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Background. Lymph node metastasis is an important route of lung cancer metastasis and can significantly affect the survival of
lung cancer. Methods. All the analysis was conducted out in the R software. Expression profile and clinical information of lung
adenocarcinoma (LUAD) patients were downloaded from The Cancer Genome Atlas database. Results. In our study, we firstly
identified the characteristic genes of lymph node metastasis in LUAD through two machine learning algorithms, least absolute
shrinkage and selection operator (LASSO) logistic regression, and SVM-RFE algorithms. Ten characteristic genes were finally
identified, including CRHR2, ITIH1, PRSS48, MAS1L, CYP4Z1, LMO1, TCP10L2, KRT78, IGFBP1, and PITX3. Next, we
performed univariate Cox regression, LASSO regression, and multivariate Cox regression sequentially to construct a prognosis
model based on MAS1L, TCP10L2, and CRHR2, which had a good prognosis prediction efficiency in both training and
validation cohorts. Univariate and multivariate analysis indicated that our model is a risk factor independent of other clinical
features. Pathway enrichment analysis showed that in the high-risk patients, the pathway of MYC target, unfolded protein
response, interferon alpha response, DNA repair, reactive oxygen species pathway, and glycolysis were significantly enriched.
Among three model genes, MAS1L aroused our interest and therefore was selected for further analysis. KM survival curves
showed that the patients with higher MAS1L might have better disease-free survival and progression-free survival. Further,
pathway enrichment, genomic instability, immune infiltration, and drug sensitivity analysis were performed to in-deep explore
the role of MAS1L in LUAD. Conclusions. Results showed that the signature based on MAS1L, TCP10L2, and CRHR2 is a
useful tool to predict prognosis and lung cancer lymph node metastasis.

1. Introduction

Lung cancer is a leading cause of cancer-related deaths all
over the world, in which non-small-cell lung cancer
(NSCLC) is the most common pathological subtype and
accounts for approximately 85% of cases [1]. Many factors
may contribute to the occurrence and development of lung
cancer, including smoking, genetic susceptibility, environ-
mental exposure, and so on [2]. Surgery can significantly
improve the prognosis of early-stage and resectable lung can-
cer patients. Unfortunately, inadequate screening plans and
hidden clinical symptoms have resulted in most patients
being diagnosed with advanced disease at the time of their

first presentation [3]. However, for those patients in the
advanced stage, the prognosis is still unsatisfactory [3].
Therefore, it is meaningful to identify novel molecules asso-
ciated with patient’s prognosis and with the potential to
guide therapy options.

Lymph node metastasis is an important feature of lung
cancer and is associated with poor prognosis [4]. In the
absence of distant metastasis, an accurate assessment of
lymph node involvement is a crucial step for NSCLC
patients [4]. Throughout the last decades, radical lobectomy
has been universally accepted as a standard procedure for
lung cancer patients [5]. In recent years, intrathoracic reas-
sessments during thoracotomies for lung cancer have
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evolved into detailed and complex assessments, and the core
of which is to evaluate the involvement of lymph nodes at
the mediastinal and hilar levels [5]. This technique is called
“systematic lymph node dissection”, which has been
accepted as an important part of lung cancer surgery. At
the genome level, researchers have focused on the molecules
involved in lung cancer lymph node metastasis that might be
the underlying therapy target. For instance, Liu et al. found
that in small cell lung cancer, patients with high CCL19
expression had poorer outcomes and more LN metastasis,
as well as impaired CD8+ T cell function [6]. Moreover, Bi
et al. revealed that CXCR4 and VEGF-C are correlated with
lymph node metastasis and might synergistically promote
lung cancer progression [7]. Thus, exploring the potential
mechanism of lymph node metastasis of lung cancer from
a molecular perspective is helpful for the diagnosis and treat-
ment of lung cancer.

In our study, we firstly identified the characteristic genes
of lymph node metastasis in LUAD through least absolute
shrinkage and selection operator (LASSO) logistic regression
and SVM-RFE algorithms. A prognosis model based on
MAS1L, TCP10L2, and CRHR2 was then established, which
had a good prognosis prediction efficiency in both training
and validation cohorts. Next, pathway enrichment analysis
was performed to explore the underlying biological differ-
ences between high- and low-risk patients. Among three
model genes, MAS1L aroused our interest and therefore

was selected for further analysis. KM survival curves showed
that the patients with higher MAS1L might have better
disease-free survival and progression-free survival. Further,
pathway enrichment, genomic instability, immune infiltra-
tion, and drug sensitivity analysis were performed to in-
deep explore the role of MAS1L in LUAD.

