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Esophageal squamous cell carcinoma (ESCC) is one of the highest incidence and mortality cancers in the world. An effective
survival prediction model can improve the quality of patients’ survival. Therefore, a parameter-optimized deep belief network
based on the improved Archimedes optimization algorithm is proposed in this paper for the survival prediction of patients
with ESCC. Firstly, a combination of features significantly associated with the survival of patients is found by the minimum
redundancy and maximum relevancy (MRMR) algorithm. Secondly, a DBN network is introduced to make predictions for
survival of patients. Aiming at the problem that the deep belief network model is affected by parameters in the construction
process, this paper uses the Archimedes optimization algorithm to optimize the learning rate α and batch size β of DBN. In
order to overcome the problem that AOA is prone to fall into local optimum and low search accuracy, an improved
Archimedes optimization algorithm (IAOA) is proposed. On this basis, a survival prediction model for patients with ESCC is
constructed. Finally, accuracy comparison tests are carried out on IAOA-DBN, AOA-DBN, SSA-DBN, PSO-DBN, BES-DBN,
IAOA-SVM, and IAOA-BPNN models. The results show that the IAOA-DBN model can effectively predict the five-year
survival rate of patients and provide a reference for the clinical judgment of patients with ESCC.

1. Introduction

Cancer is the second leading cause of death in the world and
poses a great danger to human health [1, 2]. There will be
approximately 19.29 million new cancer cases and 9.95 mil-
lion cancer deaths worldwide in 2021 [3]. Esophageal cancer
is the sixth most common cause of cancer-related death
worldwide, including esophageal squamous cell carcinoma
and esophageal adenocarcinoma [4]. More than 90% of
esophageal cancers are esophageal squamous cell carcinoma
(ESCC). The pathology of esophageal squamous cell carci-

noma is complex, and it is often found at an advanced stage,
which brings a huge burden to the patient’s family [5, 6]. In
recent years, the incidence of esophageal squamous cell car-
cinoma has been increasing [7], and the mortality rate is still
high [8, 9].

One of the most fundamental difficulties in the treat-
ment of ESCC is the lack of effective methods for predicting
survival risk [10, 11]. Currently, with the more in-depth
research on ESCC and the continuous development of med-
ical technology [12], the use of various types of intelligent
systems in esophageal cancer diagnosis is increasing [13].
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The treatment methods and treatment concepts for patients
with ESCC have continued to rise [14]. However, as with
other malignancies, the incidence of patients with ESCC is
increasing. Even for professional doctors, it is difficult to
judge the patient’s ultimate risk of survival [15].

Generally, blood indicators, age, and TNM stage infor-
mation are considered related to the survival rate of cancer
patients, and they are often used to predict the survival sta-
tus of patients [16–18]. In recent years, with the continuous
progress of machine learning technology, more and more
intelligent algorithms are proposed and applied in multiple
fields [19–21]. In the medical field, the research on the sur-
vival risk of cancer patients has become a popular research
content [22]. A reasonable survival prediction model will
effectively improve the survival of cancer patients. Essen-
tially, the cancer patient survival prediction model is a clas-
sification problem [23], including the screening of datasets
and analyzing the connections between the data. So far,
many data mining methods have been proposed in the liter-
ature to predict the survival status of esophageal cancer
patients [24, 25]. In [26], 90 breast cancer risk miRNAs are
predicted based on the proposed DMTN by using the SVM
classifier, which obtained an AUV of 0.9633. The method
of backpropagation artificial neural network is adopted to
predict whether postoperative fatigue occurred in patients
undergoing gastrointestinal tumor surgery in [27], and the
accuracy rate reached 0.872.

The above approach based on shallow architecture
achieves good performance in cancer prediction problems.
However, since the classification accuracy of shallow learn-
ing depends largely on the quality of the extracted features,
it may cause problems when dealing with more complex
applications [28]. In fact, for high latitude and complex can-
cer patient data, it is not sufficient to use simple traditional
shallow architecture to solve it [29]. Correspondingly, the
deep learning model has multiple nonlinear network struc-
tures, which enable it to extract the features of the original
data from the hidden layer step by step and improve the
classification and prediction accuracy of the model [30,
31]. Therefore, a network structure with deeper layers is
preferred.

Deep learning is a new direction in the field of machine
learning that models high-level abstractions in input data
with hierarchies and multiple layers [32, 33]. Through the
establishment of artificial neural network with a network
hierarchy, multiple layers gradually extract higher-level fea-
tures from the original input for learning. Different types
of deep neural networks for classification prediction have
been used in multiple literatures [34–36]. DBN is a probabi-
listic generative network, which is considered more suitable
for prediction of cancer classification with high feature sim-
ilarity and complexity [37]. However, in the process of
building DBN, improper parameter setting will lead to the
instability of the model and the problem of poor classifica-
tion accuracy. Often, the selection of parameters still relies
on the experience of experts to be manually tuned. Aiming
at the above problems, a cancer patient survival prediction
model based on the improved Archimedes optimization
algorithm (IAOA) to optimize DBN parameters is proposed.

