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Objective. This study is aimed at screening out effective active compounds of Qizhen capsule (QZC) and exploring the underlying
mechanisms against gastric cancer (GACA) by combining both bioinformatic analysis and experimental approaches. Weighted
gene coexpression network analysis (WGCNA), network pharmacology, molecular docking simulation, survival analysis, and
data-based differential gene and protein expression analysis were employed to predict QZC’s potential targets and explore the
underlying mechanisms. Subsequently, multiple experiments, including cell viability, apoptosis, and protein expression
analyses, were conducted to validate the bioinformatics-predicted therapeutic targets. The results indicated that luteolin, rutin,
quercetin, and kaempferol were vital active compounds, and TP53, MAPK1, and AKT1 were key targets. Molecular docking
simulation showed that the four abovementioned active compounds had high binding affinities to the three main targets.
Enrichment analysis showed that vital active compounds exerted therapeutic effects on GACA through regulating the TP53
pathway, MAPK pathway, and PI3K/AKT pathway. Furthermore, data-based gene expression analysis revealed that TP53 and
JUN genes were not only differentially expressed between normal and GACA tissues but also correlated with clinical stages. In
parallel, in vitro experimental results suggested that QZC exerted therapeutic effects on GACA by decreasing IC50 values,
downregulating AKT expression, upregulating TP53 and MAPK expression, and increasing apoptosis of SGC-7901 cells. This
study highlights the potential candidate biomarkers, therapeutic targets, and basic mechanisms of QZC in treating GACA,
providing a foundation for new drug development, target mining, and related animal studies in GACA.

1. Introduction

Gastric cancer (GACA), a type of severe fatal disease, con-
tinues to be the world’s most common and deadly cancer,
affecting the health of people, especially the elders. It is the
fifth most common cancer and the third leading cause of
cancer-related death worldwide, with a high mortality rate
of up to 75% and an estimated 783,000 deaths in 2018 [1].
Each year, more than 1 million people are diagnosed with
GACA [2]. Therefore, the prevention and treatment of
GACA have become a research hotspot. Surgical resection

is commonly adopted for GACA patients in early stages,
which brings health back to patients to some extent. Never-
theless, for patients with advanced GACA, surgical resection
does not show significant effects, with only about 20% of
patients surviving 5 years after surgery [3]. As a result, che-
motherapy and combination treatments are used as alterna-
tive remedial approaches to save the lives of patients with
advanced GACA [4]. However, chemotherapy is often
accompanied by bone marrow suppression, digestive tract
reaction, and other adverse effects, causing poor physical
condition, lower immune function, and severe clinical
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symptoms in patients [3]. For these reasons, GACA patients
are unlikely to successfully complete the full course of stan-
dardized chemotherapy.

Traditional Chinese medicine (TCM) is of great impor-
tance in fighting against cancer; its excellent curative effects
have attracted increasing attentions worldwide [4]. Qizhen
capsule (QZC), a mixture of medical herbs including Astrag-
ali Radix (AR), Notoginseng Radix Rhizoma (NRER), Isati-
dis Folium (IF), Paridis Rhizoma (PR), and Margarita
(MARG), has been commonly used for treating various can-
cers, including liver cancer, breast cancer, and gastric cancer,
for more than two decades [5]. Furthermore, relative studies
have proved that QZC can promote blood circulation to dis-
pel blood stasis and clear away heat and toxic materials. Pre-
vious studies suggested that combination of QZC with
chemotherapy in treating GACA could reduce drug toxicity
and increase drug safety at the same time [6]. In recent years,
there are only few reports describing QZC’s mechanism
against GACA. Moreover, existing studies on the mecha-
nism of QZC against GACA have used a single analytical
approach, and there is no systematic description of QZC’s
pharmacological mechanism and its mechanism of action.
The research method used for the mechanism study of
QZC against GACA is relatively simple; therefore, the
underlying mechanism and effective targets of QZC cannot
be described systematically [5, 6]. In addition, the
underlying mechanisms of QZC against GACA are still not
clear because there are multiple active compounds presented
in QZC that might have complicated interactions with
different targets.

Weighted gene coexpression network analysis
(WGCNA) is a functional bioinformatic method used to
identify gene modules for therapeutic targets based on gene
coexpression analysis. By systematically analyzing the corre-
lation between modules and clinical features, the modules
that are closely associated with clinical characteristics can
be proposed, and genes that may exhibit critical functions
can be predicted [7]. Network pharmacology is a tool that
can be used to explain the foundation of complex biological
systems from a network perspective. It can also be used to
study molecular mechanisms by which herbal medicines
fight against diseases and to construct drug-compound-
disease networks. It is systematic, relevant, and predictable
[8]. Molecular docking is a method for predicting binding
interactions between small molecule ligands and target pro-
teins, and it can also be used to validate targets predicted by
network pharmacology. In addition, computer techniques
related to molecular docking, such as molecular force field/
Poisson Boltzmann surface area model (MM/PBSA), molec-
ular mechanics/generalized Born surface area model (MM/
GBSA), and molecular dynamics simulation, have been
widely used for screening of key protein inhibitors or ago-
nists in TCM [9–11].

In this study, we employed both bioinformatic analyses
(WGCNA, network pharmacology, molecular docking sim-
ulation, survival analysis, and data-based gene and protein
expression analysis) and in vitro experimental validations
(cell viability, apoptosis, and protein expression assay) to
investigate the molecular mechanisms of QZC against

GACA. The results of this study will deepen our understand-
ing of the molecular mechanisms of QZC against GACA and
provide useful information for the diagnosis, treatment, and
prognosis of GACA. A flowchart of the technical strategy is
shown in Figure 1.

2. Materials and Methods

2.1. Sample Selections and Preparation of Transcriptome
Profiles. GACA RNA sequencing data (n = 404) were down-
loaded from TCGA data portal (https://portal.gdc.cancer
.gov/) in January 2021. To get valuable information, the clin-
ical metadata from 404 samples were screened. A total of 67
samples with incomplete data were excluded, and the
remaining 337 samples were included for further analysis.
Consequently, a total of 15,073 genes that were differently
expressed between gastric cancer samples were subjected to
WGCNA to identify key modules that were closely associ-
ated with GACA.

