0 0 0 η2S0

1 − θð Þω −k2 0 0 0 0

θρ 0 −k3 0 0 0

δ1 0 0 −k4 0 0

0 γ 0 δ2 −k5 0

0 q1 q2 0 0 −q3

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

E

I

A

Q

H

M

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

−

~W2 y1, y2ð Þ
0

0

0

0

0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
,

ð10Þ
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Figure 1: Forward bifurcation diagram.
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where matrix D given by

D =

−k1
η1
N
S0

ψη1
N

S0 0 0 η2S0

1 − θð Þω −k2 0 0 0 0

θρ 0 −k3 0 0 0

δ1 0 0 −k4 0 0

0 γ 0 δ2 −k5 0

0 q1 q2 0 0 −k66

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

with ~W2 y1, y2ð Þ

= S0 − Sð Þ

η2M
η1I
N

ψη1A
N

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

,

ð11Þ

It can be deduced from model Equation (1) that the
total population is bounded by S0. Hence, η2MS ≤ η2MS0,
ðη1I/NÞS ≤ ðη1I/NÞS0 and ðψη1A/NÞS ≤ ðψη1A/NÞS0 which
implies ~W2ðy1, y2Þ is positive definite. Additionally, matrix
D is undoubtedly an M-matrix, with the off-diagonal
entries positive. Hence, the requirement of the two condi-
tions is met, proving the global asymptotic stability of U1.

3.1. Qualitative Analysis: Global Stability-Endemic
Equilibrium. In assessing global asymptotic stability of the
endemic equilibrium of the model system (1), we capitalize
on the geometrical method [46] which uses Bendixson crite-
rion as sufficient condition for determining model system
(1) global stability.

Theorem 2. Given R0 > 1, the endemic equilibrium of model
Equation (1) is globally asymptotically stable; otherwise, it is
unstable.

Proof. In proving the global stability of the endemic equilib-
rium, the study of ([47], with referencing to Lemma 3,
Lemma 4 and Theorem 5.) is considered. we consider the
subsystem of model Equation (1) as

d
dt

S =Λ − μS − η2MS − η1
IS
N

−
ψAS
N

η1,

d
dt

E = η2MS + η1
IS
N

+ ψAS
N

η1 − 1 − θð Þω + θρ + δ1 + μð ÞE,
d
dt

I = 1 − θð ÞωE − τ1 + ξ1 + γ + μð ÞI:

8>>>>>>><
>>>>>>>:

ð12Þ

Considering subsystem (12) the Jacobian matrix
becomes,

Jv =
−w11 0 −η1S/N
w21 −w22 η1S/N
0 1 − θð Þω −w33

0
BB@

1
CCA, ð13Þ

with

w11 =Λ − η2M − η1
I
N

−
ψA
N

η1 − μ, w21 = η2M − η1
I
N

−
ψA
N

η1,

w22 = − 1 − θð Þω + θρ + δ1 + μð Þ, w33 = − τ1 + ξ1 + γ + μð Þ:
ð14Þ

Then, J j2jv , the second additive matrix of Jv is given by

J 2j j
v =

− w11 +w22ð Þ η1S
N

−
η1S
N

1 − θð Þωð Þ − w11 +w33ð Þ 0

0 η2M − η1
I
N

−
ψA
N

η1 − w22 +w33ð Þ

0
BBBBB@

1
CCCCCA:

ð15Þ

Now, we denote the function PðyÞ = PðS, E, IÞ =
diagf1, ðE/IÞ, ðE/IÞg, hence we deduce P−′ðyÞ =
diagf1, ðI/EÞ, ðI/EÞg: Then, the time derivative of Pf ðyÞ
becomes Pf ðyÞ =diagf0, ~E/I − E~I/I2, ~E/I − E~I/I2g and

Pf ðyÞP− ′ðyÞ =diagf0, ~E/E −~I/I, ~E/E −~I/Ig. It follows
that

Pf yð ÞJ 2j j
v P−′ yð Þ

�
=

− w11 +w22ð Þ η1SI
NE

−
η1SI
NE

1 − θð ÞωEð Þ
I

− w11 +w33ð Þ 0

0 η2M − η1
I
N

−
ψA
N

η1 − w22 +w33ð Þ

0
BBBBBBB@

1
CCCCCCCA
:

ð16Þ

Hence, matrix C = Pf ðyÞJ j2jv P−′ðyÞÞ + Pf ðyÞP−′ðyÞ can be
determined and written as;

C =
C11 C12

C21 C22

 !
, ð17Þ

where

C11 = −η2M − η1
I
N

−
ψA
N

η1 − μ − 1 − θð Þω + θρ + δ1ð Þ

− 2μ, C12 =
η1SI
NE

,− η1SI
NE

� �
,

C21 =
1 − θð ÞωEð Þ

I
, 0

� �
and

C22 =
w2 +

~E
E
−
~I
I

0

η2M − η1
I
N

−
ψA
N

η1 w3 +
~E
E
−
~I
I

0
BBB@

1
CCCA,

ð18Þ
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with

w2 = −η2M − η1
I
N

−
ψA
N

η1 − τ1 + ξ1 + γð Þ − 2μ,

w3 = − 1 − θð Þω + θρ + δ1 + μð Þ − τ1 + ξ1 + γð Þ − 2μ:

8<
:

ð19Þ

Consider ðn1, n2, n3Þ to be a vector in ℝ3 and the norm
ðk•kÞ given by ðkn1, n2, n3kÞ =max fjn1j, jn2j, jn3jg. Let ρ1
ðCÞ represents the Lozinki measure with respect to this
norm; we adopt the method of approximating the ρ1ðCÞ as
explored in [48], and choose ρ1ðCÞ ≤ sup fp1, p2g, where
sup fp1, p2g = fρ1ðC11Þ + jC12j, ρ1ðC22Þ + jC21jg and jC12j
and jC21j are matrix norms with respect to vector norms
ρ1, and ρ represents the Lozinki measure with respect to
the norm ρ1.

