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Objective. In recent years, the prevalence of obstructive sleep apnea (OSA) has gradually increased. The diagnosis of this
multiphenotypic disorder requires a combination of several indicators. The objective of this study was to find significant apnea
monitor indicators of OSA by developing a strategy for cross-study screening and integration of quantitative data. Methods.
Articles related to sleep disorders were obtained from the PubMed database. A sleep disorder dataset and an OSA dataset were
manually curated from these articles. Two evaluation indexes, the indicator coverage ratio (ICR) and the study integrity ratio
(SIR), were used to filter out OSA indicators from the OSA dataset and create profiles including different numbers of
indicators and studies for analysis. Data were analyzed by the meta 4.18-0 package of R, and the p value and standard mean
difference (SMD) values were calculated to evaluate the change of each indicator. Results. The sleep disorder dataset was
constructed based on 178 studies from 119 publications, the OSA dataset was extracted from 89 studies, 284 sleep-related
indicators were filtered out, and 22 profiles were constructed. Apnea hypopnea index was significantly decreased in all 22
profiles. Total sleep time (TST) (min) showed no significant differences in 21 profiles. There were significant increases in rapid
eye movement (REM) (%TST) in 18 profiles, minimum arterial oxygen saturation (SaO2) in 9 profiles, REM duration in 3
profiles, and slow wave sleep duration (%TST) and pulse oximetry lowest point in 2 profiles. There were significant decreases
in apnea index (AI) in 14 profiles; arousal index and SaO2 < 90 (%TST) in 8 profiles; N1 stage (%TST) in 7 profiles; and
hypopnea index, N1 stage (% sleep period time (%SPT)), N2 stage (%SPT), respiratory arousal index, and respiratory disorder
index in 2 profiles. Conclusion. The proposed data integration strategy successfully identified multiple significant OSA indicators.

1. Introduction

With the advent of medical big data, medical research
began to involve collecting data through a variety of data
acquisition systems and exploring disease risk factors, fac-
tors affecting treatment compliance, and disease prediction
model construction methods using machine learning and
deep learning technologies [1–3]. Big data enables more
powerful evaluations of health care quality and efficiency,
which can be used to promote care improvement [4].

Meta-analysis is extremely valuable for decision-making,
because it eliminates the majority of noise caused by indi-
vidual studies, making the results more convincing. Selec-
tion bias may occur if researchers do not clearly define the
criteria for choosing studies from the long list of poten-
tially suitable studies [5]. If the data collection method
under the background of big data is applied and computer
code is used to calculate and screen data from multiple
studies, the bias of subjective data screening by reviewers
may be avoided.
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Obstructive sleep apnea (OSA) is the most common type
of sleep-disordered breathing, according to the American
Academy of Sleep Medicine classification. The assessment
of OSA patients relies on polysomnography (PSG) [6], home
portable sleep monitor [7], functional outcome of sleep
questionnaire (FOSQ) [8], and the Epworth sleepiness scale
(ESS) [9]. PSG is the gold standard for OSA diagnosis, but its
widespread use is hindered by long waiting times and high
costs. In addition, some patients have atypical symptoms
and lack sleep medicine knowledge, leading to difficulties
during the diagnosis of OSA [7]. Clinical patients need to
be evaluated regularly for disease severity, but cost and time
need to be considered. Comprehensive analysis of OSA
study data is important for determining the best and most
cost- and time-effective OSA indicators [10].

Although the apnea hypopnea index (AHI) is the main
indicator for OSA, it neglects the duration of apnea and
the severity of blood oxygen saturation, so more comprehen-
sive paradigms are urgently needed [11]. In previous meta-
analysis, ESS [12] and minimum arterial oxygen saturation
(SaO2) [13] were occasionally used for complementary diag-
nosis alongside AHI [13–15]. Although some phenotypic
information of OSA, such as daytime sleepiness and arousal
threshold, has been studied, more phenotypic identification
of OSA is still needed to gain a deeper understanding of
the disorder [16] and uncover true associations that may
be masked by unstandardized and imperfect phenotypes.
Some new clinical trials suggest that focusing on other indi-
cators may be useful for follow-up of OSA, such as pulse
oximetry- (SpO2-) related indicators [17] and oxygen desa-
turation index (ODI) [10]. Therefore, the integration of
common indicators reported in previous OSA studies can
provide reference information for clinical studies to identify
more indicators related to OSA.