2. Methods

2.1. Data Acquisition. The open-accessed transcriptional
profiling data and clinical information of lung adenocarci-
noma (LUAD) were downloaded from The Cancer Genome
Atlas (TCGA, https://portal.gdc.cancer.gov/; 522 patients,
age: 65:33 ± 10:02) database. The original expression profile
files were “STAR-counts” form and further sorted using the
author’s R code (tpm_unstranded). Clinical information
was collated using Perl code. Genomic reference file
GRCh38.gtf was used for probe annotation. The baseline
information of patients was shown in Table 1. For the
enrolled patients, the patients with N0 stage was regarded
as the population without lymph node metastasis, while the
N1-3 stage patients were regarded as the population with
lymph node metastasis.

2.2. Machine Learning Algorithm. LASSO logistic regression
and support vector machine recursive feature elimination
(SVM-RFE) algorithms were used for characteristic genes

Table 1: Baseline information of enrolled patients.

Features Numbers Percentage (%)

Age

<= 65 241 46.2%

> 65 262 50.2%

Unknown 19 3.6%

Gender
Female 280 53.6%

Male 242 46.4%

Stage

Stage I 279 53.4%

Stage II 124 23.8%

Stage III 85 16.3%

Stage IV 26 5.0%

Unknown 8 1.5%

T-stage

T1 172 33.0%

T2 281 53.8%

T3 47 9.0%

T4 19 3.6%

Unknown 3 0.6%

M-stage

M0 353 67.6%

M1 25 4.8%

Unknown 144 27.6%

N-stage

N0 335 64.2%

N1 98 18.8%

N2 75 14.4%

N3 2 0.4%

Unknown 12 2.3%
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screening. LASSO logistic regression was performed based
on the glmnet package [8]. SVM is a machine learning
method that can find the best variables by deleting the fea-
ture vectors generated by SVM [9].

2.3. Establishment of Prognosis Model. Patients were ran-
domly assigned to training and validation cohorts with a
1 : 1 ratio. Based on the characteristic genes identified by
LASSO logistic regression and SVM-RFE algorithms, uni-
variate Cox regression analysis was firstly performed to
determine prognosis-related genes with the threshold of P
< 0:05. Next, LASSO regression was used for dimensionality
reduction [10]. Finally, multivariate Cox regression analysis
was utilized for prognosis model construction with the for-
mula of “Riskscore = GeneA∗Coef A + Gene B ∗ Coef B+
… +Gene N ∗ Coef N”. Each patient would be assigned a
riskscore according to the above formula [11].

2.4. Model Evaluation. According to the calculated riskscore,
the patients with riskscore higher than the median were
defined as high-risk group, otherwise, the low-risk group.
Kaplan-Meier (KM) survival curve was used to evaluate the
prognosis difference between high- and low-risk patients.
The receiver operating characteristic (ROC) curve was used
to evaluate the prediction efficacy of our model in a specific
time node. The independence of our prognosis model was
validated by univariate and multivariate Cox regression
analysis [12].

2.5. Pathway Enrichment and Genomic Instability Analysis.
Underlying biological differences can lead to different
outcomes in patients. Pathway enrichment analysis was per-
formed based on the GSEA algorithm. The reference gene
set was set as Hallmark, c2.cp.kegg.v7.5.1.symbols, and
c5.go.v7.5.1.symbols gene set. ClueGO plug-in in cytoscape

Machine learning algorithm
(Identification of characteristic

genes of lymph node metastasis)

Prognosis model construction
(univariate Cox regression,

LASSO regression, multivariate
Cox regression)