Then, ρ1ðC11Þ = −η2MS − η1ðI/NÞS − ðψAS/NÞη1 − μ − ð
ð1 − θÞω + θρ + δ1Þ − 2μ

C12j j =max η1S
NE

,− η1S
NE

� �
= η1SI

NE
,

C12j j =max 1 − θð ÞωEð Þ
I

, 0
� �

= 1 − θð ÞωEð Þ
I

,

ρ1 C22ð Þ =
~E
E
−
~I
I
− τ1 + ξ1 + γð Þ − 2μ:

ð20Þ

Hence,

p1 = −η2MS − η1
I
N
S −

ψAS
N

η1 − 1 − θð Þω + θρ + δ1ð Þ − 2μ + η1SI
NE

,

p2 = −
~E
E
−
~I
I
− τ1 + ξ1 + γð Þ − 2μ + 1 − θð ÞωE

I
:

ð21Þ

It could be verified that

~E
E
= η2MS

E
+ η1

IS
NE

+ ψAS
NE

η1 − 1 − θð Þω + θρ + δ1 + μð Þ,
~I
I
= 1 − θð ÞωEð Þ

I
− τ1 + ξ1 + γ + μð Þ,

ð22Þ

which provides the following inequalities when substituted
into P1 and P2 :P1 ≤ ðη1SI/NEÞ + ð~E/EÞ − μ,P2 ≤ ~E/E − μ:

Further,

ρ1 Cð Þ ≤ sup p1, p2f g ≤ sup η1SI
NE

+
~E
E
− μ,

~E
E
− μ

( )
,

=
~E
E
− μ + Sup

η1SI
NE

, 0
� �

, =
~E
E
− μ + η1SI

NE
:

ð23Þ

Hence,

ρ1 Cð Þ ≤
~E
E
− μ + η1SI

NE
, ð24Þ

substitute (24) into the below equation

~qa = lim
t⟶∞

sup 1
t

ðt
0
ρ1 Cð Þdt: ð25Þ

Now from Equation (25), we denote λ1 = μ and λ2 = η1
SI/NE, then if λ2 < λ1, it follows that ρ1ðCÞ ≤ ~E/E − ∈ where
∈ = μ − η1SI/NE: Now, for t > T , it follows that

~qa = lim
t⟶∞

sup 1
t

ðt
0
ρ1 Cð Þdt < − ∈ <0: ð26Þ

Therefore, from (26), we get ~qa = lim
t⟶∞

sup ð1/tÞÐ t0ρ1ðCÞ
dt < 0. This verifies that the system of nonlinear differential
equation of submodel (12) is GAS around the interior equilib-
rium of S∗, E∗, I∗. Therefore, considering the remaining sub-
system of model (1).

d
dt

A = θρE − τ2 + μð ÞA,
d
dt

Q = δ1E − ϕ1 + δ2 + μð ÞQ,
d
dt

H = γI + δ2Q − ϕ2 + ξ2 + μð ÞH,

d
dt

R = τ1I + τ2A + ϕ1Q + ϕ2H − μR,

d
dt

M = q1I + q2A − q3M:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð27Þ

The limit of (27) is given by

d
dt

A = θρE∗ − τ2 + μð ÞA∗,

d
dt

Q = δ1E
∗ − ϕ1 + δ2 + μð ÞQ∗,

d
dt

H = γI∗ + δ2Q
∗ − ϕ2 + ξ2 + μð ÞH∗,

d
dt

R = τ1I
∗ + τ2A

∗ + ϕ1Q
∗ + ϕ2H

∗ − μR∗,

d
dt

M = q1I
∗ + q2A

∗ − q3M
∗:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð28Þ

When system (28) is solved with the initial conditions of
Að0Þ,Qð0Þ,Hð0Þ, Rð0Þ,Mð0Þ, then as t⟶∞, A⟶ A∗, Q
⟶Q∗, H⟶H∗, R⟶ R∗, and M⟶M∗ which is the
GAS of the endemic equilibrium.

3.2. Bifurcation Analysis. It has been observed from stability
analysis of various epidemic models that the R0 < 1 is the
sufficient condition for wiping out infections in a
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population. This condition usually holds when the system
exhibits forward bifurcation. However, in considering a con-
trol intervention measure such as vaccination of the suscep-
tibles, it has been observed that the condition R0 < 1 may
not be sufficient to control the disease. Thus, the model
transmissibility asymptomatic pattern is now determined
by a quantity R0 defined as the effective reproduction num-
ber. It has been observed in some studies [49–53] that, there
can be coexistence of the endemic and disease-free equilib-
rium, which are both stable for R0 < 1, which represents
backwards bifurcation. In controlling diseases in the pres-
ence of backward bifurcation, the R0 has to be lowered to
a value less than one. This section employs the theorem pro-
pounded by Castillo-Chavez et al. [54] to explore the type of
bifurcation exhibited by the model system (1). To determine
whether the phenomenon of bifurcation exists in model sys-
tem (1), the centre manifold theory [54] is employed. The
following necessary substitutions are taken to conform to
the theorem’s requirement for easier computation of the
bifurcation coefficients.

We denote x1 = S, x2 = E, x3 = I, x4 = A, x5 =Q, x6 =H,
x7 = R, and x8 =M such that the total population here is
given by N = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8. With vec-
tor notation of X = ðx1, x2,⋯, x8ÞT , the model system (1)
can be redesigned in the form dX/dt = FðXÞ, with F =
ð f1, f2,⋯, f8ÞT given by

d
dt

x1 =Λ − μx1 − η2x8x1 − η1
x3x1
N

−
ψx4x1
N

η1,

d
dt

x2 = η2x8x1 + η1
x3x1
N

+ ψx4x1
N

η1 − 1 − θð Þω + θρ + δ1 + μð Þx2,
d
dt

x3 = 1 − θð Þωx2 − τ1 + ξ1 + γ + μð Þx3,
d
dt

x4 = θρx2 − τ2 + μð Þx4,
d
dt

x5 = δ1x2 − ϕ1 + δ2 + μð Þx5,
d
dt

x6 = γx3 + δ2x5 − ϕ2 + ξ2 + μð Þx6,
d
dt

x7 = τ1x3 + τ2x4 + ϕ1x5 + ϕ2x6 − μx7,

d
dt

x8 = q1x3 + q2x4 − q3x8:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð29Þ

The Jacobian of the new system (29) evaluated at the
DFE, denoted by JðDE0

Þ is given by,

J DE0

À Á
=

−μ 0 −η1 −ψη∗1 0 0 0 −η2Λ
μ

0 −h11 η1 ψη∗1 0 0 0 η2Λ

μ

0 1 − θð Þω −h22 0 0 0 0 0
0 θρ 0 − τ2 + μð Þ 0 0 0 0
0 δ1 0 0 −h33 0 0 0
0 0 γ 0 δ2 −h44 0 0
0 0 τ1 τ2 ϕ1 ϕ2 −μ 0
0 0 q1 q2 0 0 0 −q3

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

,

ð30Þ

where h11 = ðð1 − θÞω + θρ + δ1 + μÞ, h22 = ðτ1 + ξ1 + γ + μÞ,
h33 = ðϕ1 + δ2 + μÞ, h44 = ðϕ2 + ξ2 + μÞ: Given that η1 = η∗1 is
considered as the bifurcation parameter in the case when
R0 = 1, then expressing η1 in terms of the other parameters
when R0 = 1 becomes,