To find significant indicators of OSA from multiple
studies, a strategy for cross-study screening and integration
of quantitative OSA data was constructed. The aim of this
study was to construct an OSA dataset from clinical trials
(CTs) and randomized controlled trials (RCTs), which
would contain multiple indicators from multiple studies,
apply two evaluation indexes to filter out OSA indicators,
and determine the best indicators for OSA assessment and
surveillance.

2. Materials and Methods

2.1. Literature Search and Study Selection. To review the pre-
vious published literature on sleep disordered breathing,
sleep monitoring, and sleep-related diseases [16, 18, 19],
we obtained the keywords of sleep assessment, related dis-
ease diagnosis information, and phenotypes and then inte-
grated and summarized the information to construct the
search strategy according to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines [20]. The PRISMA checklist is shown in Supple-
mentary Table 1. Key search terms included Sleep,
Arousals, Apnea-Hypopnea Index, Electroencephalogram,
Rapid eye movement sleep behavior disorder (RBD), Sleep
Structure, and non-rapid eye movement. Retrieval content

was limited to title, the publication types were limited to
CT and RCT, and the time cutoff was December 18, 2020.
The flowchart of the literature search and study selection
process is shown in Figure 1. Details of search terms are
reported in Supplementary Table 2.

The initial screening of titles and abstracts of publications
was based on the following two criteria. Inclusion criteria: (1)
journals are within their top respective sectors; (2) sleep
monitoring data were available; (3) sleep-disordered breath-
ing was the main outcome; (4) the research subjects were
human. Exclusion criteria: (1) systematic review, review,
and meta-analysis; (2) the research subjects were animals;
(3) only abstracts were available.

The eligible publications with full text were reviewed,
and the studies were separated into two subgroups: those
of OSA patients and those of non-OSA patients, and the for-
mer was selected for integrated analysis.

2.2. Data Extraction and Risk Assessment. To obtain com-
prehensive and accurate research information, the extracted
contents included general publication data, study design,
duration of study, demographic variables, and intervention
methods; specific data extraction information is shown in
Table 1.

OSA indicators with the same meaning could be denoted
by different terms in various publications. To reflect this
phenomenon, these different terms were retained in the
OSA dataset. For example, AHI and other similar indicators
were recorded dependently, such as AHI during supine
sleep, AHI during nonsupine sleep, AHI during rapid eye
movement (REM) stage, and AHI during nonrapid eye
movement (NREM) stage. Data included baseline and
follow-up or control and experimental group, and indicators
were recorded as the indicator name with suffix “_Baseline”
and “_Follow-up,” respectively. All studies identified by the
research were independently screened for eligibility by two
investigators (RZ and SZ). Data collection was conducted
using Microsoft Excel (V2019, Microsoft, USA, 2019).
Reviewers reviewed the risk of bias of individual studies
using the Cochrane Collaboration’s tool for assessing risk
of bias [21] and RevMan software (version 5.3). Discor-
dances were discussed with a third reviewer (GZ) and
resolved by consensus.

2.3. Indicator Evaluation. To evaluate data of indicators and
studies, two indexes were calculated: the coverage of each
sleep monitoring indicator, denoted as the indicator cover-
age ratio (ICR), and the integrity of each study under the
ICR threshold, denoted as the study integrity ratio (SIR).
Their calculation formulas were as follows:

ICR = 〠
n

i=1

Si
Ts

, ð1Þ

SIR = 〠
n

s=1

Is
It
, ð2Þ

where Si is the study with indicator, n is the total number of
indicators, i is the identifying number of an indicator, Ts is
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the total number of studies included, Is are indicators in a
study under indicator coverage ratio threshold, s is the iden-
tifying number of a study, and Tt is the total number of indi-
cators under indicator coverage ratio threshold.