2.2. Weighted Gene Coexpression Network Analysis and Key
Module Prediction. The WGCNA package was adopted to
construct gene coexpression networks. Based on pairwise
Pearson correlation coefficient matrices, a similarity matrix
was constructed. Subsequently, the correlation coefficients
were calculated by distance correlation. As distance correla-
tion coefficients are always positive, they define an unsigned
network in which positive and negative correlations are
treated equally. With a power adjacency function, an adja-
cency matrix was obtained from the similarity matrix. The
integration function (pickSoftThreshold) was utilized to
select an appropriate soft threshold power β. A power of β
= 2 was chosen as the soft-cutoff parameter. The coexpres-
sion similarity was improved to obtain a scale-free topology
using the soft threshold function. Subsequently, the topolog-
ical overlap matrix was reconstructed by evaluating the
topological overlap measure (TOM). The TOM similarity
was used to derive two useful metrics of weights and dis-
tances. The dynamic tree-cut algorithm was employed to
pinpoint the gene coexpression module with minModuleSize
of 50 and mergeCutHeight of 0.01 [12]. Module eigengene
(ME) is an important component for each gene module that
represents the overall level of gene expression. Module
membership (MM) represents the correlation and the gene
expression profile. Gene significance (GS) is the absolute
value of the association between a specific gene and a clinical
trait. Based on ME, MM, and GS, we were able to correlate
various modules to clinical traits and identify critical mod-
ules in clinical practice [13]. In addition, other parameters
used for analysis were set to the default parameters of the
WGCNA package.

2.3. Collection of QZC Compounds and Prediction of Their
Targets. By combining various databases as well as biomed-
ical literatures, biomolecular networks can be constructed
for a compound [14]. The chemical compounds of QZC
were collected from both authoritative databases (TCMSP
(https://tcmspw.com/), ETCM (https://www.tcmip.cn/),
and TCMID (https://119.3.41.228:8000/tcmid/)) [15] and
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literatures [16–33]. We used oral bioavailability (OB) and
drug-likeness (DL) as indicators to select compounds, and
compounds with OB ≥ 30% and DL ≥ 0:18 were selected
for further study [34]. In addition, several compounds, such
as palmitic acid and ononin, which did not meet the above
criteria were also selected for further analysis due to their
strong pharmacological activities. Compounds’ SMILES files
from PubChem (https://pubchem.ncbi.nlm.nih.gov/) were
uploaded to the TargetNet webserver (http://targetnet
.scbdd.com) and Swiss Target Prediction database (http://
www.swisstargetprediction.ch/). Protein targets with a
prediction score > 0:9 were retained. Targets of compounds
documented in TCMSP were also collected. Predicted pro-
tein target information including name and UniProt ID
was obtained from the UniProt database (https://www
.uniprot.org/). Only human targets were retained for the fol-
lowing analysis.

2.4. Construction of Compound-Target Network. The pre-
dicted target information of bioactive compounds and the
related information were introduced into Cytoscape 3.8.0
to establish a compound-target network [35]. Nodes repre-
sent active compounds or predicted targets, while edges
show the interplay between the compounds or predicted
targets [36].

2.5. Construction of Protein-Protein Interaction (PPI)
Network. Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) 10.5 (https://string-db.org/) is a
robust algorithm that provides not only known and pre-
dicted protein interactions but also direct and indirect pro-
tein relationships [37]. Genes overlapping compound-
predicted targets and WGCNA significant module targets
were introduced into STRING 10.5 for further analysis.
The species was set to “Homo sapiens,” and a confidence
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Figure 1: The technical strategy flowchart for exploring potential mechanisms of QZC against GACA.
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interaction score of 0.9 was chosen [38]. The data were then
put into Cytoscape 3.8.0 to establish a PPI network, and the
“Network Analyzer” plugin was used to calculate the net-
work’s topological parameters.

2.6. Enrichment Analysis of Gene Ontology Functional
Enrichment (GO) Terms and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathways. GO functional enrichment
and KEGG pathway analysis were performed using the
David v6.7 database (https://david.ncifcrf.gov/) to elucidate
the role of targets in gene function and signaling pathways.
The species was set to “Homo sapiens.” P ≤ 0:05 were consid-

ered statistically significant. GO functional enrichment clas-
sified genes into three categories, including cellular
component (CC), molecular function (MF), and biological
process (BP). According to the results of KEGG analysis,
Cytoscape 3.8.0 was used to set up a “target-pathway” net-
work to show potential targets and pathways that were
involved in QZC against GACA.

2.7. Pathways in Cancer. Selected target genes were intro-
duced into KEGG Mapper (https://www.kegg.jp/kegg/tool/
map_pathway2.html) to screen out target genes that were
involved in pathways related to cancer.
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Figure 2: Analysis of network topology with different soft-thresholding powers.
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2.8. Molecular Docking Simulation.Molecular docking simu-
lation can be utilized to assess the interaction between
ligands and receptors based on geometric complementarity,
energy complementarity, and chemical environmental com-
plementarity [39]. The 3D structured PDB files of TP53,
EP300, AKT1, MAPK1, SRC, RELA, JUN, and HSP90AA1
were downloaded from the PDB database (https://www
.rcsb.org/) [40], processed by AutoDock Tools to get rid of
ligands from proteins and nonprotein molecules, and saved
as PDB files. The 2D structured SDF files of the key active
compounds of QZC were collected from the PubChem data-
base [41]. Subsequently, PyRx software was adopted to
upload dehydrated protein files and compound files, which
were converted to pdbqt format files [42]. Eventually, Auto-
Dock Vina was used for molecular docking.

2.9. Survival Analysis of PPI Genes. Kaplan-Meier Plotter
(http://kmplot.com/analysis/) is an online tool that was used
to perform survival analysis of the top eight PPI genes in
GACA patients [43]. Recurrence-free survival (RFS) refers
to the recurrence-free period of GACA patients, and overall
survival (OS) is the time from diagnosis to death. Kaplan-
Meier Plotter’s chi-squared test was used to identify the rela-
tionship between the top eight PPI genes and GACA
patients’ survival (i.e., RFS or OS) [44]. P < 0:05 indicated
the genes were associated with survival of GACA patients.