In this paper, seventeen blood indicators, age, and TNM
staging information of 298 patients with ESCC are studied.
Firstly, the clinical data of cancer patients are selected by
the minimum redundancy and maximum relevancy algo-
rithm, and the feature indexes are sorted according to their
importance. A combination of eleven indicators is selected
that is significantly associated with patient survival, which
is verified by the Cox regression method in the SPSS soft-
ware. Secondly, the IAOA is introduced to optimize the
parameters in the DBN network training process to improve
the stability and classification accuracy of the DBN model.
Finally, a survival prediction model of patients with ESCC
based on IAOA-DBN is established. The above eleven
related indicators are used as inputs, and the five-year sur-
vival rate of the patient is used as output. The prediction
accuracy rate of IAOA-DBN is better than the existing
AOA-DBN, SSA-DBN, PSO-DBN, BES-DBN, IAOA-SVM,
and IAOA-BPNN. Therefore, the method for survival diag-
nosis of patients with ESCC proposed in this paper can accu-
rately predict the survival level of patients. The main
contributions of this article can be summarized as follows:

(1) A combination of eleven indicators is found based
on minimum redundancy and maximum relevancy
feature selection, which is verified to be significantly
associated with survival in patients with ESCC

(2) The proposed method uses IAOA to optimize the
parameters of the DBN, which effectively improves
the stability and classification accuracy of the DBN
network. The problem that AOA tends to fall into
local optimum and low convergence accuracy is
effectively improved by the IAOA. Through the
establishment of the IAOA-DBN model, the five-
year survival rate of patients with ESCC is effectively
predicted

This work is presented as follows. In Section 2, the orig-
inal data is analyzed, and a combination of multiple indica-
tors that is significantly related to patient survival is found
based on minimum redundancy and maximum relevancy
algorithm. An improved Archimedes algorithm is proposed
in Section 3, which can effectively improve the optimization
accuracy and stability of AOA. In Section 4, a survival pre-
diction model based on IAOA-DBN is proposed, which
can effectively predict the five-year survival rate of patients
with ESCC. In Section 5, the conclusions of this article are
presented.

2. Dataset Analysis

2.1. Data Introduction. The clinical data of 298 patients with
ESCC used in this article are from patients who were treated
in the First Affiliated Hospital of Zhengzhou University from
January 2007 to December 2018. The clinical information
includes seventeen blood indicators, age, and TNM staging
information. The seventeen blood indicators are basophil
count (BASO), eosinophil count (EO), fibrinogen (FIB),
platelet count (PTL), albumin (ALB), hemoglobin concentra-
tion (HGB), white blood cell count (WBC), monocyte count
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(MONO), activated partial thromboplastin time (APTT),
globulin (GLOB), red blood cell count (RBC), prothrombin
time (PT), lymphocyte count (LYMPH), neutrophil count
(NEUT), total protein (TP), international normalized ratio
(INR), and thrombin time (TT). The population proportion
information of the dataset is shown in Table 1. Information
of seventeen blood indicators is shown in Table 2.

Among all patients, 147 patients survived more than five
years, 151 patients survived less than five years, and the data
are evenly distributed. The age distribution of the patients
ranged from 38 to 82 years, including 190 male patients
and 108 female patients. In addition, the selected patients
should have complete treatment records and be followed
up for more than six months.

2.2. Minimum Redundancy and Maximum Relevancy
Algorithm. The minimum redundancy and maximum rele-
vancy (MRMR) algorithm [38] is a typical feature selection
method. The purpose of MRMR is to select the features with
the minimal redundancy and the maximal relevance with
the class label. The relevance between features and class
labels is represented by mutual information. The mutual
information is calculated as Equation (1).

I x ; yð Þ =∬p x, yð Þ log p x, yð Þ
p xð Þp yð Þ dxdy, ð1Þ

where x and y are given two random variables, pðx, yÞ is the
joint probability density function of x and y, pðxÞ and pðyÞ
are the probability density functions of x and y, respectively.
The minimum redundancy and maximum relevancy are cal-
culated as follows, respectively.

max D S, cð Þ ;D =
1
Sj j 〠xi∈S

I xi ; cð Þ, ð2Þ

min R Sð Þ ; R =
1
Sj j2 〠

xi ,xj∈S
I xi ; xj
� �

, ð3Þ

where S and jSj are feature subsets and the number of
features contained therein, respectively, C is the class label,
Iðxi ; cÞ is the mutual information between feature i and class
label C, Iðxi ; xjÞ is the mutual information between feature i
and feature j, D is the mean between each feature in the fea-
ture set S and the class label C, indicating the relevance
between the feature set and the corresponding class label,
and R is the size of the mutual information between the fea-
tures in the feature set S, which represents the redundancy
between the features.

The goal of the MRMR algorithm is to maximize the
classification performance of the selected feature subset
while minimizing the feature dimension. Therefore, it is
required that the relevance between the feature subset and
the label is the largest, and the redundancy between the fea-
tures is the least. The minimum redundancy and maximum
relevancy are constructed as follows.

max Φ1 D, Rð Þ,Φ1 =D − R: ð4Þ

The main process of minimum redundancy and maxi-
mum relevancy (MRMR) algorithm is as follows.

2.2.1. Step 1: The First Feature Is Selected. The mutual infor-
mation between all candidate variables and target variables
in the clinical data of esophageal cancer patients is calcu-
lated. The feature variable with the largest mutual informa-
tion is the first feature variable selected.

2.2.2. Step 2: The Second Feature Is Selected. The redundancy
between the selected first feature and the other features is
calculated. The feature variable with the least redundancy
is the second feature variable.