η1 = η∗1 =
μq3R1R2R3 − η2Λ 1 − θð Þωq1q3 + θρη2Λq2R2ð Þ

μq3 ψθρR2 + 1 − θð ÞωR3ð Þ :

ð31Þ

Hence JðDE0
Þj
η1=η∗1

has a right eigenvector denoted by

W = ðw1,w2,⋯,w8ÞT , with

w1 = −
η1 1 − θð Þωμq3 τ2 + μð Þ + ψη1θρμq3 τ1 + ξ1 + γ + μð Þ + b1ð Þ

μ2q3 τ1 + ξ1 + γ + μð Þ τ2 + μð Þ w2,

w3 =
1 − θð Þω

τ1 + ξ1 + γ + μð Þw2,w2 > 0,w4 =
θρ

τ2 + μð Þw2,w5 =
δ1

ϕ1 + δ2 + μð Þw2,

w6 =
γ 1 − θð Þω ϕ1 + δ2 + μð Þ + δ1δ2 τ1 + ξ1 + γ + μð Þð Þ

τ1 + ξ1 + γ + μð Þ ϕ1 + δ2 + μð Þ ϕ2 + ξ2 + μð Þ w2,

w7 =
τ1 1 − θð Þω ϕ1 + δ2 + μð Þ ϕ2 + ξ2 + μð Þ τ2 + μð Þ + b2 + b3 + b4ð Þ

μ τ1 + ξ1 + γ + μð Þ ϕ1 + δ2 + μð Þ ϕ2 + ξ2 + μð Þ τ2 + μð Þ w2,

w8 =
1 − θð Þω τ2 + μð Þ + q2θρ τ1 + ξ1 + γ + μð Þ

q1 τ1 + ξ1 + γ + μð Þ τ2 + μð Þ w2,

ð32Þ

where

b1 = η2Λ 1 − θð Þω τ2 + μð Þ + q2θρ τ1 + ξ1 + γ + μð Þð Þ,
b2 = τ2θρ τ1 + ξ1 + γ + μð Þ ϕ1 + δ2 + μð Þ ϕ2 + ξ2 + μð Þ,

b3 = ϕ1δ1 τ1 + ξ1 + γ + μð Þ ϕ2 + ξ2 + μð Þ τ2 + μð Þ,
b4 = γ 1 − θð Þω ϕ1 + δ2 + μð Þ + δ1δ2 τ1 + ξ1 + γ + μð Þ: ð33Þ

Further, JðDE0
Þj
η1=η∗1

has a left eigenvector V =
ðv1, v2,⋯, v8ÞT , where v1 = v5 = v6 = v7 = 0, v2 > 0, v3 = ððη1
q3μ + q1η2ΛÞ/q3ðτ1 + ξ1 + γ + μÞμÞv2, v4 = ððψη1q3μ + q2η2
ΛÞ/q3ðτ2 + μÞμÞv2,v8 = ðη2Λ/q3μÞv2:

The newly translated model Equation (29) with the
bifurcation parameter η1 = η∗1 has at least one eigenvalue
zero, and it affirms the existence of bifurcation in the trans-
formed model (29). As expounded by Castillo-Chavez and
Song ([54], refer to Theorem 5.1.), the equations

a = 〠
n

k,i,j=1
vkwiwj

∂2 f k
∂xi∂xj

η∗1 , 0ð Þ,

b = 〠
n

k,i,j=1
vkwi

∂2 f k
∂xi∂η1

η∗1 , 0ð Þ,
ð34Þ

are the principal determinants of the direction of bifurcation
(whether backwards or forward bifurcation) in the trans-
formed system (29). When a > 0 and b > 0, then the bifurca-
tion is backward and when a < 0 and b > 0, the bifurcation is
forward.
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The bifurcation coefficients are obtained as

Assuredly, a < 0, since w1 < 0. b is always positive.
Hence, it can be concluded that model (29) exhibits forward
bifurcation as shown in Figure 1.

3.3. Local Sensitivity Analysis. Due to the fact that epidemic
model’s parameter values change, qualitative sensitivity
analysis is necessary in order to determine the influence of
parameters on model’s behaviour. The analysis sensitivity
reveals the criticality of each parameter of R0 to the model
system (1). Sensitivity analysis is usually employed to bring
to bear, the model’s parameters with strong influence on
the R0 that needs to be worked on in ushering in control
measures. The indices from sensitivity computation assist
us in quantifying the relative change in a variable with a
change in the parameter. Hence, we will consider the nor-
malized forward sensitivity index for model system (1),
defined as the ratio of the relative change in the variable to
the change in the parameter.

Definition 3. For a given parameter σ, the normalized for-
ward sensitivity index of R0 is computed using the formula
discussed in [55, 56] as;

ςR0
σ = ∂R0

∂σ
σ

R0
: ð36Þ

We will use Equation (36) and parameter values from
Table 1 to derive the sensitivity indices of the parameters
of the model system (1) as presented in Table 2.

The sensitivity indices computation from Table 1 gives
fascinating values for different parameters, and we can make
some inferences. Thus, parameters with positive indices have
the strength to make the number of the COVID-19 cases rise
since they increase the R0. Additionally, the negative sensi-
tivity indices’ parameters help lower the COVID-19 epi-
demic because they lower the R0. Further, parameters with
+1 sensitivity indices increase or decrease R0 by the same
percentage as the parameters’ percentages. Figures 2 and 3
further presents the influence of various combinations of
parameters on the basic reproduction number, R0.

4. Development of Optimal Control Model

To generate control strategies to wrestle the disease from
existence, we employ optimal control theory. For the assess-
ment of the conditions necessary to determine the feasible
optimal control in the COVID-19 model (1), we apply Pon-
tryagin’s maximum principle [57]. We note that, personal

protection, vaccination of the susceptible population, and
spraying the environment with disinfectant have signifi-
cantly been encouraged during the COVID era. Hence,
to add control strategies to the study, we rebuild the
model (1) by reducing the transmission rate by a factor
ð1 − u1Þ. We consider further the vaccination control
denoted by u2 for the susceptibles and a control for disin-
fection of the environment represented by u3. Hence, the
new formulated optimal control model of model system
(1) becomes;

d
dt

S =Λ − μS − 1 − u1ð Þη2MS − 1 − u1ð Þη1
IS
N

− 1 − u1ð ÞψAS
N

η1 − u2S,

d
dt

E = 1 − u1ð Þη2MS + 1 − u1ð Þη1
IS
N

+ 1 − u1ð ÞψAS
N

η1 − 1 − θð Þω + θρ + δ1 + μð ÞE,
d
dt

I = 1 − θð ÞωE − τ1 + ξ1 + γ + μð ÞI,
d
dt

A = θρE − τ2 + μð ÞA,
d
dt

Q = δ1E − ϕ1 + δ2 + μð ÞQ,
d
dt

H = γI + δ2Q − ϕ2 + ξ2 + μð ÞH,

d
dt

R = τ1I + τ2A + ϕ1Q + ϕ2H + u2S − μR,

d
dt

M = q1I + q2A − q3M − u3M,

with S ≥ 0, E ≥ 0, I ≥ 0, A ≥ 0,Q ≥ 0,H ≥ 0, R ≥ 0 andM ≥ 0:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð37Þ

The controls uðtÞ = ui ∈U are bounded and Lebegue
measurable.