2.10. Exploration of PPI Gene Expression and Their
Corresponding Protein Expression. The mRNA sequencing

data of 443 GACA patients were downloaded from TCGA
database (http://cbioportal.org). After deleting samples with
incomplete data, a total of 407 samples including 32 normal
samples and 375 GACA samples were included. Subse-
quently, we analyzed the difference in expression levels of
the top eight PPI genes between normal and GACA tissues,
as well as in the four clinical stages. P < 0:05 were considered
to be statistically significant [36]. In addition, different pro-
tein expression levels were also compared between normal
and GACA tissues based on the data acquired from the
Human Protein Atlas (HPA) database (https://www
.proteinatlas.org/).

2.11. Cell Culture and Cell Viability Assay. A CCK-8 kit
(Beyotime, Shanghai, China) was adopted to assess the
effects of luteolin, rutin, quercetin, or kaempferol on the pro-
liferation of SGC-7901 cells (Shanghai Institute Cell Bank,
Chinese Academy of Science). SGC-7901 cells were seeded
into 96-well plates (Suyan Biotech, Guangzhou, China) at a
density of 1 × 104 cells/100μL and incubated in the incuba-
tor for 24h. Then, SGC-7901 cells were treated with different
concentrations of luteolin, rutin, quercetin, and kaempferol
for 24, 48, or 72 h, respectively. Subsequently, SGC-7901
cells were incubated with 100μL of CCK-8 solution (Beyo-
time, Shanghai, China) for 2 h. The optical density (OD) at
450 nm was measured using a microplate reader (Ruiyu Bio-
tech, Shanghai, China). The 50% inhibitory concentration
(IC50) values were calculated using GraphPad Prism 8.0
software.
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Table 1: Compounds collected through the literature and their network parameters.

Mol ID Compound PubChem CID OB (%) DL Herb

MOL000114 Vanillic acid 8468 35.47 0.04 AR

MOL000415 Rutin 5280805 3.2 0.68 AR; PR

MOL000098 Quercetin 5280343 46.43 0.28 AR; NRER; PR

MOL000069 Palmitic acid 985 19.3 0.1 AR; NRER; IF

MOL000391 Ononin 442813 11.52 0.78 AR

MOL000421 Nicotinic acid 938 47.65 0.02 AR; IF

MOL000412 Mucronulatol 442811 4.22 0.26 AR

MOL000211 Mairin 64971 55.38 0.78 AR

MOL000356 Lupeol 259846 12.12 0.78 AR; PR

MOL000131 Alpha-linoleic acid 5280450 41.9 0.14 AR

MOL000416 Lariciresinol 332427 5.53 0.38 AR

MOL000422 Kaempferol 5280863 41.88 0.24 AR; PR

MOL000239 Jaranol 5318869 50.83 0.29 AR

MOL000354 Isorhamnetin 5281654 49.6 0.31 AR

MOL000439 Isomucronulatol 7,2′-di-O-glucoside 15689653 49.28 0.62 AR

MOL005928 Isoferulic acid 736186 50.83 0.06 AR

MOL000437 Hirsutrin 5280804 1.86 0.77 AR

MOL000296 Hederagenin 73299 36.91 0.75 AR

MOL000388 Gamma-aminobutyric acid 199 24.09 0.01 AR

MOL000392 Formononetin 5280378 69.67 0.21 AR

MOL000389 Ferulic acid 1548883 54.97 0.06 AR

MOL000433 Folic acid 6037 68.96 0.71 AR; MAR

MOL000390 Daidzein 5281708 19.44 0.19 AR

MOL000431 Coumarin 323 29.17 0.04 AR

MOL000417 Calycosin 5280448 47.75 0.24 AR

MOL000387 Bifendate 108213 31.1 0.67 AR

MOL000430 Betaine 247 40.92 0.01 AR

MOL000411 Astraisoflavanin 131420 18.37 0.86 AR

MOL000378 7-O-Methylisomucronulatol 15689652 74.69 0.3 AR

MOL000418 Calycosin 7-O-glucoside 5318267 10.05 0.81 AR

MOL000371 3,9,10-Trimethoxypterocarpan 15689655 53.74 0.48 AR

MOL000442 1,7-Dihydroxy-3,9-dimethoxy pterocarpene 5316760 39.05 0.48 AR

MOL000432 Linolenic acid 5280934 45.01 0.15 AR

MOL000380 Astrapterocarpan 14077830 64.26 0.42 AR

MOL000396 (+)-Syringaresinol 443023 3.29 0.72 AR

MOL001494 Mandenol 5282184 42 0.19 NRER

MOL001792 Liquiritigenin 114829 32.76 0.18 NRER

MOL002879 Diisooctyl phthalate 33934 43.59 0.39 NRER

MOL000449 Stigmasterol 5280794 43.83 0.76 NRER

MOL005344 Ginsenoside Rh2 119307 36.32 0.56 NRER

MOL002153 Spathulenol 92231 82.33 0.12 NRER

MOL000252 Farnesol 445070 28.44 0.06 NRER

MOL000263 Oleanolic acid 10494 29.02 0.76 NRER

MOL002818 4′-Hydroxyacetophenone 7469 36.8 0.03 NRER

MOL002850 Butylated hydroxytoluene 31404 40.02 0.07 NRER

MOL000305 Lauric acid 3893 23.59 0.04 NRER

MOL000908 Beta-elemene 6918391 25.63 0.06 NRER

MOL000675 Oleic acid 445639 33.13 0.14 NRER
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Table 1: Continued.