2.2.3. Step 3: Sequential Selection of Other Features. Based on
the selected two feature variables, the selection of the next
feature variable is required to make the selected feature sub-
set have the largest relevance with the target variable and the
least redundancy with the selected feature. Therefore, it is
necessary to satisfy the minimum redundancy and maxi-
mum relevancy criterion of Equation (4). Repeat the calcula-
tion of the criteria shown in Equation (4), and add the
variables that meet the requirements to the selected feature
subset in turn. When the number of selected features meets
the requirements, the algorithm ends.

In order to clearly express the MRMR process, the
framework of MRMR is shown in Algorithm 1.

2.3. Selection of Optimal Subset Combinations. The patients’
17 blood indicators, age, and TNM staging information
are used as input and five-year survival status as output.
The patients’ indicators are reordered according to their
importance by the MRMR method. The reordered dataset
is put into the BP neural network [39], and the classification
accuracy of the feature combination is verified by tenfold

Table 1: Population proportion information of the dataset.

Project Category
Number of
population

Percentage of
population

Genders
Male 186 62.4%

Female 112 37.6%

Ages
≤61.5 192 64.4%

61:5 112 37.6%

T stages

T1 42 14.1%

T2 89 29.9%

T3 165 55.4%

T4 2 0.6%

N stages

N0 170 57.1%

N1 80 26.8%

N2 34 11.4%

N3 14 4.7%

TNM stages

1 37 12.4%

2 139 46.6%

3 106 35.6%

4 16 5.4%
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cross-validation. When the highest classification accuracy is
achieved, the combination with the smallest number of fea-
tures is the optimal feature combination. The result is shown
in Figure 1. When the highest classification accuracy is
achieved, the number of features is eleven. Therefore, the
features selected in this paper are the first eleven features.
The eleven features are TNM stage, BASO, Age, PT, FIB,
LYMPH, RBC, TT, PLT, T stage, and GLOB.

2.4. Cox Regression Analysis to Verify the Correlation of
Indicators. Cox regression models [40] are widely used in
the medical field to analyze the effects of multiple variables
on survival status and survival time. In this section, Cox
regression models are used to further validate the correlation
of selected features with a 5-year survival status and survival
time of patients with ESCC. The SPSS 26.0 statistical soft-
ware is used to make the Cox model. The survival time

Table 2: Basic information about seventeen blood indicators.

Variable Mean Median (range) Variance Standard deviation

BASO 0.050 0 (0-1) 0.014 0.118

EO 0.144 0.1 (0-3) 0.074 0.272

FIB 379.262 362.811 (167.613-909.725) 924.038 30.398

PTL 226.289 227.5 (45-448) 62.902 7.931

ALB 42.077 42 (27-59) 25.055 5.005

HGB 137.742 139 (95-189) 227.216 15.074

WBC 6.564 6.1 (2.18-15.3) 4.077 2.019

MONO 0.406 0 (0-1) 0.091 0.301

APTT 35.929 35.1 (15.4-78.5) 62.479 7.904

GLOB 29.077 29 (17-45) 26.240 5.122

RBC 4.452 4.5 (2.93-6.04) 0.224 0.473

PT 10.322 10.2 (7-16.5) 2.834 1.684

LYMPH 1.930 1.905 (0-8) 0.479 0.692

NEUT 3.864 3.5 (0-10.6) 2.829 1.682

TP 71.070 71 (50-92) 51.971 7.209

INR 0.796 0.78 (0.45-1.64) 0.034 0.185

TT 15.569 15.7 (1.3-46.5) 6.629 2.575

The unit of WBC, LYMPH, GLOB, ALB, RBC, BASO, EO, NEUT, TP, HGB, and PLT is g/L. The unit of PT, TT, APTT is second(s). The unit of FIB is mg/L.

Input:F: original feature set
jFj: the number of features contained in the original feature set F.
C: class label set

Output: S: feature sorted set
1: S⟵∅ ;
2: for f =1: jFj
3: The mutual information of each feature is calculated by Equation(1) and stored in the Mutual set set.
4: fmax = max sortfMutualsetg
5: F ⟵ F \ fmax ; S⟵ fmax
6: end for
7: for f =1: jFj-1
8: The redundancy between f max and the rest of the features is calculated by Equation(2) and stored in the Redundancy set set.
9: fmin = min sortfRedundancysetg
10: F ⟵ F \ fmin ; S⟵ fmin
11: end for
12: for f = 1: ∣F ∣ −2
13: The minimum redundancy and maximum relevancy of each feature is calculated by Equation(4) and sorted in the MRMR set.
14: S⟵ S ∪MRMR
15: end for
16: The sorted set S is output.

Algorithm 1: Framework of MRMR.
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and survival outcome of patients with ESCC are used as
dependent variables. The above eleven indicators are inde-
pendent variables. The survival function at the mean of the
covariate is shown in Figure 2. The results show that the p
value of the overall score of the eleven indicators is much
less than 0.05. The combination of these eleven indicators
is significantly related to the survival rate of patients.

3. Improving the Archimedes
Optimization Algorithm

3.1. Basic Archimedes Optimization Algorithm. The Archi-
medes optimization algorithm [41] (AOA) is a new meta-
heuristic algorithm proposed in 2020. In this algorithm,
the population individuals are submerged objects, and the
population position is updated by adjusting the density, vol-
ume, and acceleration of the objects. According to whether
the objects collide in the liquid, AOA is divided into a global
exploration stage and a local search stage. If the objects do
not collide, the global exploration phase is performed.
Instead, a partial development phase is performed.