The objective here is to minimize J given by

J =
ðt f
0

B1E + B2I + B3A + 1
2 h1u

2
1 +

1
2 h2u

2
2 +

1
2 h3u

2
3

� �
dt,

ð38Þ

subject to model system (37). We assign factors B1,
B2, B3, h1, h2, and h3 in the integrand of (18) as coefficients
that serve as weight that balance Equation (38). The coef-
ficients B1, B2, B3, h1, h2, and h3 estimate the cost of ush-
ered in interventions that need to be taken over the time
of ½0, T�. We determine an optimal control u∗1 , u∗2 , u∗3 such
that

J u∗1 , u∗2 , u∗3ð Þ =min
U

J u1, u2, u3ð Þ, ð39Þ

with U subject to the model system (37). We use the

a = v2w1w2
1 − θð Þω τ2 + μð Þq3η1 + θρψ τ1 + ξ1 + γ + μð Þq3η1 + 1 − θð Þω τ2 + μð Þ + q2θρ τ1 + ξ1 + γ + μð Þð Þη2

q3 τ1 + ξ1 + γ + μð Þ τ2 + μð Þ
� �

,

b = v2Λw2
1 − θð Þω τ2 + μð Þ + ψθρ τ1 + ξ1 + γ + μð Þ

μ τ1 + ξ1 + γ + μð Þ τ2 + μð Þ
� �

:

ð35Þ
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most explored method in optimal control modelling, Pontrya-
gin maximum principle [57], and find the solution and the
necessary conditions of the optimal control problem (37).

4.1. Existence of the Optimal Controls. Related to the result of
Fleming and Rishel as provided in [58], the existence of opti-
mal control triple that minimizes (38) subject to (37) is
shown.

Theorem 4. There exists an optimal control u∗ = ðu∗1 , u∗2 , u∗3 Þ
that minimizes the objective functional (38).

The existence of the optimal control can be proved by
showing that, the following conditions hold.

(D1) The set of controls is convex and closed.
(D2) The system (37) is bounded by a linear function in

both the state and control variables.
(D3) The integrand in the objective functional (38) is con-

vex with respect to the control.
(D4) There exist constants k1, k2 ≥ 0 and k3 ≥ 1 that make

the integrand in the objective functional (38) bounded by k1
ð∑2

i=1juij2Þ
k3/2 − k2.

Proof. We construct the proof in steps as follows:
(D1): The control set U = ½0, 1�3 is closed. Again, we let

v, y ∈U , so that v = ðv1, v2, v3Þ and y = ðy1, y2, y3Þ. Then,
for every π ∈ ½0, 1�, we have πvi + ð1 − πÞyi ∈U , confirming
the convexity property of the control set.

(D2): The control system (37) and its related solution are
represented by Φ and Θ such that jΦðt,Θ1, uÞ −Φðt,Θ2, uÞj
becomes

Table 1: COVID-19 model parameters and description.

Parameter Values Source

Λ μN(0) Assumed

η1 0.003 [1]

ψ 0.004 [1]

ω 0.00001111 [1]

τ1 0.00023 [1]

q1 0.00101 [1]

q3 0.23008 [1]

ξ1 0.0002 [1]

ϕ1 0.1 [1]

δ2 0.06 [1]

μ 0.000035 [1]

η2 3:4002 × 10 −7 [1]

θ 0.21003 [1]

ρ 0.0180322 [1]

τ2 0.19 [1]

q2 0.0214 [1]

δ1 0.1233 [1]

γ 0.0005 [1]

ϕ2 0.2 [1]

ξ2 0.01 [1]

Table 2: Parameters for R0 and their sensitivity index for
model (1).

Parameter Sensitivity index Parameter Sensitivity index

Λ 0.9956 ω 8:1966 × 1 0−5

η1 0.0044 τ2 0.9998

η2 0.9956 τ1 3:2276 × 1 0−6

ψ 0.0044 γ 7:0166 × 10 − 6
q1 5:5293 × 10 −7 μ -0.9951

q2 0.9956 q 3 0.9956

ρ 1.0295 ξ1 2:8067 × 1 0−6

θ 1.0295 δ 1 0.9613

−u2 S1 − S2ð Þ − μ S1 − S2ð Þ − 1 − u1ð Þη2 M1S1 −M2S2ð Þ − 1 − u1ð Þη1
I1S1
N

−
I2S2
N

� �
− 1 − u1ð Þψ A1S1

N
−
A2S2
N

� �
η1

����
����

+ 1 − u1ð Þη2 M1S1 +M2S2ð Þ + 1 − u1ð Þη1
I1S1
N

−
I2S2
N

� �
+ 1 − u1ð Þψ A1S1

N
−
A2S2
N

� �
η1 − 1 − θð Þω + θρ + δ1 + μð Þ E1 − E2ð Þ

����
����

+ 1 − θð Þω E1 − E2ð Þ − τ1 + ξ1 + γ + μð Þ I1 − I2ð Þj j + θρ E1 − E2ð Þ − τ2 + μð Þ A1 − A2ð Þj j + δ1 E1 − E2ð Þ − ϕ1 + δ2 + μð Þ Q1 −Q2ð Þj j
+ γ I1 − I2ð Þ + δ2 Q1 −Q2ð Þ − ϕ2 + ξ2 + μð Þ H1 −H2ð Þj j + τ1 I1 − I2ð Þ + τ2 A1 − A2ð Þ + ϕ1 Q1 −Q2ð Þ + ϕ2 H1 −H2ð Þ + u2 S1 − S2ð Þj
− μ R1 − R2ð Þj + q1 I1 − I2ð Þ + q2 A1 − A2ð Þ − q3 M1 −M2ð Þ − u3 M1 −M2ð Þj j≤2 1 − u1ð Þη2 M1S1 −M2S2j j + 2 1 − u1ð Þη1
Än