Mol ID Compound PubChem CID OB (%) DL Herb

MOL007500 Panaxatriol 73599 15.42 0.79 NRER

MOL007501 Panaxydol 126312 61.67 0.13 NRER

MOL000879 Methyl palmitate 8181 18.09 0.12 NRER

MOL001863 Methyl 14-methylpentadecanoate 21205 9.42 0.11 NRER

MOL000384 DL-Glucuronic acid 65041 3.35 0.04 NRER

MOL005285 (20S)-Protopanaxadiol 11213350 29.69 0.77 NRER

MOL005338 Ginsenoside Re 441921 4.27 0.12 NRER

MOL012662 Ginsenoside F1 9809542 4.05 0.61 NRER

MOL005331 Ginsenoside rb1 9898279 6.24 0.04 NRER

MOL005333 Ginsenoside Rb2 6917976 6.02 0.04 NRER

MOL007479 Ginsenoside Rc 12855889 8.13 0.04 NRER

MOL011400 Ginsenoside Rf 441922 17.74 0.24 NRER

MOL012332 Ginsenoside RG2 21599924 8.32 0.25 NRER

MOL012334 Ginsenoside Rg3 9918693 12.43 0.22 NRER

MOL011407 20(S)-Ginsenoside Rh1 12855920 8.4 0.57 NRER

MOL005325 Ginsenoside Ro 11815492 1.98 0.05 NRER

MOL009956 Gypenoside XVII 44584555 3.51 0.1 NRER

MOL013377 Lutein 5281243 22.59 0.55 NRER

MOL001771 Clionasterol 457801 36.91 0.75 IF

MOL001781 Indigo 10215 38.2 0.26 IF

MOL001810 Qingdainone 3035728 45.28 0.89 IF

MOL002309 Indirubin 10177 48.59 0.26 IF

MOL002311 Glycyrol 5320083 90.78 0.67 IF

MOL002318 C05837 6602378 66.02 0.48 IF

MOL002322 Isovitexin 162350 31.29 0.72 IF

MOL001456 Citric acid 19782904 56.22 0.05 IF

MOL001766 5-Hydroxyoxindole 76955 59.16 0.04 IF

MOL001801 Salicylic acid 338 32.13 0.03 IF

MOL001808 Tryptanthrin 73549 19.28 0.29 IF

MOL000346 Succinic acid 21952380 29.62 0.01 IF

MOL000635 Vanillin 1183 52 0.03 IF

MOL000140 Diosgenin 99474 12.67 0.82 PR

MOL005241 Pennogenin 12314056 16.93 0.78 PR

MOL004718 Alpha-spinasterol 5281331 42.98 0.76 PR

MOL001987 Beta-sitosterol 222284 33.94 0.7 PR; NRER; IF

MOL006096 Isorhamnetin-3-O-neohesperidoside 11664505 4.45 0.68 PR

MOL000006 Luteolin 5280445 36.16 36.16 PR

MOL004368 Hyperoside 5281643 6.94 0.77 PR

MOL000676 Dibutyl phthalate 3026 64.54 0.13 PR

MOL009295 Flazin 5377686 94.28 0.39 PR

MOL002441 Dioscin 119245 17.75 0.06 PR

MOL008320 Ecdysterone 5459840 6.94 0.82 PR

MOL007751 Ajugasterone C 441826 5.31 0.81 PR

MOL003887 Gracillin 159861 27.39 0.06 PR

MOL003971 Threonin 6288 73.52 0.01 MAR

MOL002223 Tau 4068592 24.37 0.01 MAR
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2.12. Apoptosis Assay. SGC-7901 cells in the logarithmic
growth phase treated by luteolin, rutin, quercetin, and
kaempferol were collected and seeded into 96-well plates
(Suyan Biotech, Guangzhou, China) at a density of 5 × 104
cells/mL, followed by incubation overnight at 37°C with
5% CO2. SGC-7901 cells were treated with RSM for 24 h
and then collected by trypsinization. The treated cells were
washed with cold PBS (AR-0192, Boster) and then centri-
fuged. Finally, we treated them with Annexin V-FITC
(C1062M, Beyotime, Shanghai, China) and propidium
iodide (PI) at 37°C for 40min in the dark. SGC-7901 cells
were then placed in a water bath under light-proof condi-
tions. The cell circle was analyzed with a flow cytometer
(BD FACSCalibur, BD Biosciences, America).

2.13. Western Blot Assay. SGC-7901 cells were lysed with
200μL of preformulated cell lysis mix (cell lysis solution
: protease inhibitor : phosphatase inhibitor = 98 : 1 : 1) for
15min and then transferred to new 1.5mL EP tubes. After
centrifuging at 12,000 r/min for 15min, the supernatant
was collected. Protein concentration was determined using
a BCA Protein Assay Kit (P0012S, Beyotime). Protein sepa-
ration was achieved by sodium dodecyl sulfate polyacryl-
amide gel electrophoresis (SDS-PAGE), and resolved
proteins were transferred onto a PVDF membrane (Bio-
Rad, America). After sealing with 5% skim milk (XB-BD-
200, XBSW, Guangzhou, China) at room temperature for
2 h, the protein-containing PVDF membrane was washed
with TBST solution. Primary antibodies against p-AKT

Figure 5: The drug-compound-target network of QZC. Orange arrows represented herb nodes, green squares represented active compound
nodes, and blue circles represented target nodes.
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Figure 6: Potential targets of QZC in treating GACA. (a) Targets of QZC against GACA in Venn. (b) The PPI network of QZC against
GACA. Darker circles represented that these targets had greater correlation degrees with higher degree values.
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(Ser473, Affinity), AKT (AF6261, Affinity), p-P53 (9286T,
Cell Signaling Technology), P53 (2524S, Cell Signaling
Technology), p-MAPK (AF5887, Beyotime, Shanghai,
China), MAPK (8690S, Cell Signaling Technology), or
GAPDH (endogenous reference) were added, respectively,
and incubated overnight at 4°C. After washing the mem-
brane, corresponding secondary antibodies were added and
incubated for 1 h at room temperature, and an ECL kit was
used for visualization. The gray values for each protein band
were recorded using a fully automated chemiluminescence
image analyzer. GAPDH was used as an internal reference
to calculate the relative expression change of each protein.
The protein’s gray values were calculated by ImageJ and pre-
sented using a bar graph.

2.14. Statistical Analysis. All data were shown as the mean
± SD. GraphPad Prism 8.0 software was used to analyze
experimental results. Student’s t-tests were performed to
compare quantitative data between groups. P < 0:05 was
defined as statistically significant.

3. Results

3.1. Construction of WGCNAModule. In this study, a total of
337 samples and 15,073 genes were selected from TCGA
data after normalization for WGCNA. To ensure a scale-
free network, a power of β = 2 (scale-free R2 = 0:9) was cho-
sen as the soft-cutoff parameter (Figure 2). Nine modules
were identified through average linkage hierarchical cluster-
ing (Figure 3).