ICR reflects the usage degree for each indicator in all the
included studies, and SIR reflects the number of indicators
in each study under different ICR thresholds. The ICR was
calculated and then divided into 10 ICR thresholds (ICRTs)
from 0.1 to 1.0. Then, the SIR of each study was calculated
under each ICRT, and the SIR was set to 0.1–1.0 for a total
of 10 SIR thresholds (SIRTs). The different ICRTs and SIRTs
were combined into 22 profiles including different numbers
of indicators and studies, and then, these profiles were ana-
lyzed. For the same ICRT, if the same study was filtered by
different SIRTs, the study was deduplicated, and the higher
SIRT was retained. Each profile was described according to
the values of ICRT and SIRT, such as P1-1 for ICRT = 0:1
and SIRT = 0:1 and P7-10 for ICRT = 0:7 and SIRT = 1:0.
The data screening process was performed using Python 3.9.

2.4. Statistical Analysis. Quantitative data integration analy-
sis adopted the analysis principle of meta-analysis and was
conducted by a package called meta 4.18-0 (R software ver-
sion 4.0.5; R Foundation for Statistical Computing, Vienna,
Austria). Each indicator retained under the different combi-
nations of ICRT and SIRT was independently analyzed, and
studies with missing values were excluded from each

Table 1: Extracted relevant data.

Extracted information Details

General publication
data

DOI

First author

Journal and year of publication

Geographical origin

Study design
Randomized controlled trial (RCT)

Clinical trial (CT)

Duration of study
Time interval

Time follow-up

Demographic variables

Sample size of case and control profile

Age

Number of males and females

Intervention methods

Mechanical intervention (such as
CPAP)

Physical intervention (such as
tonsillectomy and exercise therapy)

Drug intervention (such as eszopiclone)

Psychological intervention (such as
continuous antidepressant treatment)

Other interventions (such as low calorie
intake strategies and normal lifestyle)

1945 Records identified from PUBMED database

13 Additional records identified through reference
retrieval

178 Studies included from screened records
for data extracting

119 Articles screened on data availability

106 Articles screened on data availability

104 Studies with OSA
patients

74 Studies without OSA
patients
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89 Studies was included

15 Studies with non-standard data

1338 Records exclude non top journals in article's
research field

557 Records a�er removed

451 Excluded articles:
(i) 167 Title/abstract has no information about sleep

(ii) 122 Sleep disorders were not main outcomes
(iii) 127 No sleep relevant data
(iv) 35 Abstracts only

Figure 1: Flowchart of literature search and study selection process.
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analysis. A fixed effects model was used for analysis. A χ2

test and an I2 test were used to test the heterogeneity of
the included studies. If p < 0:05 and I2 > 50% were shown,
the random effect model was employed. A p value less than
0.05 was considered to indicate statistical significance
(α = 0:05). The SMD value indicated a change of the quanti-
tative indicators with a significant p value. Publication bias
was evaluated through a funnel plot.

3. Results

3.1. Identification and Selection of Studies. The literature
search yielded 1945 nonduplicate studies from the PubMed
database through the retrieval strategy. After excluding

1388 studies that were in the nontop journals in their
research field or were systematic reviews, reviews, and
meta-analyses, 557 publications were further reviewed.
Among them, 167 had titles and abstracts that did not pro-
vide any information about sleep, 122 were non-sleep-
related studies, 127 had data that could not be obtained,
and 35 did not have full English text, so they were all
excluded, and the remaining 106 studies were included for
further review. In addition, 13 studies from other publica-
tions, which met the inclusion criteria, were included for
review. Then, data were obtained from 178 studies from
119 publications, including 104 studies whose subjects were
OSA. Eighty-nine studies with mean and standard deviation
data were further selected for the final analysis. All collected
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Figure 2: Overview of trends in studies for OSA patients.
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research information and data can be seen in Supplementary
Table 3.

3.2. Study Characteristics and Risk of Bias Assessment.
Among the 89 included studies, the most common study
regions were Europe (n = 33) and North America (n = 45).
All studies spanned a period between 1990 and 2020. The

most common sample size was less than 100 (n = 78). A total
of 5117 OSA patients were included in this analysis, including
3674males and 1079 females. A total of 30 RCT studies and 59
CT studies were identified (Figure 2). All studies were assessed
using the Cochrane Collaboration’s tool for assessing risk of
bias, and most of the studies had low risk of bias and men-
tioned randomization. Bias in other studies was mainly

Random sequence generation (selection bias)

Allocation concealment (selection bias)

Blinding of participants and personnel (performance bias)

Blinding of outcome assessment (detection bias)

Incomplete outcome data (attrition bias)

Selective reporting (reporting bias)

Other bias

0% 25% 50% 75% 100%

High risk of bias

Unclear risk of bias

Low risk of bias

Figure 3: Risk of bias item presented as percentages across all included studies.
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Figure 4: ICR of 284 sleep monitor indicators.
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derived from the small sample size of the study. The details of
risk of bias assessment are presented in Figure 3.