I1S1
N

−
I2S2
N

� �����
���� + 2ψη1 1 − u1ð Þ A1S1

N
−
A2S2
N

� �����
���� + μ S1 − S2j j + 2 1 − θð Þω + 2θρ + 2δ1 + μð Þ E1 − E2j j

+ 2τ1 + 2γ + ξ1 + q1 + μð Þ I1 − I2j j + 2τ2 + q2 + μð Þ A1 − A2j j + 2ϕ1 + 2δ2 + μð Þ Q1 −Q2j j + 2ϕ2 + ξ2 + μð Þ H1 −H2j j + 2u2 S1 − S2j j
+ μ R1 − R2j j + q3 + u3ð Þ M1 −M2j j,≤2 1 − u1ð Þη2 S1 M1 −M2ð Þ +M2 S1 − S2ð Þj j + 2 1 − u1ð Þη1 S1 I1 − I2ð Þ + I2 S1 − S2ð Þj j
+ 2ψη1 1 − u1ð Þ S1 A1 − A2ð Þ + A2 S1 − S2ð Þj j + 2 1 − θð Þω + 2θρ + 2δ1 + μð Þ E1 − E2j j + μ S1 − S2j j + 2τ1 + 2γ + ξ1 + q1 + μð Þ I1 − I2j j
+ 2τ2 + q2 + μð Þ A1 − A2j j + 2ϕ2 + ξ2 + μð Þ H1 −H2j j + μ R1 − R2j j + q3 + u3ð Þ M1 −M2j j + 2ϕ1 + 2δ2 + μð Þ Q1 −Q2j j,

≤Y1 S1 − S2j j + Y2 E1 − E2j j + Y3 I1 − I2j j + Y4 A1 − A2j j + Y5 Q1 −Q2j j + Y6 H1 −H2j j + Y7 R1 − R2j j + Y8 M1 −M2j j,

ð40Þ
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where Y1 = ð2u2 + μÞ, Y2 = ð2ð1 − θÞω + 2θρ + 2δ1 + μÞ,
Y3 = ð2ð1 − u1Þðη1Λ/μÞ + 2τ1 + 2γ + ξ1 + q1 + μÞ, Y4 = ð2ψ
η1ð1 − u1ÞðΛ/μÞ + 2τ2 + q2 + μÞ, Y5 = ð2ϕ1 + 2δ2 + μÞ, Y6 =
ð2ϕ2 + ξ2 + μÞ, Y7 = μ, Y8 = ð2ð1 − u1Þðη2Λ/μÞ + q3 + u3Þ
and Y =max fY1, Y2, Y3, Y4, Y5, Y6, Y7, Y8g:

Hence the Lipschitz continuous uniformity of Φ is
proved.

(D3): We let the Langrangian of the objective functional
(38) be Lðt, n, uÞ. Then,

L t, n, uð Þ = ν1 t, nð Þ + ν2 t, nð Þ, ð41Þ

with, ν1ðt, nÞ = B1E + B2I + B3A and ν2ðt, nÞ = 1/2∑3
j=1hjuj.

The convexity of ν2ðt, nÞ, which is a linear combination of
the control function 1/2∑3

j=1hjuj has to be shown. We let h

ðuÞ = 1/2u2 for λ : ½0, 1�2 ⟶ R. Then, ∀t1, t2 ∈ ½0, 1�2, ρ2 ∈
½0, 1�. Hence, it follows that the below inequality holds.

ρ2λ t1ð Þ + 1 − ρ2ð Þλ t2ð Þ ≥ λ ρ2t1 + 1 − ρ2ð Þt2ð Þ: ð42Þ

This confirms the convexity of the Lagrangian with
respect to the control.

(D4): By inspection, we noticed in (41) that Lðt, n, uÞ ≥
ν1ðt, nÞ. Hence, grounded on this, we conclude that

L t, n, uð Þ ≥ 1
2 h1u

2
1 +

1
2 h2u

2
2 +

1
2 h3u

2
3 ≥ k1 〠

2

i=1
uij j2

 !k3/2

− k2,

ð43Þ

with k1 = 1/2minfh1, h2, h3g, k2 > 0 and k3 = 2. This com-
pletes the proof.

4.2. Characterization of Optimal Controls. Using the Princi-
ple translates the COVID model (37) and its associated
objective functional (38) into a problem of minimizing a
Hamiltonian H, with respect to the controls ujðtÞ, for j = 1
, 2, 3. The Hamiltonian for system (17) is given by;

H = L t, n, uð Þ + 〠
8

k=1
ςk f k: ð44Þ
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(a) Sensitivity plot of R0 in terms of Λ and ω
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(b) Sensitivity plot of R0 in terms of Λ and θ
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Figure 2: Sensitivity plot of R0 in terms of Λ, ω, θ, ρ, and δ1 using values in Table 2.
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where the f k in Equation (44) are the right-hand sides of
system (37) and ςk are the respective adjoint variables for the
state S, E, I, A,Q,H, R, andM.

Theorem 5. Consider the triple optimal control ðu∗1 , u∗2 , u∗3 Þ
satisfying the Condition (39), then there exist adjoint vari-
ables ςk satisfying adjoint system below;

d
dt

ς1 = ς1μ + ς1 − ς2ð Þη2M 1 − u1ð Þ + ς1 − ς2ð Þ 1 − u1ð Þη1
I
N

+ ς1 − ς2ð Þ 1 − u1ð Þψ A
N
η1 − u2ς7 ,

d
dt

ς2 = ς2μ + ς2 − ς3ð Þ 1 − θð Þω + ς2 − ς4ð Þθρ + ς2 − ς5ð Þδ1 − B1,

d
dt

ς3 = ς1 − ς2ð Þ 1 − u1ð Þη1
S
N

+ ς3 − ς7ð Þτ1 + ς3 − ς6ð Þγ + δ1 + μð Þς3 − q1ς8 − B2,

d
dt

ς4 = ς1 − ς2ð Þ 1 − u1ð Þψ S
N
η1 + ς4 − ς7ð Þτ2 − q2ς8 + μς4 − B3,

d
dt

ς5 = ς5 − ς7ð Þϕ1 + ς5 − ς6ð Þδ2 + μς5,

d
dt

ς6 = ς6 − ς7ð Þϕ2 + ξ2ς6 + μς6 ,

d
dt

ς7 = μς7 ,

d
dt

ς8 = ς1 − ς2ð Þ 1 − u1ð Þη2S + q3ς8 − u3ς8,

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ð45Þ

with transversality conditions

ςj Tð Þ = 0, j = 1, 2,⋯, 8: ð46Þ

The control functions ðu∗1 , u∗2 , u∗3 Þ satisfies the optimality
condition and is given by

u∗i tð Þ =min 1, max 0, Γif gf g, i = 1, 2, 3: ð47Þ

where

Γ1 = ς2 − ς1ð ÞMS
h1

η2 + ς2 − ς1ð Þ IS
Nh1

η1 + ς2 − ς1ð Þ AS
Nh1

η1,

Γ2 = ς1 − ς7ð Þ S
h2

,

Γ3 =
M
h3

ς8:

ð48Þ
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Figure 3: Sensitivity plot of R0 in terms of Λ, q1, q2, ψ and δ1 using values in Table 2.
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Proof. Referring to the Hamiltonian (49), given by

H = B1E + B2I + B3A + 1
2 h1u

2
1 +

1
2 h2u

2
2 +

1
2 h3u

2
3

� �

+ς1 Λ − μS − 1 − u1ð Þη2MS − 1 − u1ð Þη1
IS
N

− 1 − u1ð ÞψAS
N

η1 − u2S
� �

+ς2 1 − u1ð Þη2MS + 1 − u1ð Þη1
IS
N

+ 1 − u1ð ÞψAS
N

η1 − 1 − θð Þω + θρ + δ1 + μð ÞE
� �

+ς3 1 − θð ÞωE − τ1 + ξ1 + γ + μð ÞIf g + ς4 θρE − τ2 + μð ÞAf g
+ς5 δ1E − ϕ1 + δ2 + μð ÞQf g + ς6 γI + δ2Q − ϕ2 + ξ2 + μð ÞHf g
+ς7 τ1I + τ2A + ϕ1Q + ϕ2H + u2S − μRf g + ς8 q1I + q2A − q3M − u3Mf g,

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð49Þ

we generate the adjoint system (45) by differentiating
partially the Hamiltonain (49) with respect to the corre-
sponding state variables S, E, I, A,Q,H, R, andM as

dς1 /dt = −∂L/∂S, dς2/dt = − ∂L/∂E, dς3 /dt = −∂L/∂I, d
ς4 /dt = −∂L/∂A, dς5/dt = − ∂L/∂Q, dς6/ dt = −∂L/∂H, dς7/
dt = −∂L/∂R, dς8 /dt = −∂L/∂M The characterization of the
controls u∗1 , u∗2 , u∗3 as in (39) is determined by applying the
equation below;

∂L
∂ui

= 0, i = 1, 2, 3: ð50Þ

Utilizing bounds on the controls by standard argument,
we determine the characterization

u∗i =
0 if φ∗

i ≤ 0,
φ∗
i if 0 ≤ φ∗

i ≤ 1,
1 if φ∗

i ≥ 1,

8>><
>>: ð51Þ

where

φ∗
1 = ς2 − ς1ð ÞMS

h1
η2 + ς2 − ς1ð Þ IS

Nh1
η1 + ς2 − ς1ð Þ AS

Nh1
η1,

φ∗
2 = ς1 − ς7ð Þ S

h2
, φ∗

3 =
M
h3

ς8,

ð52Þ

This completes the proof.

5. Numerical Experimentation and Discussion

With the aid of the forward-backwards sweep method as
derived by Lenhart and Workman [59], a numerical solution
to the optimality system of the control model was obtained.
We offer the scenarios of different feasible control strategies
to identify their effect on the dynamics of the COVID model.
The backwards scheme solves the adjoint system (45) back-
wards in time, and the forward scheme solves (37) forward
in time. In addition, the structured scheme considered the
set of initial conditions related to the state variables and
the boundary condition to solve the control optimality sys-
tem in a simulated interval of t ∈ ½0,250�. With this set in
play, we consider the balancing factors of the objective func-
tional (38) as: B1 = 10, B2 = 10, B3 = 10, h1 = 5, h2 = 10, and

h3 = 8, and initial population Nð0Þ = 100000000 for the sim-
ulation purpose. We concluded that h2 > h1 and h3, as we
assume that the cost of vaccines and implementing a vacci-
nation program would be higher than the cost of personal
protection and disinfecting the environment. Even though
the model in [44] is a Fractional-order model, the authors
estimated the model’s parameters at α1 = α2 = 1. However,
at α1 = α2 = 1, the model becomes an integer order model.
Furthermore, since the study modifies model 1 to optimal
control which simulated results are always compared to the
noncontrol model, it becomes necessary that we consider
the same parameter values as used in model 1. Hence, we
would consider model [44] parameter values for the
simulation.

5.1. Strategy 1 (Implementing Controls u1,u2, and u3). The
strategy 1 considered the controls u1, u2, and u3. The simula-
tion results are presented in Figures 4(a)–4(d) of Figure 4.
We observe that, the exposed population (28) without con-
trol swiftly rose in the first five days and reached almost
8:5 × 105 within the next five days. The dynamics of the
exposed graph changed after day 11. The graph began to
slowly decrease until day 80 when the population seemed
to have been wiped out. The exposed without control graph
maintained this new level for the next 70 days and began to
surge to a height of 0:6 × 105 for the next 65 days when it
began to decrease for the rest of the simulated time
smoothly. Also, the infected population without control
(See Figure 4(b)) gradually rose in the first 10 days until
day 50 when it began to decrease with an estimated infected
population of 250. It decreased slowly to 240 in 170 days and
picked up after the 170. The asymptomatically infected
graph of (See Figure 4(c)) sharply increased in 10 days to
reach a population of about 14500 and then decreased slowly
after day 25 and reached the lower bound at 90 days. The
level was maintained until 150 days when it smoothly
increased for the remaining simulated time. The exposed
population under controls (Figure 4(a)) decreased slowly
and was expected to wipe out in 20 days completely. The
infected population with control (See Figure 4(b)) increased
in a similar pattern slowly in the first 10 days and decreased
slightly, with the population recognized to be a little below
90 at the final time. The asymptomatically infected popula-
tion with control (See Figure 4(c)) was the same as that with-
out controls for the first 5 days but is reduced after 40 days.
From the control profile graph (Figure 4(d)), u1, which rep-
resents the personal protection control, starts from the
upper bound but drops suddenly to the lower bound at the
initial zero days until 60 when it swiftly moves to the upper
bound. The next 190 days remained at the upper bound and
then returned to the lower bound at the final time of 250
days. The vaccination control, u2, remained at the lower
bound until 59 days when it moved to the upper bound. It
stayed at the upper bound until 200 days and then dropped
to the lower bound and remained there for the rest of the
time. u3, denoting disinfectant control, started at the lower
bound and picked to the upper bound after 60 days. It
remained at the upper bound for the remaining time until
249 days, when it dropped to the lower bound.
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Figure 4: Continued.
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5.2. Strategy 2 (Implementing Controls u1 and u2). The strat-
egy 2 sets u3, the disinfectant control to zero and experi-
ments with the controls u1 and u2. The simulation results
are presented in Figure 5. The exposed population without
control (See Figure 5(a)) shows a sudden rise in the first 10
days. The graph rises to a peak of about 8:5 × 105 and after

