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Background. Head and neck squamous cell carcinoma (HNSCC) is one of the commonest malignant tumors. Using high-
throughput genomic methods, RNA-based diagnostic and prognostic models for HNSCC with potential clinical value have
been developed. However, the clinical utility and reproducibility of these models are uncertain. Because the complex regulatory
processes occurring after mRNA is transcribed, the abundance of proteins in a cell can never be fully predicted or explained by
their corresponding mRNA expression. We aimed to assume and verify a novel protein signature for checking the HNSCC
patients’ prognosis. Methods. The functional proteomic data of 332 HNSCC cases were collected from The Cancer Proteome
Atlas (TCPA), and the related follow-up and clinical data were acquired from The Cancer Genome Atlas (TCGA). This study
adopted multivariate and univariate Cox regression analysis, Akaike Information Criterion, receiver operating characteristic
(ROC) analysis, and Kaplan-Meier method. Results. Patients’ clinical features in both sets were comparable (all, P > 0:05). The
area under the ROC curve (AUC) for the 3-protein signature (X4EBP1_pT37T46, HER3_pY1289, and NF2) in the test set was
0.655 and in the combined cohort (all 332 patients combined) was 0.699. In addition, the 3-protein signature exhibited better
predictive value for the survival of HNSCC patients as in comparison with conventional clinical factors like age, gender, tumor
stage, and smoking history (TNM stage). Conclusion. The 3-protein signature developed in this study exhibits good
performance in predicting the overall survival of with HNSCC patients. The 3-protein signature exhibited better predictive
value for survival than conventional clinical factors just like gender, TNM stage, smoking history, and age.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is a malig-
nancy originating from the oropharynx, hypopharynx, oral
cavity, and larynx. More than 550,000 persons worldwide are
diagnosed with HNSCC annually, resulting in 380,000 deaths
[1]. Epidemiological studies have indicated HNSCC’s inci-
dence is growing, and the 5-year survival rate is <50% despite
advances in treatments such as surgery, radiation therapy, and
chemotherapy [2–5]. The survival rate is <1 year in locally
advanced HNSCC patients who develop metastases or relapse
[6]. Alcohol consumption, human papillomavirus (HPV)
infection, and smoking are related to the occurrence, progres-
sion, and prognosis of HNSCC [7]. However, the reliability of
these risk factors is unclear [8]. HNSCC associated with
tobacco use and HPV have been shown to have different
molecular signatures, complicating the use of molecular tech-

niques to predict survival and develop targeted treatments [9].
Because of the molecular heterogeneity and etiological com-
plexity of HNSCC, it is difficult to determine novel biomarkers
that can help prognosis prediction and therapy guidance [8,
10]. Using high-throughput genomic methods, RNA-based
models with potential values clinically have been developed
for the prognosis and diagnosis of HNSCC [11–14]. However,
the clinical utility and reproducibility of these models are
uncertain [15]. The modified proteome represents the final
result of different molecular pathways and has the potential
for the therapeutic targeting of malignancies. However, due
to the complex regulatory processes occurring after mRNA
is transcribed, the abundance of proteins in a cell can never
be fully predicted or explained by their corresponding mRNA
expression [16]. As such, proteomic analysis of tumors can
provide researchers with large amounts of bioinformatics data
different from that obtained by RNA or DNA sequencing.

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 2161122, 11 pages
https://doi.org/10.1155/2022/2161122

https://orcid.org/0000-0003-1965-1279
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2161122


In recent years, protein-based prognostic signature
models have been developed to predict cancer survival.
For example, Xie et al. [17] developed a 3-protien predic-
tive risk score model for high-grade serous ovarian can-
cer’s progression-free survival (PFS) and overall survival
(OS). Han et al. [18] identified 4 protein biomarkers that
are prognostic for kidney renal clear cell carcinoma. Patil
and Mahalingam [19] successfully predicted lower-grade
glioma patients’ survival using a 4-protein prognostic
signature.