3.2. Screening of WGCNA Hub Module. Expression levels of
the whole module were represented as ME. The relationships
between ME and clinical characteristics were evaluated by
Pearson’s test [45]. P < 0:05 was considered statistically sig-
nificant. Data showed that modules and clinical characteris-
tics were significantly correlated. Based on the association
between modules and clinical characteristics (futime, fustat,
age, gender, grade, stage, pathologic T, pathologic M, patho-
logic N, and histological), blue and turquoise modules were
predicted to be key modules (Figure 4). Each module con-
sisted of coexpressed RNAs with a high TOM. Genes that
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Figure 7: Bar graph of GO enrichment analysis of important genes.
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were categorized into the same module formed networks
and were predicted to participate in analogous biological
processes. The networks for key modules were filtered at a
weight cutoff of 0.1 between genes. In total, 1,392 or
11,362 genes were acquired for the blue module or turquoise
module, respectively.

3.3. Screening of Active Compounds of QZC and Their
Targets. Chemical compounds of QZC were retrieved in
two ways. Some were retrieved from the TCMSP, ETCM,
and TCMID; others were collected from literatures. A total
of 134 compounds were obtained. Then, compounds
obtained from the three databases were screened with the
criteria of OB ≥ 30% and DL ≥ 0:18. For compounds
obtained from literatures, they were further reviewed, and

those without significant anticancer effect were removed.
As a result, a total of 35 compounds in AR, 34 compounds
in NRER, 16 compounds in IF, 17 compounds in PR, and
3 compounds in MARG were included. Based on compound
target collection and prediction, 290 targets from AR, 324
targets from NRER, 159 targets from IF, 207 targets from
PR, and 27 targets from MARG were acquired, respectively.
In total, 94 compounds and 471 targets were finally retrieved
after eliminating duplicates. Detailed information on com-
pounds is listed in Table 1.

3.4. Construction and Analysis of Drug-Compound-Target
Network. To build a visual active target network, 94 active
compounds and 471 target genes were introduced into
Cytoscape 3.8.0, which generated 573 nodes (94 active
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compound nodes, 471 target nodes, and 5 herb nodes) and
2,328 lines (Figure 5). The five orange arrows represented
5 herb nodes; blue circles represented the 471 target notes.
Targets with the highest degree values were at the center;
green squares represented the 99 active compound nodes,
and pink squares represented the active compound nodes
with the highest degree values. The nine active component
nodes with the highest “degree” values were luteolin, palmi-
tic acid, DL-glucuronic acid, daidzein, rutin, kaempferol,
oleic acid, beta-sitosterol, and quercetin. The drug-
compound-target network clearly indicated that each active
compound had multiple targets, and each target was regu-
lated by several active compounds. These results demon-
strated that QZC could exert considerable biological and

pharmacological effects through multiple active compounds
by binding to different targets.

3.5. Screening of Overlapping Targets and Construction of
PPI Network. To optimize gene ranges that might be highly
related to QZC’s active compounds, we screened target
genes overlapping blue module, turquoise module, and com-
pound targets by Venn. A total of 314 overlapping target
genes were considered potential targets for QZC against
GACA (Figure 6(a)). Next, the STRING database was used
to construct a PPI network for these 314 overlapping targets
to reveal underlying mechanisms. As shown in Figure 6(b),
after removing free genes, 211 nodes and 1,215 linkages
between genes were included in potential PPI networks after
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setting the combined score of 0.9 as the threshold and spe-
cies as “Homo sapiens.” Among them, 24 nodes with BC
values > themean of 0.0173, CC values > themean of
0.3677, and degree values > the double of 18.692 were
defined as the major nodes. And these 24 nodes were pre-
dicted to be the potential targets for QZC treating GACA,
which included TP53, EP300, AKT1, MAPK1, SRC, RELA,
JUN, HSP90AA1, MAPK8, RHOA, MAPK14, ESR1, NR3C1,
CDK1, EGFR, RB1, CCND1, RXRA, CXCL8, EDN1, PRKCA,
VEGFA, FOS, and PRKACA.

3.6. GO Term and KEGG Pathway Enrichment Analysis for
Potential Targets. Next, GO enrichment analyses, including
biological process (BP), molecular function (MF), and cellu-
lar component (CC), were performed to explore the under-
lying mechanisms of QZC against GACA. In addition,
KEGG functional enrichment analysis was also used to gain
insights into the mechanisms of QZC in treating GACA. A
total of 1,425 GO terms were obtained from GO enrichment
analysis of 24 potential target genes, of which 1,230, 107, and
88 terms were from BP, MF, and CC, respectively. The top
10 highly enriched terms for BP, MF, and CC are shown in
Figure 7. Moreover, there were 84 entries with FDR < 0:01
and P < 0:01 after KEGG enrichment analysis. The findings
suggested that QZC might exert its effects through the
abovementioned pathways in treating GACA. The top 30

KEGG pathways and their correlations with targets are dis-
played in Figures 8 and 9, respectively. Among them, 24 tar-
gets were significantly enriched in 10 pathways that were
closely associated with GACA. Moreover, the most overrep-
resented signal transduction pathways were PI3K/AKT and
MAPK pathways, as shown in Figure 10. These pathways
were involved in tumor occurrence and survival which have
been demonstrated by many studies and supposed to be key
pathways [46–48]. Our results indicated that these pathways
and their related targets needed to be further investigated in
the mechanistic study of QZC against GACA.