3.1.1. Initial Stage. In the initialization phase, AOA ran-
domly initializes the density (den), volume (vol), and accel-
eration (acc) of individuals in the population. The current
optimal individual (xbest), optimal density (denbest), optimal
volume (volbest), and optimal acceleration (accbest) are
selected. In the AOA, the individual density, volume and
transfer factor TF are calculated as Equations (5)–(7),
respectively.

dent+1i = denti + rand × denbest − denti
� �

, ð5Þ

volt+1i = volti + rand × volbest − volti
� �

, ð6Þ

where rand is a random number between (0,1). denti and
dent+1i are the densities of the individual i for the genera-
tion t and the generation t + 1, respectively. volti and volt+1i
are the volumes of the individual i in the generation t and
the generation t + 1, respectively.

TF = exp
t − tmax
tmax

� �
, ð7Þ

where t is the current iteration number and tmax is the
maximum iteration number.

When TF ≤ 0:5, AOA performs a global search, and the
update of the individual acceleration is calculated as follows.

acct+1i =
denbest + volbest × accbest

dent+1i × volt+1i

: ð8Þ

When TF = 0:5, AOA is developed locally, and the indi-
vidual acceleration is updated to the following:

acct+1i =
denbest + volbest × accbest

dent+1i × volt+1i

: ð9Þ

The acceleration of the individual is normalized to
obtain Equation (10).

acct+1i−norm = u ×
acct+1i +min accð Þ

max accð Þ ×min accð Þ + l, ð10Þ

where acct+1i−norm is the normalized acceleration of the
individual i in the t generation, u and l are the parameters
for adjusting the normalization range.

During the global search phase, the individual positions
are updated by Equation (11).

xt+1i = xti + C1 ∗ rand ∗ acct+1i−norm ∗ d ∗ xrand − xti
� � ð11Þ

where xt+1i and xti are the positions of individuals in the
t + 1 and t generations and xrand is the positions of random
individuals in the generation t. rand ∈ ð0, 1Þ is a random
number. C1 is a fixed constant. d is the density factor, which
is calculated as follows.

dt+1 = exp
tmax − t
tmax

� �
−

t
tmax

� �
: ð12Þ

During the local development stage, the individual posi-
tion is updated by Equation (13).

xt+1i = xtbest + F × c2 × rand × acct+1i−norm × d × T × xbest − xti
� �

,
ð13Þ

where c2 is a fixed constant and F is the direction factor that
determines the update direction of the individual position,
which is constructed as follows:

F =
+1 if p ≤ 0:5

−1 if p 0:5,

(
ð14Þ

where p = 2 × rand − C4 and C4 is a fixed constant. T =
C3 × TF, and T ∈ ½C3 × 0:3,1:�
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Figure 1: The change of classification accuracy with the number of
feature variables.
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3.2. Improved Archimedean Optimization Algorithm. In the
basic AOA, the update of the optimal individual of the
population depends on the update of the population in each
iteration. After each iteration, the optimal individual is
replaced by the individual with the best fitness, and the algo-
rithm does not actively disturb the optimal individual. When
the optimal individual of the population falls into the local
extremum space, the algorithm will fall into the local
optimum, and the phenomenon of premature convergence
will occur [42]. Therefore, this paper introduces the corre-
sponding improvement strategy to improve the defects of
the basic AOA. Firstly, Sine chaos mapping and reverse
learning strategies are used to initialize the population,
which can enhance the population diversity and improve
the solving efficiency. Secondly, Gaussian variation and
superior selection strategies are used to perturb the positions
of optimal individuals, which can enhance the global search
ability and help the population to jump out of the local
optimum. In this paper, the improved AOA is called IAOA.
The specific strategy is as follows.

3.2.1. Sine Chaos Reverse Learning Initialization Strategy.
The population of AOA is initialized by random genera-
tion. This leads to uneven distribution of individuals in
the initial population, which affects the later iterative opti-
mization. The Sine chaotic model [43] is a chaotic model
with good randomness and ergodicity with infinite num-
ber of map foldings. Reverse learning [44] can obtain its
corresponding reverse solution through the current solu-
tion. The optimal initial solution can be obtained by com-
paring and selecting a better solution. In this paper, the
Sine chaotic strategy is used to generate an initial popula-
tion with better diversity. Second, the reverse population is
generated according to reverse learning. Finally, the fitness
of the obtained population is calculated, and the solution
with low fitness is selected as the initial population to
improve the probability of obtaining the optimal initial

solution. The 1-dimensional mapping expression of Sine
chaos is calculated as the follows.

Xt+1 = sin 2/Xtð Þ
−1 ≤ Xt ≤ 1,

(
ð15Þ

where t = 0, 1, 2⋯ , T and Xn ≠ 0.
The population X = fXi, i = 1, 2,⋯:Tg, Xj = fXj, j = 1,

2,⋯dimg is obtained by mapping the Sine chaos into
the solution space. The population individuals are repre-
sented as follows.

Xi+1,j = sin 2/Xi,j
� � ð16Þ

where Xi+1,j is the dimensional j value of the population
i + 1.

The reverse population can be represented as X∗ =
fXi

∗, i = 1, 2,⋯Tg, X∗
i = fX∗

ij, j = 1, 2,⋯dimg. The reverse
population individual X∗

ij can be calculated by the fol-
lowing.

X∗
ij = Xmin j + Xmax j − Xij, ð17Þ

where ½Xmin j, Xmax j� is the population search dynamic
boundary.