KM survival curve,
ROC curve Clinical correlation Pathway enrichment

analysis

Further exploration of MAS1L,
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Figure 1: The flow chart of the whole study.
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Figure 2: Identification of the characteristic genes of lung cancer lymph node metastasis. Notes: (a–b) LASSO logistic regression; (c) SVM-
RFE algorithm; (d) ten characteristic genes were identified based on LASSO logistic regression and SVM-RFE algorithms, including CRHR2,
ITIH1, PRSS48, MAS1L, CYP4Z1, LMO1, TCP10L2, KRT78, IGFBP1, and PITX3.
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Figure 3: Continued.
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Figure 3: Continued.
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software was used for the gene pathways enrichment [13].
The data of tumor mutational burden (TMB) and microsat-
ellite instability (MSI) were downloaded from the TCGA
database. The tumor stemness index (mRNAsi and EREG-
mRNAsi) of TCGA-LUAD patients was obtained from the
previous study [14].

2.6. Immune-Related and Drug Sensitivity Analysis. Immune
infiltration analysis was conducted using the single sample
gene set enrichment analysis (ssGSEA) algorithm [15]. Eval-
uation of the sensitity on immunotherapy was performed
using the tumor immune dysfunction and exclusion (TIDE)
analysis, in which the TIDE score < 0 was defined as the
immunotherapy responders, and > 0 was regarded as the
nonresponders [16]. Drug sensitivity analysis was performed
based on the Genomics of Drug Sensitivity in Cancer
(GDSC) database [17].

2.7. Statistical Analysis. All the analysis was performed using
the R software version 4.0.0. Values of P < 0:05 were consid-
ered statistically significant. Normal distribution was tested
by the Student t-test. Nonnormally distributed variables
were compared using the Mann–Whitney U test.

3. Result

3.1. Identification of the Characteristic Genes of Lymph Node
Metastasis. The flow chart of the whole study was shown in
Figure 1. For the obtained data of TCGA-LUAD patients, we
divided then into lymph node metastasis (N1-3) and non-
lymph node metastasis (N0) group. LASSO logistic regres-
sion and SVM-RFE algorithms were used to identify the char-
acteristic gene of lymph node metastasis (Figures 2(a–c)).

Finally, LASSO logistic regression and SVM-RFE algorithms
intersected ten characteristic genes, including CRHR2, ITIH1,
PRSS48,MAS1L, CYP4Z1, LMO1, TCP10L2, KRT78, IGFBP1,
and PITX3 (Figure 2(d)).

3.2. Prognosis Model Construction. Next, univariate Cox
regression analysis was performed to identify the prognosis-
related characteristic genes. The result showed that among
all these ten genes, IGFBP1, TCP10L2, MAS1L, CYP4Z1,
and CRHR2 were the protective factors, while PITX3 was
the risk factor (Figure 3(a)). LASSO regression was then used
for data dimensionality reduction (Figure 3(b)). Multivariate
Cox regression analysis identified three genes for prognosis
model construction, including MAS1L, TCP10L2, and
CRHR2 (Figure 3(c)). In the training cohort, a higher propor-
tion of dead cases were observed in the high-risk group
(Figure 3(d)). KM survival curve showed that the high-risk
patient might have a poor prognosis compared to the
patients in low-risk group (Figure 3(e)). ROC curves showed
a great prediction efficiency of patients 1-, 3-, and 5-year
survival (Figures 3(f–h), 1-year AUC = 0:826, 3-year AUC
= 0:791, and 5-year AUC = 0:814). Meanwhile, the same
trend was also found in the validation group (Figure 3(i)).
KM survival curve showed that in the validation group,
the high-risk patient might have a wose prognosis
(Figure 3(j)). Also, ROC curves showed a good prediction
efficiency of patients’ 1-, 3-, and 5-year survival in valida-
tion group (Figures 3(k–m), 1-year AUC = 0:672, 3-year
AUC = 0:751, and 5-year AUC = 0:7).