3.7. Molecular Docking Analysis. After network analysis, 8
PPI targets (i.e., TP53, EP300, AKT1, MAPK1, SRC, RELA,
JUN, and HSP90AA1) were selected to analyze their molec-
ular docking with 9 highly related QZC compounds (i.e.,
luteolin, palmitic acid, DL-glucuronic acid, daidzein, rutin,
kaempferol, oleic acid, beta-sitosterol, and quercetin) using
AutoDock Vina. The docking scores of 8 PPI targets with
9 highly related QZC compounds were shown as a heat
map (Figure 11). Binding energy ≤ −5:0 kJmol-1 was used
as the key criterion [49]. The binding affinity between targets
and active ingredients was better when binding energy was
lower [50]. A total of 63 compound-target pairs satisfied
the requirements. Of them, ten compound-target pairs with
strong binding efficiency are depicted in Figure 12. The
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maximum binding energy was found in SRC-rutin pairs,
forming 8 hydrogen bonds (ARG156, ARG160, GLU159,
GLN362, GLU517, TYR519, and PHE520), two hydrophobic
bonds (VAL364 and PHE520), π-stacking (PHE520), π-cat-
ion interactions (ARG156), and salt bridges (ARG156,
ARG160). In conjunction with literature analysis, the kinase
structural domain of SRC is usually located in a docking
groove directly below the active site cleft to bind substrates
or inhibitory fragments, such as VAL364 and PHE520,
which can be linked to kinases via hydrophobic interactions
[51, 52]. Note that the N-terminal lobe of the kinase con-
tains a long narrow hydrophobic patch along with the
SH2-kinase linker. This is, in part, compensated by
ARG156, GLU159, and ARG160 of the A-helix on the C-
terminal lobe of the SH2 domain [53, 54]. These sites can
be targeted by small molecule inhibitors to form protein-
protein interactions through linkages such as hydrogen
bonds, π-cation interactions, and salt bridges [55].
GLN362 is the terminal core site of the SH3 domain in
kinases and can bind targets by means of hydrogen bonds.
Studies have shown that mutational activation of pp60c-src
could lead to a tumorigenic phenotype in a hamster embryo
cell line [56]. Its mutation might have a relationship with
tumor development. Yaciuk et al. have compared the effects
of carboxyl terminal truncation and point mutations on

pp60c-src activities. S-fold-enhanced kinase activity has been
measured using the pp60c-src truncation mutant, and transla-
tion was found to be terminated after Glu 517 [57]. Other
studies showed that dephosphorylation of TYR527 could
activate pp60c-src in tumor-derived 4AT and 4BT cell lines
[58]. In summary, these bonds all played a key role in
protein-compound interaction. In contrast, although several
hydrogen bonds and hydrophobic interactions were found
in the RELA-palmitic acid pair and SRC-palmitic acid pair,
their binding energies were found to be maximal, with the
compound-target docking score being -5.0. TP53, AKT1,
and MAPK1 not only were the top three targets with the
largest degree values but also had high molecular docking
scoring values compared with the control group. Based on
the points, they are regarded as key targets by which QZC
exerts therapeutic effects on GACA. The molecular docking
scoring values, coupled with evidence from multiple litera-
tures, indicated that luteolin, rutin, quercetin, and kaemp-
ferol were the key active compounds closely related to the
treatment of GACA [58–61].

3.8. Survival Analysis. To investigate the prognostic values of
the top eight PPI genes, Kaplan-Meier plotter analysis was
performed. Analysis results showed that they were not sig-
nificantly associated with GACA patients’ survival. We also
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Figure 11: The heat map of 72 compound-target docking scores. Darker color represented lower molecular docking score. Pro-lig was used
as the control.
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Figure 12: Continued.
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Figure 12: Continued.
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found that abnormal expression of these eight PPI genes was
not associated with unfavorable RFS or OS in GACA
patients either, suggesting that the top eight PPI genes could
not be used as biomarkers for GACA (Figure 13).

3.9. Data-Based Expression Analysis of PPI Genes as well as
Their Corresponding Proteins. TCGA database was used to
explore the expression patterns of eight PPI genes (TP53,
AKT1, EP300, HSP90AA1, JUN, MAPK1, RELA, and SRC)
in normal and tumor tissues. Results shown in
Figure 14(a) indicate that all eight PPI genes were differen-
tially expressed between normal and tumor tissues, with sig-
nificant differences in the levels of TP53, EP300, HSP90AA1,
JUN, RELA, and SRC (P < 0:05). Based on clinical character-
istics, GACA patients were usually divided into four clinical
stages (Stages I-IV). According to the data acquired from
TCGA-STAD datasets, correlations between eight PPI gene
levels and four clinical stages were analyzed (Figure 14(b)),
and results showed that TP53 and JUN genes were signifi-
cantly associated with clinical stages (Kruskal test, P < 0:05
). The expression levels of the top eight PPI proteins in nor-
mal and tumor tissues were also explored based on the HPA
database. As shown in Figure 15, the protein levels of the top
eight PPI genes were largely consistent with that of mRNA
data.

3.10. Inhibition of SGC-7901 Cell Proliferation by Luteolin,
Rutin, Quercetin, and Kaempferol. The CCK-8 assay was
performed to assess whether or not the predicted four
active compounds (luteolin, rutin, quercetin, and kaemp-
ferol) could inhibit SGC-7901 cells’ proliferation. Accord-
ing to the literature, the tested concentrations of four

active compounds were set to 10, 20, 40, 80, and 100μM
for luteolin; 50, 100, 200, 300, and 400μM for rutin; 10,
20, 40, 80, and 100μM for quercetin; and 20, 40, 60, 80,
and 100μM for kaempferol. SGC-7901 cells were then
treated with four active compounds at the abovementioned
concentrations for 48h. The viability of nontreatment
SGC-7901 cells was defined as 100%. The smallest 48 h
IC50 value was observed in SGC-7901 cells treated by
luteolin (36.78), suggesting that luteolin had the strongest
inhibitory effect on SGC-7901 cell proliferation among
the four, followed by quercetin (62.63), kaempferol
(89.59), and rutin (414.4), respectively (Figure 16). Com-
bining with the cytotoxic effects of four compounds on
SGC-7901 cells at 24, 48, and 72h, our data clearly indi-
cated that luteolin, rutin, quercetin, and kaempferol signif-
icantly inhibited the proliferation of SGC-7901 cells in a
dose- and time-dependent manner.

3.11. Apoptosis of SGC-7901 Cells Induced by Luteolin, Rutin,
Quercetin, and Kaempferol. Flow cytometric analysis was
carried out to evaluate the apoptosis of SGC-7901 cells
induced by luteolin, rutin, quercetin, and kaempferol.
Results (Figure 17) demonstrated that, compared to the con-
trol group, all four compounds promoted the apoptosis of
SGC-7901 cells, with luteolin showing the strongest effect.