The new population fX ∪ X∗g is formed by the Sine cha-
otic population X and the reverse population X∗. The fitness
values of the new population are ranked, and N individuals
with the best fitness values are selected to form the initial
population.

3.2.2. Gaussian Operator and Superior Selection Strategy.
The Gaussian operator [45, 46] is introduced in this paper
in order to avoid AOA from falling into local optimum
and to maintain the diversity of individuals in the popula-
tion. The current optimal solution Xbest

t is subjected to
Gaussian variation with certain probability p, and a merito-
cratic selection strategy is taken. The expression of the
Gaussian variational operator is calculated as follows:

Xt+1
i = Xt

i × 1 +Gauss δð Þð Þ, ð18Þ

where Xt+1
i denotes the individual position after variation

and GaussðδÞ is a random variable satisfying a Gaussian dis-
tribution. The global optimal solution position is updated as
follows.

Xt+1
best =

Xt+1
i , otherwise

Xt
i , f Xt+1

i

� �
> f Xt

i

� �
and ran d1 < p,

(
ð19Þ

where rand1 is a random variable between ½0, 1�, p is the
probability of superior selection, and f ð:Þ is the individual
fitness value. Therefore, variational operations on the global
optimal solution can avoid the algorithm from falling into a
local optimum and effectively improve the search efficiency.
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Figure 2: Survival function at the mean of the covariate. The
survival years are taken as the time, the eleven indicators
obtained from minimum redundancy and maximum relevancy
algorithm.
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In order to clearly express the IAOA process, the frame-
work of IAOA is shown in Algorithm 2.

3.2.3. IAOA Validation and Comparison. In order to fully
verify the effectiveness of the IAOA proposed in this paper,
the improved Archimedes optimization algorithm, Archi-
medes optimization algorithm, sparrow search algorithm
[47], and bald eagle search algorithm [48] are compared
and tested under thirteen benchmark functions at the same
time. The selected benchmark functions are classified into
three categories. The first category is the single-peak bench-
mark function, as shown in F1-F5 in Table 3. The second
category is the multipeak benchmark function, as shown in
F6-F10 in Table 3. The third category is the multimodal
benchmark function with fixed dimension, as shown in
F11-F13 in Table 3. The basic parameters of the algorithm
are as follows: the population size is 30, and the maximum
number of iterations is 500. The other parameters within
the algorithm are shown in Table 4. The experimental results
are presented in Tables 5 and 6. The optimization ability of
the algorithm is reflected by the optimal value and the aver-
age value, and the stability of the algorithm is reflected by
the standard deviation. Firstly, for the five single-peaked
functions, IAOA has higher convergence accuracy and sta-
bility compared to other algorithms. Secondly, F6 and F8
are able to reach the theoretical optimum when solving for
the multipeak function. For other multipeaked functions,
IAOA has the best search accuracy and stability. For fixed
dimensional functions, IAOA is also better than other algo-
rithms. Therefore, the improvement strategy proposed in
this paper has improved the performance of the algorithm
to some extent.

Input: Initialize algorithm related parameters: the maximum number of iterations Tmax, population search boundary ½ub, lb�, param-
eters C1, C2, C3, C4, density (den), volume (vol), and acceleration (acc).
1: The population is initialized by using the Sine chaos reverse learning strategy
2: while ðt < TmaxÞ
3: for i = 1 toN do
4: The den and vol are updated by Equations (5) and (6);
5: The TF is calculated by Equation (7);
6: The d is calculated by Equation (12);
7: if TF≤ 0:5 then
8: The acct+1i is updated by Equation (8);
9: The acct+1i−norm is updated by Equation (10);
10: The position is updated by Equation (11);
11: else
12: The acct+1i is updated by Equation (9);
13: The acct+1i−norm is updated by Equation (10);
14: The position is updated by Equation (13);
15: end if;
16: end for
17: The population position is perturbed according to Equation (17)
18: The position is updated when the new position is better than the previous one;
19: t = t + 1
20: end while
21: The global optimal solution is output

Algorithm 2: Framework of IAOA.

Table 3: Baseline test functions.

Funs Name Range Optimum

F1 Sphere −100,100½ �D Min = 0

F2 Schwefel2.22 −10, 10½ �D Min = 0

F3 Schwefel1.20 −100,100½ �D Min = 0

F4 Schwefel2.21 −100,100½ �D Min = 0

F5 Quartic −1:28,1:28½ �D Min = 0

F6 Rastraign −32, 32½ �D Min = 0

F7 Ackley −600,600½ �D Min = 0

F8 Griewank −600,600½ �D Min = 0

F9 Penalized 1 −50, 50½ �D Min = 0

F10 Penalized 2 −50, 50½ �D Min = 0

F11 Kowalik’s −5, 5½ �2 3:08E − 04

F12 Six-hump −5, 5½ �2 −1:03E + 00

F13 Branin [-5,10]∪ 0, 15½ �2 3:98E − 01

Table 4: Algorithm parameter settings.

Algorithm Main parameters

AOA C1 = 2, C2 = 6, C3 = 1, C4 = 2

IAOA C1 = 2, C2 = 6, C3 = 1, C4 = 2

SSA ST = 0:6, PD = 0:7, SD = 0:2

BES a = 10; R = 1:5
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4. Survival Prediction Model of Patients with
ESCC Based on IAOA-DBN

4.1. An Overview of DBN. The deep belief network (DBN) is
a probabilistic generative network. It is composed by a
bunch of restricted Boltzmann machines (RBMs) and a
backpropagation (BP) neural network [49]. The learning
process of DBN can be divided into pretraining and fine-

tuning. During the pretraining process, each RBM is trained
individually by an unsupervised learning algorithm in turn,
and the network parameters of each layer are gradually
adjusted. In the fine-tuning process, the classification labels
are used as the output layer of the DBN. The BP neural net-
work is trained sequentially from top to bottom, and the
training error is propagated back to the RBM to fine-tune
the parameters of all layers to reach the global optimal

Table 5: Comparison with the results of 3 metaheuristic algorithms.