3.3. Clinical Correlation. Univariate and multivariate analy-
sis showed that our model is a risk factor independent of
other clinical features (Figures 4(a) and 4(b)). Then, we
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Figure 3: Prognosis model construction. Notes: (a) univariate Cox regression analysis of the identified characteristic genes to select
prognosis-related genes; (b) LASSO regression was used for dimensionality reduction; (c) multivariate Cox regression analysis identified
three genes MAS1L, TCP10L2, and CRHR2 for model construction; (d) overview of the riskscore in the training model; (e) KM survival
curve of high- and low-risk patients in training cohort; (f–h) ROC curves of 1-, 3-, and 5-years survival in the training cohort; (i)
overview of the riskscore in the validation model; (j) KM survival curve of high- and low-risk patients in validation cohort; (k–m) ROC
curves of 1-, 3-, and 5-years survival in the validation cohort.
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performed the clinical correlation of our model, as well as
the model genes. No significant difference was found in
model genes and riskscore between <= 65 and > 65 patients
(Figure 4(c)); MAS1L was higher expressed in female
patients compared with the male patients (Figure 4(d));
MAS1L was higher expressed in stage I-II patients compared
with the stage III-IV patients (Figure 4(e)); no significant
difference was found in model genes and riskscore between
different T-stage patients (Figure 4(f)); no significant differ-
ence was found in model genes and riskscore between differ-
ent M-stage patients (Figure 4(g)); N1-3 patients had a lower
MAS1L, TCP10L2, and CRHR2 expression, but a higher risk-
score (Figure 4(h)).

3.4. Pathway Enrichment Analysis and Immunotherapy
Analysis. We next explored the underlying biological differ-
ences between high- and low-risk patients. GSEA analysis

showed that in the high-risk patients, the pathway of MYC
target, unfolded protein response, interferon alpha response,
DNA repair, reactive oxygen species pathway, and glycolysis
were significantly enriched in. (Figure 5(a)). ClueGO analy-
sis showed that our model was mainly enriched in cell pro-
liferation in external granule layer, proximal/distal pattern
formation, dorsal/ventral pattern formation, response to
immobilization stress, and negative regulation of gene
expression and epigenetic (Figure 5(b)). Gene ontology
(GO) analysis showed that in the high-risk patients, the
terms of DNA replication checkpoint signaling, DNA strand
elongation involved in DNA replication, positive regulation
of telomerase RNA localization to cajal body, DNA replica-
tion origin binding, anaphase promoting complex depen-
dent catabolic process, establishment of protein localization
to telomere, and kinetochore assembly were significantly
enriched (Figure S2A). Kyoto Encyclopedia of Genes and

6

5

4

3

2
Sc

or
e

1

0

MAS1L

ns

ns

ns

M0
M1

ns

TCP10L2 CRHR2 riskScore

nsnsn

nsnsn

nsnn

(g)

6

5

4

3

2

Sc
or

e

1

0

MAS1L

⁎⁎

⁎

⁎⁎

N0
N1-3

⁎⁎⁎

TCP10L2 CRHR2 riskScore

⁎⁎⁎⁎

⁎⁎

⁎⁎⁎⁎⁎⁎⁎

(h)

Figure 4: Clinical correlation of our model. Notes: (a–b) univariate and multivariate analysis showed that the model is a risk factor
independent of other clinical features; (c) the expression level of MAS1L, TCP10L2, CRHR2, and riskscore in patients with different age
groups, ns = P > 0:05; (d) The expression level of MAS1L, TCP10L2, CRHR2, and riskscore in patients with different gender groups, ns =
P > 0:05, ∗ = P < 0:05, and ∗∗ = P < 0:01; (e) the expression level of MAS1L, TCP10L2, CRHR2, and riskscore in patients with different
stage groups, ns = P > 0:05 and ∗∗∗ = P < 0:001; (f) the expression level of MAS1L, TCP10L2, CRHR2, and riskscore in patients with
different T-stage groups, ns = P > 0:05; (g) the expression level of MAS1L, TCP10L2, CRHR2, and riskscore in patients with different M-
stage groups, ns = P > 0:05; (h) the expression level of MAS1L, TCP10L2, CRHR2, and riskscore in patients with different N-stage
groups, ∗ = P < 0:05, ∗∗ = P < 0:01, and ∗∗∗ = P < 0:001.

11Computational and Mathematical Methods in Medicine



Genomes (KEGG) analysis indicated that mismatch repair,
citrate cycle TCA cycle, homologous recombination, DNA
replication, proteasome, and ribosome were significantly
enriched (Figure S2B). A positive correlation was found
between TIDE and riskscore (Figure S1A, Correlation =
0:193, P < 0:001). Meanwhile, a higher TIDE score was
found in the high-risk patients, indicating a lower

percentage of immunotherapy responders in high-risk
group (Figure S1B-C, 23.1% vs. 43.4%).