3.12. Effects of Luteolin, Rutin, Quercetin, and Kaempferol on
AKT, P53, and MAPK Protein Levels in SGC-7901 Cells.
Three major targets (AKT, P53, and MAPK) predicted by
both PPI analysis and molecular docking simulation were
further investigated to verify their promotive effects on the
apoptosis of SGC-7901 cells through Western blot. As

(i) (j)

Figure 12: The sketch map of ten compound-target pairs: (a) MAPK1-luteolin, (b) SRC-luteolin, (c) EP300-rutin, (d) AKT1-rutin, (e) SRC-
rutin, (f) HSP-rutin, (g) TP53-rutin, (h) MAPK1-que, (i) SRC-quercetin, and (j) SRC-kaempferol.

17Computational and Mathematical Methods in Medicine



Log-rank
p = 0.71

0.00

0.25

0.50

0.75

1.00

0 2.5 5 7.5 10
Times (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

148 31 4 2 1
148 31 8 1 0Low level

High level

0 2.5 5 7.5 10
Times (years)

Number at risk

OS

Log-rank
p = 0.94

0.00

0.25

0.50

0.75

1.00

10
Times (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

117 25 3 2 1
117 23 8 2 0Low level

High level

0 2.5 5 7.5

0 2.5 5 7.5 10
Times (years)

Number at risk

RFS

High level

Low level

(a)

Log-rank
p = 0.4

0.00

0.25

0.50

0.75

1.00

10
Times (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

148 41 4 1 0
148 21 8 2 1Low level

Highlevel

10
Times (years)

Number at risk

Log-rank
p = 0.6

0.00

0.25

0.50

0.75

1.00

10
Times (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

117 35 4 1 0
117 13 7 3 1Low level

High level

0 2.5 5 7.5

0 2.5 5 7.5

0 2.5 5 7.5

0 2.5 5 7.5 10
Times (years)

Number at risk

OS RFS

High level

Low level

(b)

Figure 13: Continued.
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shown in Figure 18, luteolin, rutin, quercetin, and kaemp-
ferol significantly decreased levels of AKT, but increased
levels of both P53 and MAPK, suggesting that the four com-
pounds inhibited SGC-7901 cell proliferation likely through
regulating the signaling pathways related to AKT, P53, and
MAPK.

4. Discussion

GACA is a common cancer with high mortality [1]. Scien-
tists and doctors have made many efforts in treating GACA
patients using a combination of different chemotherapeutic
agents. Nevertheless, chemotherapy’s efficacy is limited,

and the overall 5-year GACA survival rate remains poor
(about 27.4%) [62]. It is mainly due to severe adverse effects
and multidrug resistance (MDR) in GACA cells that reduce
chemosensitivity and efficacy [63]. In contrast, the applica-
tion of QZC, a Chinese herbal compound, can bypass those
side effects and exert a better therapeutic effect. Although the
positive effect of QZC in treating GACA has been demon-
strated, the mechanisms by which QZC inhibits the prolifer-
ation of GACA cells remain unclear. Therefore, to fully
develop and better utilize QZC in the future, combined net-
work pharmacology, bioinformatics, and experiments were
employed to explore the underlying therapeutic mechanisms
of QZC in treating GACA.
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Figure 13: Kaplan-Meier curves of top eight PPI genes in GACA: (a) TP53, (b) EP300, (c) AKT1, (d) MAPK1, (e) SRC, (f) RELA, (g) JUN,
and (h) HSP90AA1.
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A total of 94 active compounds in QZC and 471 targets
were confirmed, which suggested that QZC might treat
GACA through multiple targets. Based on the molecular
docking simulation results, quercetin, luteolin, kaempferol,
and rutin showed high molecular docking values with targets
and were anticipated as key active compounds for the anti-
GACA effect of QZC. The inhibitory effects of luteolin,
rutin, quercetin, and kaempferol on SGC-7901 cell prolifer-
ation were verified by the CCK-8 assay, which echoed the
molecular docking simulation results. As for quercetin,
existing studies have indicated that quercetin can exert its
antiproliferation effects by altering cell cycle progression,
inhibiting cell proliferation, promoting apoptosis, inhibiting
angiogenesis and metastasis progression, and affecting
autophagy [64]. In terms of luteolin, it could regulate various
signaling pathways (PI3K/AKT and p38 MAPK signaling
pathways) to inhibit GACA cell proliferation [65]. Kaemp-
ferol has been proven to suppress proliferation and promote

autophagy of GACA cells by upregulating miR-181a and
inactivating MAPK/ERK and PI3K pathways [66]. Rutin,
another pivotal compound identified in this study, exerted
its anticancer effect by regulating Wnt/β-catenin, P53-
independent pathway, PI3K/AKT, JAK/STAT, MAPK, P53,
and NF-κB signaling pathways [59]. Therefore, we specu-
lated that QZC, a multicomponent compound, might exert
its pharmacological effects in treating GACA through multi-
targets, which deserves a systematic exploration.

The PPI results demonstrated that TP53, AKT1, EP300,
HSP90AA1, JUN, MAPK1, RELA, and SRC were the top
eight proteins having more interactions with other protein
targets. These eight corresponding genes were subjected to
surviving analysis. Of them, TP53 and JUN genes were not
only significantly differentially expressed between normal
and GACA tissues but also correlated with clinical stages,
suggesting that these two genes could serve as underlying
biomarkers for GACA patients’ prognosis. According to
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Figure 14: The mRNA expression levels of the top eight PPI genes in GACA patients: (a) mRNA expression levels between normal and
GACA tissues; (b) mRNA expression levels in four clinical stages (Stages I-IV).
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molecular docking simulation results, TP53, MAPK1, and
AKT1 that showed a strong affinity with QZC active com-
pounds were considered hub protein targets, and these three
hub protein targets were highly likely to interact with QZC
active compounds to inhibit GACA cell proliferation.
TP53, one of the most frequently mutated genes in human
cancer, is a multifunctional transcription factor that induces
cell cycle arrest and apoptosis by regulating the expression of
its target genes and noncoding genes [67]. Therefore, TP53
is believed to serve as a pivotal regulator that prevents the
abnormal proliferation of transformed cells [68]. TP53 has
become a hot spot for cancer diagnosis and treatment, and
targeting the TP53 oncogenic pathway has become a trend
in developing drugs for GACA. Li et al. have mentioned that
quercetin increased the expression of TP53 in human
GACA. In the present study, we also found an increase in
TP53 expression after quercetin treatment, which was con-
sistent with previous studies [61]. MAPK1, a member of
the MAPK family, can be targeted and inhibited by miRNAs,
resulting in the inhibition of GACA cell proliferation, cell