3.3. Indicator Coverage Ratio and Study Integrity Ratio. A
total of 284 sleep-related monitor indicators were identified
from the 89 studies. Figure 4 shows the percentage of indica-
tors under the ICRT. There were 251 (88.38%) indicators
with coverage between 0.0 and 0.1, 20 (7.04%) indicators
with coverage between 0.1 and 0.2, 7 (2.46%) indicators with
coverage between 0.2 and 0.3, 2 (0.7%) indicators with cov-
erage between 0.3 and 0.4, no (0.0%) indicators with cover-
age between 0.4 and 0.5, 1 (0.35%) indicator with coverage
between 0.5 and 0.6, 2 (0.7%) indicators with coverage
between 0.6 and 0.7, 1 (0.35%) indicator with coverage
between 0.7 and 0.8, and no (0.0%) indicators with coverage

threshold greater than 0.8. The SIR was calculated for the
ICRT. Specific information on the indicators and studies
selected in different profiles is shown in Supplementary
Table 4.

3.4. Integrated Analysis Results. Twenty-two combination
profiles of ICRT and SIRT were selected for analysis. When
the ICRT was 0.1 and the SIRT was 0.1 (P1-1), 33 sleep indi-
cators were retained for analysis, and a total of 22 indicators
showed statistical significance. When the ICRT was 0.7 and
the SIRT was 1.0 (P7-10), only one indicator was included,
and the indicator had significant change.

There were significant reductions in hypopnea index
(HI), N1 stage (% sleep period time (%SPT)), N2 stage (%
SPT), respiratory arousal index, and respiratory disorder
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Figure 5: ICR and SIR threshold analysis results. AHI: apnea hypopnea index; AHI-NREM: apnea hypopnea index in nonrapid eye
movement sleep; AHI-REM: apnea hypopnea index in rapid eye movement sleep; AI: apnea index; ESS: Epworth sleepiness score; FOSQ:
functional outcomes of sleep questionnaire; HI: hypopnea index; SPT: sleep period time; TST: total sleep time; NREM: nonrapid eye
movement; REM: rapid eye movement; ODI: oxygen desaturation index; REM (%TST): the percentage of rapid eye movement of total
sleep time; RDI: respiratory disorder index; SaO2 < 90% (%TST): percentage of total sleep time with SaO2 < 90%; SWS: slow wave sleep;
WASO: wake after sleep onset. ∗The white block is p < 0:05 of the indicator analysis; we consider that there is no significant change in
SMD and assign the SMD value to 0.
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index (RDI) in two profiles; N1 stage (% total sleep time (%
TST)) in 7 profiles; arousal index and SaO2 < 90 (%TST) in
8 profiles; and apnea index (AI) in 14 profiles. There were
significant increases in slow wave sleep (SWS) duration
(%TST) and SpO2 lowest point in 2 profiles, REM duration
in 3 profiles, minimum SaO2 in 9 profiles, and REM (%
TST) in 18 profiles. The TST (min), N1+N2 (%TST), N2
(%TST), N3 (%TST), N4 (%TST), ODI, NREM sleep dura-
tion, REM latency, and sleep latency did not change
significantly.

Among all 22 profiles, AHI was the most common OSA
indicator, and it exhibited a significant decrease in all 22
profiles. REM (%TST) and TST were the next most com-
mon, as they were included in 21 profiles. As previously
mentioned, REM (%TST) increased significantly in 18 pro-
files, whereas TST (min) did not significantly change in
any profiles (Figure 5). Supplementary Table 5 presents
additional details of each profile result. The publication
bias of the apnea hypopnea index in rapid eye movement
sleep (AHI-REM) of profile P1-1 and profile P1-2 was
evaluated, and no significant bias was found (Figure 6).