3.5. Further Exploration of MAS1L, TCP10L2, and CRHR2.
Furthermore, we tried to compare the expression level of
MAS1L, TCP10L2, and CRHR2 in normal and LUAD sam-
ples (Figures 6(a–c)). The result showed that MAS1L was
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Figure 6: Continued.
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significantly downregulated in LUAD samples (Figure 6(b)).
Moreover, KM survival curves showed that the patients
with higher MAS1L, TCP10L2, and CRHR2 might have
better disease-free survival and progression-free survival
(Figures 6(d–i)). MAS1L aroused our interest and therefore
selected for further analysis. Pathway enrichment analysis
showed that in the patients with high MAS1L expression,
the pathway of apical surface, TGF-β signaling, coagulation,
peroxisome, KRAS signaling, fatty acid metabolism, and
bile acid metabolism hedgehog signaling were downregu-
lated (Figure 7(a)). GO analysis showed that the terms of

RNA binding involved in posttranscriptional gene silencing,
T cell receptor complex, plasma membrane signaling recep-
tor complex, bitter taste receptor activity, spliceosomal tri
snrnp complex assembly, and cajal body were significantly
enriched in patients with high MAS1L level (Figure S3A).
KEGG analysis showed that the terms of intestinal
immune network for iga production, asthma, allograft
rejection, hematopoietic cell lineage, viral myocarditis, and
autoimmune thyroid disease were significantly enriched in
the patients with high MAS1L level (Figure S3B). Next, we
explored the correlation between MAS1L and genomic
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instability (Figures 7(b–e)). A negative correlation was
found between MAS1L and TMB score and mRNAsi
(Figures 7(b) and 7(r) = -0.184, P < 0:001; Figures 7(d)
and 7(r) = -0.416, P < 0:001). However, no remarkable
correlation was observed between the MAS1L and MSI
score and EREG-mRNAsi (Figures 7(c) and 7(e)).

3.6. Immune Infiltration and Drug Sensitivity of MAS1L.
Immune microenvironment played an important role in
tumor development. Immune infiltration analysis showed
that riskscore was positively correlated with the mast cells,
eosinophils, iDC, DC, and macrophages, while negatively cor-
related with Th2 cells (Figures 8(a) and 8(c–f)). Also, we
found that the patients with high MAS1L expression might
have a higher M2 macrophages infiltration (Figure 8(b)).
Moreover, we performed drug sensitivity analysis to explore
the underlying effect of MAS1L on the chemotherapeutic
drugs of lung cancer (Figures 8(g–j)). The result indicated that
the patients with high MAS1L expression might have a lower
sensitivity to docetaxel and paclitaxel (Figures 8(h) and 8(i)).

4. Discussion

Lung cancer is a serious public health concern worldwide
[1]. Lymph node metastasis is common in lung cancer and
regarded as an independent prognosis factor [18]. However,
the underlying biological mechanisms affecting the lymph
node metastasis of lung cancer have not been fully explored.

In our study, we firstly identified the characteristic genes
of lymph node metastasis in LUAD through two machine

learning algorithms, LASSO logistic regression and SVM-
RFE algorithms. Ten characteristic genes were finally identi-
fied, including CRHR2, ITIH1, PRSS48, MAS1L, CYP4Z1,
LMO1, TCP10L2, KRT78, IGFBP1, and PITX3. In the clinical
practice, detecting the relative expression of these genes can
indicate the risk group of patients, as well as their response
to chemotherapy and immunotherapy.

Next, we performed univariate Cox regression, LASSO
regression, and multivariate Cox regression sequentially to
construct a prognosis model based on MAS1L, TCP10L2,
and CRHR2, which had a good prognosis prediction effi-
ciency in both training and validation cohorts. Univariate
and multivariate analysis indicated that our model is a risk
factor independent of other clinical features. Next, pathway
enrichment analysis was performed to explore the underly-
ing biological differences between high- and low-risk
patients. Among three model genes, MAS1L aroused our
interest and therefore was selected for further analysis.
KM survival curves showed that the patients with higher
MAS1L might have better disease-free survival and
progression-free survival. Further, pathway enrichment,
genomic instability, immune infiltration, and drug sensitiv-
ity analysis were performed to in-deep explore the role of
MAS1L in LUAD.