Statistics Algorithm F1 F2 F3 F4 F5 F6 F7

Best

IAOA 0:00E + 00 0:00E + 00 0:00E + 00 0:00E + 00 5:26E − 06 0:00E + 00 8:88E − 16

AOA 4:93E − 126 5:61E − 60 1:27E − 100 1:55E − 59 9:09E − 05 0:00E + 00 8:88E − 16

SSA 0:00E + 00 0:00E + 00 0:00E + 00 0:00E + 00 3:54E − 05 0:00E + 00 8:88E − 16

BES 5:31E − 46 8:70E − 29 8:10E − 19 8:13E − 14 5:36E − 05 0:00E + 00 8:88E − 16

Mean

IAOA 0:00E + 00 0:00E + 00 0:00E + 00 0:00E + 00 9:89E − 05 0:00E + 00 8:88E − 16

AOA 2:96E − 87 3:69E − 45 9:36E − 73 1:23E − 40 6:76E − 04 5:46E + 00 2:31E − 15

SSA 1:58E − 64 3:17E − 29 7:63E − 42 1:62E − 45 7:50E − 04 0:00E + 00 8:88E − 16

BES 4:38E − 41 1:17E − 25 4:47E − 04 1:51E − 01 2:39E − 03 3:64E + 01 8:03E − 03

Worst

IAOA 0:00E + 00 0:00E + 00 0:00E + 00 0:00E + 00 4:39E − 04 0:00E + 00 8:88E − 16

AOA 5:17E − 86 1:06E − 43 2:74E − 71 2:28E − 39 2:35E − 03 1:64E + 02 4:44E − 15

SSA 4:74E − 63 9:51E − 28 2:29E − 40 4:87E − 44 2:04E − 03 0:00E + 00 8:88E − 16

BES 4:59E − 40 1:93E − 24 1:02E − 02 6:02E − 01 8:91E − 03 1:49E + 02 2:41E − 01

Std

IAOA 0:00E + 00 0:00E + 00 0:00E + 00 0:00E + 00 1:03E − 04 0:00E + 00 0:00E + 00

AOA 8:66E − 64 1:94E − 44 5:00E − 72 4:44E − 40 5:35E − 04 2:99E + 01 1:60E − 15

SSA 1:55E − 39 1:74E − 28 4:18E − 41 8:89E − 45 5:47E − 04 0:00E + 00 0:00E + 00

BES 1:08E − 40 3:55E − 25 1:93E − 03 2:23E − 01 2:11E − 03 5:61E + 01 4:40E − 02

Table 6: Continuation of Table 5.

Statistics Algorithm F8 F9 F10 F11 F12 F13

Best

IAOA 0:00E + 00 1:04E − 13 4:32E − 12 3:19E − 04 −1:03E + 00 3:98E − 01

AOA 0:00E + 00 4:85E − 01 2:60E + 00 3:35E − 04 −1:03E + 00 3:98E − 01

SSA 0:00E + 00 5:02E − 06 2:21E − 05 3:08E − 04 −1:03E + 00 3:98E − 01

BES 0:00E + 00 7:53E − 23 8:05E − 05 3:07E − 04 −1:03E + 00 3:98E − 01

Mean

IAOA 0:00E + 00 7:03E − 09 6:96E − 08 4:68E − 04 −1:03E + 00 3:98E − 01

AOA 0:00E + 00 8:16E − 01 2:89E + 00 9:10E − 04 −1:03E + 00 3:98E − 01

SSA 0:00E + 00 2:42E − 05 1:49E − 03 3:74E − 04 −1:03E + 00 3:98E − 01

BES 0:00E + 00 1:04E − 02 5:03E − 02 3:18E − 03 −1:03E + 00 3:98E − 01

Worst

IAOA 0:00E + 00 3:86E − 08 3:93E − 07 1:32E − 03 −1:03E + 00 3:98E − 01

AOA 0:00E + 00 1:15E + 00 2:99E + 00 5:91E − 03 −1:03E + 00 3:98E − 01

SSA 0:00E + 00 8:30E − 05 1:32E − 02 1:22E − 03 −1:03E + 00 3:98E − 01

BES 0:00E + 00 1:04E − 01 2:33E − 01 2:04E − 02 −1:03E + 00 3:98E − 01

Std

IAOA 0:00E + 00 1:09E − 08 1:16E − 07 1:68E − 04 1:79E − 10 5:48E − 07

AOA 0:00E + 00 1:78E − 01 8:39E − 02 9:73E − 04 3:93E − 04 3:89E − 06

SSA 0:00E + 00 1:87E − 05 3:88E − 03 2:53E − 04 4:72E − 08 8:16E − 07

BES 0:00E + 00 3:16E − 02 7:47E − 02 6:86E − 03 1:65E − 08 7:18E − 07
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parameters of the DBN. The structure of DBN is shown in
Figure 3.