10 days, decreases steeply to a minimal population of
about 1 × 105 within the next 90 days and maintains this
new level until 150 days when it begins to increase
smoothly. The infected population without control (See
Figure 5(b)) gently increases for the first 25 days to reach
a maximum height of 250. The new height of the infected
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Figure 4: Graphs of simulation results for strategy 1 (with u1 ≠ 0, u2 ≠ 0, and u3 ≠ 0).
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became unstable after the next 25 days, and that resulted
in the population slowly decreasing to 240 in the next
150 days, after which it began to rise for the remaining
time. With the asymptotically infected without control
(See Figure 5(c)), we noted a quick rise of the curve in
the first 10 days and reached the pinnacle at 14500 in
25 days at the infection hotspots.

The exposed population yielded to the design experiment
strategy 2. The exposed population starts with 1:9 × 105 pop-
ulation and gently reduces until 25 days when it seems to have
been wiped from the system. The infected population under
control strategy 2 slightly increased in the early days and
began to lower after 10 days. The graph decreased in that pat-
tern and reached a lower height of 90 at the final time. Also,
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Figure 5: Graphs of simulation results for strategy 2 (with u1 ≠ 0 and u2 ≠ 0).
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the asymptotically infected population increased to about
2000 in the first 5 days, decreased slowly to zero in 30 days,
and maintained that level for the remaining period of the
simulation time. Figure 5(d) presents the control profile
for Strategy 2. By inspection, we observed that the personal
protection control u1 falls to the lower bound at the initial
zero time. It remained on the lower bound for 60 days
when it suddenly moved to the upper bound. It then
remained at the upper bound until 250 days when it
dropped to the lower bound again. Control u2, representing
the vaccination control, remained at the lower bound for
the first 59 days when it swiftly moved to the upper bound.
It stayed at the upper bound for the next 120 days when it
dropped to the lower bound and remained there for the
remaining time.

5.3. Strategy 3 (Implementing Controls u1 and u3). With u2
set to zero, strategy 3 uses the controls u1 and u3 for the
experimentation by simulating the optimality system with
the structured interval. The simulation results for this strat-
egy are presented in Figure 6. We observe that, the exposed
population without control (See Figure 6(a)) moved sharply
to 8:5 × 105 in day 10 of the simulated time and then
decreased gradually to almost 0:1 × 105 and maintained the
level until 150 days when it began to rise for the remaining
time. The infected population without control (See
Figure 6(b)) increased slowly and moved to a height of 250
for 50 days. The population then decreased slowly for the
next 100 days and began to pick up after the 100 days. The
asymptomatically infected population without control (See
Figure 6(c)) also shoots quickly in the first 25 days to its
maximum of 14500. The dynamics changed, and the popu-
lation began to reverse slowly to a level of about 100, and
then picked up after 150 days and smoothly increased to
the final time. The optimal control plot of the exposed pro-
duced a graph that seemed to wane in the early days but
began to rise after 30 days to meet the noncontrol graph at
70 days. The level of the controlled exposed population
was maintained until the final time. The infected population
with control Strategy 3 (See Figure 6(b)) got lowered in the
early days and continued till the final time of the simulation.
The controlled population of asymptotically infected per-
sons (See Figure 6(c)) got depleted in the first 30 days. How-
ever, for the uncontrolled problem, the population resurged
and maintained the level for the rest of the simulation time.
From Figure 6(d), u1 denoting personal protection control
drops suddenly from the upper bound to the lower bound
at time t = 0. It then remained at the lower bound for 15 days
and shot to the upper bound, where it remained for 15 days
and dropped to the lower bound. It remained in the lower
bound for another 15 days and moved to the upper bound.
It then stayed at the upper bound for 15 days and dropped
to the lower bound. It picked after 5 days to the upper bound
and stayed there until it dropped to the lower bound. u3
denoting disinfectant control started from the lower bound
and moved to the upper bound after 15 days. It dropped to
the lower bound after 15 days and again moved to the upper
bound after 15. It stayed at the upper bound for another 15
days and then dropped to the lower bound for 5 days. It

picked to the upper bound of 70 days and remained until
the final time before dropping.

5.4. Strategy 4 (Implementing Controls u2 and u3). The strat-
egy 4 set u1 = 0 and utilized the control u2 and u3 in the
numerical simulation for assigned interval. The simulation
results are presented in Figures 7(a)–7(d). The Strategy 4 is
observed to also do well in reducing the exposed, infected
and asymptomatically infected populations. From the con-
trol profile (Figure 7(d)), the vaccination control, u2, shot
to the upper bound at time t = 50, stayed at the upper bound
for 150 days, and then dropped to the lower bound. It
remained at the lower bound for the rest of the simulated
time. The disinfectant spraying control u3 stayed at the
lower bound from day 0 to 50, rocketed to the upper bound
and remained there until 249 days when it returned to the
lower bound.

6. Economic Cost Analysis of the
Control Implementation

With the simulation results of the optimality control prob-
lem, the present section seeks to identify the strategy among
the considered strategies that minimize the cost involved in
executing the strategy yet give a satisfying performance out-
put. To identify the most cost-effective strategy, we compare
strategies 1, 2, 3, and 4. The approach outlined in related
previous studies [60–63] is adopted to examine the average
cost-effectiveness ratio (ACER) and incremental cost-
effectiveness ratio (ICER) of strategies 1, 2, 3, and 4. The
ICER is the ratio of the differences in cost of two control
strategies to the differences in infection averted by executing
that strategy. On the other hand, the ACER is the ratio of the
total cost involved in executing the strategy to the total
infected prevented. The mathematical formulation

ICER = Difference in costs of control strategies e1and e2
Difference in infection averted by the strategies ,

ð53Þ

is used to exhibit the number of infections averted, and
the related cost of executing the strategies under consider-
ation in increasing order of magnitude of the infection
averted is presented in Table 3.