Our result showed that the pathway of MYC target,
unfolded protein response, interferon alpha response, DNA
repair, reactive oxygen species pathway, and glycolysis were
significantly enriched in the high-risk patients. A break in
the balance of DNA damage and repair would lead to the
accumulation of oncogenes in tumor cells, leading to
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Figure 8: Immune infiltration and drug sensitivity analysis of MAS1L. Notes: (a) the CIBERSORT algorithm was used to quantify the
immune infiltration of cancer tissue; (b) the patients with high MAS1L might have a lower M2 macrophages infiltration; (c–f) the
correlation of riskscore and mast cells, eosinophil, iDC, and Th2 cells; (g–j) the correlation of riskscore and the IC50 of Gemcitabine,
Docetaxel, Paclitaxel, and Cisplatin.
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genomic instability and malignant progression [19]. In lung
cancer, Tian et al. found that targeting UHRF1-dependent
DNA repair could selectively sensitize KRAS mutant lung
cancer to chemotherapy [20]. Glycolysis is widely involved
in the development of lung cancer. Hua et al. revealed that
LINC01123 could facilitate growth and aerobic glycolysis
of lung cancer through the miR-199a-5p/c-Myc axis [21].
Wiel et al. found that BACH1 can activate the transcription
of hexokinase 2 and GAPDH and increases glucose uptake,
glycolysis rate, and lactate secretion, thereby stimulating
glycolysis-dependent metastasis of lung cancer cells [22].
Zhou et al. found indicated that CircRNA-ENO1 could pro-
mote glycolysis and tumor progression in LUAD through
upregulating its host gene ENO1 [23]. The difference in
prognosis between high-risk and low-risk patients may be
the result of the interaction of these pathways.

Underlying genomic burden lead to the diverse perfor-
mance of patients. Therefore, we found that the MAS1L
was negatively correlated with the TMB and mRNAsi. In
brief, TMB is the number of mutations in tumors, which
can reflect the instability of the genome to some extent
[24]. Generally, a higher TMB level in the tumor microenvi-
ronment can increase the intratumoral heterogeneity, mak-
ing cancer cells more aggressive [25]. Tumor stemness
index, like mRNAsi, is an index to evaluate the similarity
between tumor cells and stem cells, which is associated with
the active biological processes in stem cells and a higher
degree of tumor dedifferentiation [26]. In lung cancer, Hong
et al. found that the circular RNA circ_CPA4 could promote
lung cancer proliferation, stemness, drug resistance, and
immune evasion through the miR-let-7/PD-L1 axis [27].
Interestingly, Schaal et al. revealed that nicotine and elec-
tronic cigarettes could promote self-renewal of stem-like
side-population cells, implicated in the dormancy, metasta-
sis, and drug resistance in lung cancer [28].

Recently, the microenvironment of tumor cells located
in has gained increasing attention from researchers.
Immune cells are an important component of tumor micro-
environment. Our result showed that MAS1L was positively
correlated with the mast cells, eosinophils, iDC, DC, and
M1 macrophages, while negatively correlated with Th2
cells. Eosinophils are rare multifunctional granulocytes
and have been reported to play an antitumor role in cancer.
Through manipulating eosinophil-related cytokines CCL11
and IL-5, Simson et al. found a negative correlation between
tumor growth and eosinophil infiltration [29]. The activa-
tion of activated eosinophils promotes tumor rejection
through recruitment, activation, and maturation of several
immune cells in addition to its direct cytotoxic actions on
cancer cells [30]. Carretero et al. indicated that eosinophils
could recruit cytotoxic CD8+ T cells to promote tumor
rejection [31].

Some limitations should be noticed. Firstly, the patients
enrolled in our study were predominantly western popula-
tions, which might lead to underlying race bias and reduce
the credibility of our conclusions. Secondly, the location of
lymph node metastasis is not fully provided. If the relevant
data is further improved in the future, this will increase the
stability of our conclusions.
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Figure S1: immunotherapy difference between high- and
low-risk patients. Notes: (a) correlation between the risk-
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patients. Figure S2: biological enrichment of high- and
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