4.1.1. Pretraining of RBM. The restricted Boltzmann
machine (RBM) is a neural perceptron consisting of a visible
layer (v) and a hidden layer (h). Its structure is shown in
Figure 4. There are bidirectional connections between the
visible and hidden layers, while there is no connection
between units in the same layer. In RBM, there is a weight
w between any two connected neurons in the visible layer
and the hidden layer to represent the connection strength.
Each neuron has a bias coefficient a (for the neurons in the
visible layer) and b (for the neurons in the hidden layer) to
represent its own weight. Therefore, the energy function
contained in each RBM is calculated as follows:

E v, h ; θð Þ = −〠
m

i=1
〠
n

j=1
ωijνihj − 〠

m

i=1
aiνi − 〠

n

j=1
bjhj, ð20Þ

where θ represents the parameter set of RBM, including
the state vi and bias ai of the visible layer and the state hj and
bias bj of the hidden layer, ωij is the connection weight
between the visible layer node and the hidden layer node,
and n and m represent the number of neurons in the visible
layer and the hidden layer, respectively.

According to the energy function of the RBM, the joint
distribution of the visible layer and the hidden layer is calcu-
lated as follows.

p v, h ; θð Þ = e−E v,h;θð Þ

T θð Þ , ð21Þ

where TðθÞ =∑v,he
−Eðv,h;θÞ, called the normalization factor.

The independent probability distribution of the visible
layer is calculated as follows.

p vð Þ =〠
h

p v, hð Þ = 1
T θð Þ〠h

e−E v,h;θð Þ: ð22Þ

There is no connection between nodes in the same layer
in the RBM, so the conditional probability distribution of
each neuron in the visible layer and the hidden layer is as
follows:

p hj = 1 v ; θj� �
= ε 〠

m

i=1
ωijvi + bj

 !
,

p vi = 1 h ; θjð Þ = ε 〠
n

j=1
ωijhj + ai

 !
,

ð23Þ

where εðxÞ = 1/ð1 + exp ðxÞÞ is the sigmoid function.
The goal of RBM training learning is to make the Gibbs

distribution of the RBM network representation as close as
possible to the distribution of the original data so that pðvÞ
is maximized.

The network structure parameters θ = fai, bj, ωijg of
the RBM can be obtained using the maximum likelihood
estimation method, and the parameter set θ can be updated
by the comparative scattering method, as expressed by the
following.

L θð Þ = 〠
T

t=1
log P vi θjð Þ = 〠

T

t=1
log〠

h

P vi, h θjð Þ

= 〠
n

i=1
log f vi θjð Þ − log T θð Þ,

ð24Þ
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Figure 3: Schematic diagram of the DBN structure.
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9Computational and Mathematical Methods in Medicine



∂L θð Þ
∂θ

= 〠
n

i=1

∂ log f vi ∣ θð Þ
∂θ

−
∂ log f v ∣ θð Þdv

∂θ

� �
p v∣θð Þ

" #
,

ð25Þ

where hipðvjθÞ represents the expected value of the partial
derivative under the distribution of pðv ∣ θÞ.

The model parameter update method is as follows:

ωt+1
ij = ωt

ij +
α

β
vihj
� 	

data − vihj
� 	

remodel


 �
,

at+1i = ati +
α

β
vih idata − vih iremodel

� �
,

bt+1j = b tð Þ
j +

α

β
hj
� 	

data − hj
� 	

remodel


 �
,

ð26Þ
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Figure 5: The framework of IAOA-DBN.
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where h:idata represents the expectation of pðh ∣ vÞ
defined by the current RBM model, h:iremodel represents the
expectation of pðh ∣ vÞ defined by the reconstructed RBM
model, α represents the learning rate, and β is the batch size.

The pretraining of DBN starts from the bottom layer.
After the first RBM is trained, the current hidden layer is
transformed into the visible layer of the next RBM. The net-
work is trained layer by layer from bottom to top to avoid
falling into local optimum.

4.1.2. Fine-Tuning of RBM. In the fine-tuning stage, a BP
neural network is constructed using the hidden layer of the

last RBM and the output layer of the DBN for supervised
training. The parameters of each layer are optimized from
the top to the bottom to obtain the final model parameters.

4.2. The Proposed Parameter Optimization of DBN Based on
IAOA. During the construction of DBN, the choice of hyper-
parameters such as learning rate α and batch size β has an
important impact on the training results of DBN. However,
the selection of hyperparameters in traditional DBNs mainly
relies on subjective experience, which also causes the prob-
lem of insufficient training efficiency. This also leads to a
decrease in the classification accuracy and model stability

Feature selection

IAOA

Survival prediction model of patients
with ESCC

Clinical data

Whether the
Number of iterations

is reached?

DBN model with bestparameter

W2

W1

WN

Input data

Visible
layer

Hidden
layer

Visible 
layer

Hidden
layer 
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layer

Hidden
layer

RBM1

RBM2

RBMN

Output
layer

BP

Lables

Pre-training Fine-tuning

Pre-training Fine-tuning

Same
units

Figure 6: ESCC patient survival prediction model.
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of DBNs. In this paper, in order to reduce the influence of
human interference factors and improve the classification
accuracy of DBN, the IAOA is proposed to optimize the
learning rate α and batch size β of DBN. The classification
error rate of DBN is used as the objective function of IAOA
optimization, and the objective function is f itnessf unction
= 1 − classif ication error rate. The larger the fitness value,
the higher the classification effect of DBN. In order to clearly
express the IAOA-DBN process, the framework of IAOA-
DBN is shown in Figure 5.