The ICER representations are derived as follows;

ICER 1ð Þ = 6:1523 × 103
5:0326 × 107 = 1:2225 × 10−4,

ICER 2ð Þ = 3:8281 − 6:1523ð Þ × 103
5:0826 − 5:0326ð Þ × 107 = −4:6484 × 10−3,

ICER 4ð Þ = 4:0048 − 3:8281ð Þ × 103
5:0960 − 5:0826ð Þ × 107 = 1:3186 × 10−3,

ICER 3ð Þ = 4:9606 − 4:0048ð Þ × 103
5:69566 − 5:09600ð Þ × 107 = 1:5936 × 10−4:

ð54Þ
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18 Computational and Mathematical Methods in Medicine



From Table 3, we notice that the ACER value of strategy
2 is the least among the strategies considered. The ACER
values insinuate that strategy 2 is the most cost-effective.
Further, we observe that strategy 1 has the highest ACER
value, which is the least cost-effective measure. However,
an in-depth analysis of the least cost-effective measure was
required. The ICER of the strategies was then computed.

The ICER computations depicted that strategy 1 is more
costly but less effective than strategy 2. The analysis con-
firmed that ICER of strategy 1 is higher than ICER of strat-
egy 2. Hence, the control strategy 1 is deleted from the
considered strategies, and the remaining strategies ICERs
are recalculated for further analysis on the three. The analy-
sis of the remaining strategies is presented in Table 4.
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Figure 6: Graphs of simulation results for strategy 3 (with u1 ≠ 0 and u3 ≠ 0).
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From the computed ICERs of Table 5, we see that strat-
egy 4 ICER is higher than strategy 2. The cross-examination
of the two ICER shows the dominance of strategy 2 over
strategy 4. Thus, strategy 2 costs less and performs best in
managing the disease. Hence, strategy 4 is removed from
the remaining strategies, and the ICER of strategy 2 and 3
are recalculated and analyzed, as depicted in Table 5.

The ICER computation from Table 5 indicated that
strategy 3 is higher than strategy 2. The analysis further
proves that strategy 2 is the most cost-effective control strat-
egy among the listed strategies.

6.1. Conclusion. The research considered a dynamical study
on a nonlinear autonomous COVID-19 model to unveil
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Figure 7: Graphs of simulation results for strategy 4 (with u2 ≠ 0 and u3 ≠ 0).
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strategies that could assist in stemming the spreading of the
disease. With the introduction of the control strategies: per-
sonal protection, vaccination, and disinfecting of the envi-
ronment into the state model (1), the basic model was
redesigned into an optimal control problem. We utilized
Pontryagin’s maximum principle’s [57] analytic method to
characterize possible controls that may help stem the epi-
demic from spreading. We supported the qualitative analy-
ses with a numerical solution that employed the fourth-
order Runge-Kutta method to generate numerical solutions
of the control problem. The results from the executed strat-
egies unveiled a satisfying impact on the dynamics of the
exposed, asymptomatically infected, and infected individual.
The strategy 1 considered the three controls of personal pro-
tection, vaccination, and disinfectant of the environment.
Interestingly, the generated graphs showed the retrospective
impact of the strategy on the disease’s dynamics. Thus, we
see substantially minimized exposed, infected, and asymp-
tomatically infected individuals. Strategy 2 employed per-
sonal protection and vaccination control as its intervention
strategy. A similar result to using strategy 1 was obtained.
Regarding strategy 3, personal protection and disinfectant
controls were used. The simulation produced a pleasing
effect on the dynamics of the infected. Thus, the graph
depicts a convincing minimized exposed, infected, and
asymptomatically infected with the strategy. The strategy
of 4 chose the vaccination and disinfectant of the environ-
ment. The result minimized the exposed, infected, and
asymptomatically infected. A careful examination of the
strategies that employed vaccination as part of the controls
substantially minimized the exposed, infected, and asymp-
tomatically infected graphs. For instance, strategy 3, which
did not consider vaccination control experienced an early
rise in the asymptomatically infected graph but was mini-

mized in the long run. The results suggest that vaccines are
essential pharmaceutical control strategies needed to mitigate
the disease but cannot be wholly relied on due to the resistance
imposed by the mutation of the virus and the vaccines effica-
cies waning after a short while. This is a result of the leakiness
of vaccines and limited vaccination capacity. The finding is
consistent with the findings of the work [43, 64, 65], which
recommended that policymakers should be pragmatic in
relaxing other COVID-19 mitigating protocols since the vac-
cine efficacies are not 100%, as evidence of reinfection after
vaccination has been proved in several studies [66–68].
Finally, we assessed the various strategies’ economic costs with
the cost-effectiveness analysis method. The method examined
the effectiveness and cost of the listed strategies considered.
The analysis unveiled that the strategy 2: personal protection
and vaccination control strategy is the most cost-effective
method among the considered strategies. From our investiga-
tions, we recommend that a deliberate attempt should be
made by public health and all stakeholders to strengthen the
personal protection protocols as recommended by WHO
and encourage and educate society about the benefits of being
vaccinated, as vaccines reduce hospitalization [66].

Data Availability

The authors confirm that the data supporting the findings of
this study are available within the article.

Conflicts of Interest

The authors declare no conflict of interest.

Acknowledgments

(i) The results in this paper form part of the PhD thesis of
the first author in the Department of Mathematics of the
C. K. Tedam University of Technology and Applied Sci-
ences, Ghana. The second author is the lead supervisor. (ii)
The author acknowledges the paper as part of a PhD thesis
at C. K. Tedam University of Technology and Applied Sci-
ences, titled “Mathematical modelling of COVID-19 and
Vector-borne diseases with optimal control”.

Table 3: Total number of infections averted from the least to the highest.

Strategies Total infection averted ( × 107) Total cost ( × 103) ACER ICER

Strategy 1 5.0326 6.1523 1:2225 × 10 −4 1:2225 × 10−4

Strategy 2 5.0826 3.8281 0:7532 × 10 −4 −4:6484 × 1 0−3

Strategy 4 5.0960 4.0048 0:7859 × 10 −4 1:3186 × 1 0−3

Strategy 3 5.6957 4.9606 0:8709 × 1 0−4 1:5936 × 10 −4

Table 4: ICER computation of strategy 2, 4, and 3.

Strategies Total infection averted ( × 107) Total cost ( × 103) ICER

Strategy 2 5.0826 3.8281 0:7532 × 10 −4

Strategy 4 5.0960 4.0048 1:3187 × 1 0−3

Strategy 3 5.6957 4.9606 1:5938 × 1 0−4

Table 5: ICER computation of strategy 2 and 3.

Strategies
Total infection
averted ( × 107) Total cost ( × 103) ICER

Strategy 2 5.0826 3.8281 0:7532 × 10 −4

Strategy 3 5.6957 4.9606 1:8472 × 10 −4
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