cycle progression, migration, and invasion [69]. Many
reports have demonstrated that MAPK1 is an important
oncogene that promotes the proliferation, migration, and
invasion of GACA cells [70]. It is reasonable to infer that
overexpression of MAPK1 is one of the major contributing
factors to GACA development. Our study demonstrated that
rutin contained in QZC could reduce MAPK1 expression in
SGC-7901 cells. In combination with previous studies, rutin
might exert antitumor effects against GACA through the
MAPK pathway [71]. AKT1 has been shown to promote cell
survival and inhibit diverse stimulus-induced apoptosis,
including loss of growth factors and cell adhesion [72].
AKT1 is also a potential target for cancer therapy because
AKT1 activation is frequently a determinant for tumorigen-
esis, especially in advanced cancer [73]. Its functions involve
activating downstream targets of survival, proliferation, cell
cycle regulation, growth, migration, and angiogenesis [48].
In addition, reports have indicated that treating GACA
patients with chemotherapy can enhance AKT1 activity,
resulting in drug resistance in GACA patients [74].

Normal GACA

TP53 SRC

RELAEP300
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MAPK1 HSP90AA1

JUN

Normal GACA

Figure 15: Protein expression levels of TP53, EP300, AKT1, MAPK1, SRC, RELA, JUN, and HSP90AA1 in normal and GACA tissues based
on immunohistochemistry data from HPA.
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Figure 16: Continued.
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Therefore, inhibiting AKT1 activity is believed to be an
effective way to alleviate drug resistance during chemother-
apy [75].

Abnormal proliferation and insufficient apoptosis in
tumor cells are believed to be the two main factors contrib-
uting to the onset and development of cancer. Consequently,
finding a way to inhibit the proliferation and promote apo-
ptosis of tumor cells would be a potential and effective strat-
egy for cancer treatment. To date, plenty of studies have
proved that TCM active compounds fight against cancers
by both suppressing tumor cell proliferation and inducing
tumor cell apoptosis through diverse signaling pathways
[69]. The flow cytometry results confirmed that QZC’s four
active components (luteolin, rutin, quercetin, and kaemp-
ferol) not only inhibited the proliferation of GACA cells
but also induced apoptosis of GACA cells.

KEGG pathway analysis showed that genes identified as
potential therapeutic targets were enriched in several
cancer-related signaling pathways, such as PI3K/AKT sig-
naling pathway, and MAPK signaling pathway. Among
them, the PI3K/AKT pathway is often excessively activated
in a variety of cancers [76], and several genes that were
acquired by PPI analysis in our study belong to the PI3K/
AKT pathway. These genes were considered the most avail-
able intracellular targets and thus would be ideal for devel-
oping small molecular inhibitors. AKT phosphorylation
can be intensified due to aberrant activation of the PI3K/
AKT pathway [76]. When AKT is phosphorylated, MDM2,
one of the major negative regulators of P53, is translocated
into the nucleus to ubiquitinated P53, leading to its nuclear
exportation and degradation and causing chromosome
instability of tumor cells [77, 78]. Aberrantly activating the

PI3K/AKT pathway by abnormal expression of these pro-
teins can significantly enhance GACA progression [79]. To
verify the predictions of the combined bioinformatic analy-
ses, we performed the Western blotting assay to check the
protein levels of AKT, P53, and MAPK in SGC-7901 cells
treated with luteolin, rutin, quercetin, or kaempferol, respec-
tively. The results indicated that these four active com-
pounds significantly decreased the protein levels of AKT,
but increased the protein levels of both P53 and MAPK.
Hence, mediating the pathways containing these targets
would be an effective strategy for QZC to exert its anti-
GACA effects.

The central idea of TCM has a lot in common with net-
work pharmacology, which is capable of systematically inter-
preting the treatment process of complicated diseases. In
addition to network pharmacology, WGCNA, and data-
based gene and protein expression analysis, this study also
included molecular experiments to investigate the underly-
ing mechanisms by which QZC exerts effects on GACA at
both cellular and molecular levels. Although many advan-
tages are apparent when using the combined approaches,
the limitations cannot be neglected. First, a few pivotal tar-
gets and active compounds may be ignored if the informa-
tion from databases was incomplete. Second, various
signaling pathways through which QZC exerts its therapeu-
tic effects on GACA were predicted by combined bioinfor-
matic analyses, but experimental verification of the
involvement of each pathway was not fully completed.
Third, although our results provided important information
about the mechanisms by which QZC exerts effects on
GACA, further exploration is still needed owning to the
complicated therapeutic mechanisms.
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Figure 16: Inhibitory effects of four active compounds on SGC-7901 cells’ proliferation: (a) quercetin; (b) kaempferol; (c) luteolin; (d) rutin;
(e) time-dependent inhibitory effects of four active compounds on SGC-7901 cells’ proliferation. The data were expressed as mean ± SD ð
n = 3Þ.
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Figure 17: Continued.
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Figure 17: Apoptosis of SGC-7901 cells treated with four active compounds for 24 h: (a) control, (b) quercetin, (c) rutin, (d) kaempferol,
and (e) luteolin.
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Figure 18: Effects of four active compounds on protein levels of p-AKT, AKT, p-P53, P53, p-MAPK, and MAPK in SGC-7901 cells: (a)
control, (b) quercetin, (c) rutin, (d) kaempferol, and (e) luteolin. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 vs. control group.
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5. Conclusion

In summary, luteolin, rutin, quercetin, and kaempferol were
identified as the crucial active compounds in QZC. AKT1,
MAPK1, and TP53 were predicted to be hub protein targets.
Molecular docking simulation suggested that these four
active compounds could bind to the three hub protein tar-
gets. QZC acts on GACA possibly via regulating multiple
signaling pathways, including the MAPK signaling pathway,
PI3K/AKT signaling pathway, and TP53 signaling pathway.
According to the experimental validation, we believed that
QZC exerted therapeutic effects on GACA by regulating
the expression of hub target proteins, inhibiting tumor cell
proliferation, and enhancing tumor cell apoptosis. Our study
elucidated the potential pharmacological mechanisms of
QZC in the treatment of GACA and provided new ideas
for developing targeted auxiliary anticancer drugs.
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