4.3. Survival Prediction Model of Patients with ESCC. In
this paper, eleven indicators significantly related to the
survival rate of patients with ESCC are obtained through
the MRMR algorithm, and these indicators are TNM
stage, BASO, age, PT, FIB, LYMPH, RBC, TT, PLT, T
stage, and GLOB, respectively. Eleven indicators and all
indicators of the patients are used as inputs to the
IAOA-DBN model, respectively, and the five-year survival
rate of the patients is used as the output. A survival pre-
diction model for esophageal cancer patients is established.
The established survival prediction model for patients with
ESCC is shown in Figure 6. To verify the validity of this
model, the Archimedes optimization algorithm-deep belief
network (AOA-DBN), sparrow search algorithm-deep
belief network (SSA-DBN), particle swarm optimization-
deep belief network (PSO-DBN) [50], bald eagle search-
deep belief network (BES-DBN), improved Archimedean
optimization algorithm-support vector machines (IAOA-
SVM), and improved Archimedean optimization algorithm-
backpropagation neural networks (IAOA-BPNN) are used
for comparison. The initial population of AOA, SSA, PSO,
and BES is uniformly set to 20, and the maximum number
of iterations is 500. The dataset is divided into ten parts,
and the tenfold cross-validation method is used to verify
the classification accuracy of the model. The prediction
results of the DBN optimized by the five optimization algo-
rithms, IAOA-SVM, and IAOA-BPNN model are shown in
Table 7.

When eleven patient indicators are used as input, the
Tables 5 and 6 show that the prediction results of
IAOA-DBN, AOA-DBN, SSA-DBN, PSO-DBN, BES-DBN,
IAOA-SVM, and IAOA-BPNN are 89.66%, 87.46%,
88.14%, 86.78%, 87.29%, 86.27%, and 86.61%, respectively.
When all patient indicators are used as input, Table 7 shows

that the prediction results of IAOA-DBN, AOA-DBN, SSA-
DBN, PSO-DBN, BES-DBN, IAOA-SVM, and IAOA-
BPNN are 88.13%, 86.24%, 86.93%, 85.46%, 86.12%,
85.19%, and 85.32%, respectively. The comparison shows
that IAOA-DBN has a high accuracy rate and can accurately
predict the five-year survival rate of ESCC patients. In addi-
tion, when the input to the model is eleven indicators, the
prediction results are better than using all indicators. There-
fore, the MRMR-IAOA-DBN model proposed in this paper
can better predict the five-year survival of patients with
ESCC.

To better demonstrate the effectiveness of the proposed
model, the Wisconsin Diagnostic Breast Cancer (WBCD)
dataset is used for testing. In Wisconsin Diagnostic Breast
Cancer (WBCD) dataset, 30 indexes of patients are used as
input, and the benign and malignant tumors of patients
are used as output. The dataset is divided into ten parts,
and the tenfold cross-validation method is used to verify
the performance of the model. The test results are shown
in Table 8. From the test results, it can be seen that IAOA-
DBN has higher prediction accuracy than other models.
Therefore, the survival prediction model proposed in this
paper can effectively predict the prognosis of cancer patients.

5. Conclusions

A novel survival prediction model for patients with ESCC is
presented in this paper. Firstly, a minimum redundancy and
maximum relevancy algorithm is used to screen out indica-
tors significantly correlated with survival in patients, which
is validated by the Cox regression analysis. Secondly, an
IAOA-DBN model is proposed. The model uses IAOA to
optimize the parameters in the DBN training process, which
improves the stability and classification accuracy of the DBN
model. Finally, the model is applied to the survival predic-
tion model for patients with ESCC. The results of compari-
son with four methods verify the validity and superiority of
the model. The key conclusions are expressed as follows.

(1) The patients’ clinical indicators are ranked by
importance using the minimum redundancy and
maximum relevancy algorithm, and a new subset of
features is selected. The experimental results show
that the new feature subset is with better prediction
results than the all-feature set

Table 7: Comparison of different algorithms for predicting five-
year survival of patients with esophageal squamous cell carcinoma.

Algorithm
10-fold cross-validation accuracy

Eleven indicators All indicators

IAOA-DBN 89.66% 88.13%

AOA-DBN 87.46% 86.24%

SSA-DBN 88.14% 86.93%

PSO-DBN 86.78% 85.46%

BES-DBN 87.29% 86.12%

IAOA-SVM 86.27% 85.19%

IAOA-BPNN 86.61% 85.32%

Table 8: Comparison of the results of different algorithms.

Algorithm 10-fold cross-validation accuracy

IAOA-DBN 97.538%

AOA-DBN 96.974%

SSA-DBN 97.177%

PSO-DBN 96.629%

BES-DBN 96.829%

IAOA-SVM 95.602%

IAOA-BPNN 95.038%
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(2) Aiming at the problem that poor convergence accu-
racy and easy to fall into local optimum of AOA, an
improved AOA (IAOA) is proposed in this paper.
The experimental results show that the improved
strategy proposed in this paper improves the perfor-
mance of AOA to a certain extent

(3) The learning rate α and batch size β of DBN are
optimized using IAOA to obtain the optimal param-
eters, which improved the classification prediction
accuracy and stability of the DBN model. Compared
with AOA-DBN, SSA-DBN, PSO-DBN, and BES-
DBN, the results verify the effectiveness and superi-
ority of the IAOA-DBN model
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