4. Discussion

In the process of monitoring the OSA dataset and filtering
out OSA indicators, two indexes were adopted: ICR and
SIR, which are two new evaluation methods. ICR described
the overall usage of each indicator in disease monitoring
studies, and SIR reflected the specific usage situation of
each indicator in disease monitoring studies. ICRT and
SIRT were applied to objectively filter indicators and stud-
ies for analysis. The larger the ICRT, the more common
the monitoring indicator was in the included OSA-related

studies, and the larger the SIRT, the greater the proportion
of common indicators in each study. The result in Figure 4
shows that the coverage of most indicators was less than
0.1, and less than nine studies on these OSA-related indica-
tors were included in the detection analysis. These indicators
included SWS, supine duration, snoring duration [22], time
to wake up after falling asleep [23], and REM activity den-
sity [24]. SWS was defined as stages 3 and 4 non-REM sleep
[23], and instead of SWS, two indicators, N3 and N4, were
recorded in some studies [25]. REM activity density has
been used as an indicator to evaluate REM frequency [26],
but it was not used in any of the 89 OSA studies included
in our study, possibly because the change in REM density
was caused by the change in REM time [27], and therefore,
the REM time and REM latency were more often used for
REM assessment.

The results of studies with different profiles show com-
monalities. AHI exhibited a decrease in all profiles, which
is consistent with previous studies [28, 29]. AHI has been
acknowledged as a robust endpoint for the diagnosis of
OSA and the assessment of treatment efficacy and is used
worldwide [30, 31]. In addition to AHI, which is defined as
the average number of apnea plus hypopnea episodes during
sleep, we need more indicators to better characterize OSA
[32] and fully recognize changes in OSA across interventions
or populations. It has been shown that reducing hypoventi-
lation and apnea indices can significantly alleviate partial
and complete obstruction in patients with mild OSA [33].
The results of our analysis showed a significant decrease in
AI (13 profiles) and HI (two profiles) associated with AHI,
consistent with the changes in AHI. Physicochemical studies
of AHI would likely obtain relevant information enabling
the discovery of more indicators.
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Figure 6: Funnel plots of two dependent analysis. (a) Funnel plot of AHI-REM of 11 studies in profile P1-1. (b) Funnel plot of AHI-REM of
9 studies in profile P1-2.
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TST showed no significant differences in 21 profiles,
which was consistent with some studies [34–36]. Eighteen
of 21 profiles including REM (%TST) showed significantly
decreased REM. We could infer that the change of REM
(%TST) was caused by the change of REM duration. Limited
REM duration is thought to be one of the causes of OSA.
OSA patients generally have worse REM sleep because of
the degree of desaturation and duration of apnea [37], and
REM represents the physical neurophysiological state and
the control of ventilation of the upper airway [38]. Ventila-
tion control is more stable in OSA patients during REM than
during NREM [39], so with the increase of REM duration,
the severity of disease may be relieved. REM duration is an
important indicator for OSA assessment.

Effective surveillance indicators can facilitate the devel-
opment of preventive strategy measures for public health
[40]. The innovation of this study is the method of using
two indicators to integrate data across studies, which is a
new technique for objectively mining effective surveillance
indicators for diseases. In addition, the results of our analysis
are informative for the design of epidemiological studies and
clinical trials.

One limitation of this study was that the included
research data had great differences in decade, region, inter-
vention method, gender ratio, and sample size, but no profile
analysis [41], sensitivity analysis [42], or other such analysis
was conducted to explain the sources of data heterogeneity.
Besides, it is necessary to conduct subsequent clinical studies
to further verify our results.

5. Conclusion

The results of this study show the feasibility and effective-
ness of the data acquisition and screening strategy. We pro-
vide ICR and SIR for calculating and selecting data from
multiple studies with different indicators, which can also
demonstrate the usage and significance of OSA indicators.
Among the 22 ICRT and SIRT combination profiles, 33
indicators were distributed across all profiles, and 15 indi-
cators, including AHI, exhibited significant changes. In
addition to AHI, other indicators for OSA monitoring
and assessment merit further study. Since this study pro-
posed a new data collection and screening strategy, more
analytical and clinical studies are needed to further validate
the results.
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