The Cancer Proteome Atlas (TCPA) is an open-access
bioinformatics resource that belongs to The Cancer Genome
Atlas (TCGA) Project [20, 21]. It contains protein expres-
sion data of many tumor cell lines formed by reverse-phase
protein arrays (RPPAs) [20, 21]. In this paper, a novel pro-
tein signature was constructed and checked for determining
the prognosis of HNSCC patients using the functional prote-
omic data collected from TCPA.

2. Material and Methods

2.1. Patients and Proteomic Data. The functional proteomic
data of 347 HNSCC patients were obtained from TCPA
online database (http://tcpaportal.org), and TCGA (https://
cancergenome.nih.gov/) provided corresponding clinical
and follow-up data. Upon removing fragmentary clinical
follow-up records, this article enrolled the data of 332 cases.

The 332 patients were grouped randomly as training set
(n = 168) and test set (n = 164), with the aim of comparabil-
ity of variables in the 2 sets. The prognostic model was
developed using the training set and verified via the test set.

2.2. Survival Analysis Based on the Functional Proteomic
Data in TCPA Database. Candidate proteins were selected
from the functional proteomic data using the Kaplan-
Meier method and univariate Cox proportional hazards
regression analysis in the survival R package software

Table 1: Clinical data of patients in the training set and testing set.

Variates Total (n = 332) Training set
(n = 168)

Testing set
(n = 168) P value Method

Age, years 60:98 ± 12:21 60:39 ± 12:60 61:57 ± 11:82 0.379 t test

Gender

Female 93 (28.01%) 50 (29.76%) 43 (26.22%) 0.472 χ2 test

Male 239 (71.99%) 118 (70.24%) 121 (73.78%)

Stage

I 14 (4.22%) 8 (4.76%) 6 (3.66%) 0.112 χ2 test

II 57 (17.17%) 35 (20.83%) 22 (13.41%)

III 61 (18.37%) 24 (14.29%) 37 (22.56%)

IV 200 (60.24%) 101 (60.12%) 99 (60.37%)

T stage

1 23 (6.93%) 10 (5.95%) 13 (7.93%) 0.070 χ2 test

2 99 (29.82%) 61 (36.31%) 38 (23.17%)

3 83 (25.00%) 37 (22.02%) 46 (28.05%)

4 127 (38.25%) 60 (35.71%) 67 (40.85%)

N stage

0 150 (45.18%) 75 (44.64%) 75 (45.73%) 0.472 Fisher’s exact test

1 44 (13.25%) 18 (10.71%) 26 (15.85%)

2 131 (39.46%) 71 (42.26%) 60 (36.59%)

3 7 (2.11%) 4 (2.38%) 3 (1.83%)

M stage

0 330 (99.40%) 167 (99.40%) 163 (99.39%) 0.745 Fisher’s exact test

1 2 (0.60%) 1 (0.60%) 1 (0.61%)

Smoking history

Nonsmoker 124 (37.35%) 62 (36.90%) 62 (37.80%) 0.865 χ2 test

Smoker 208 (62.65%) 106 (63.10%) 102 (62.20%)

Survival time (mean), units 1:83 ± 2:63 1:83 ± 2:32 2:01 ± 2:92 0.523 t test

Survival status

Alive 203 (61.14%) 104 (61.90%) 99 (60.37%) 0.774 χ2 test

Dead 129 (38.86%) 64 (38.10%) 65 (39.63%)

Survival time and age presented as mean ± standard deviation and other data as count (percentage).
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version 3.6.3. First, the univariate Cox regression analysis
was performed for the associations between patient OS and
protein expression. Next, we repeatedly classified the 168
patients in the training set into low or high expression on

the basis that the protein expression identification was <
median (low) or > median (high). Both groups were kept
the same patients in number. The median level was deter-
mined by the number of patients in both groups. Survival
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Figure 1: Volcano plot of the 24 prognosis associated proteins. Green dots represented low-risk proteins; red dots represented high-risk
proteins (P value filter = 0:05). HNSCC: head and neck squamous cell carcinoma. The figure was created with the R package software
version 3.6.3, the R Foundation.

Table 2: Seven proteins identified by the Kaplan-Meier analysis to construct a prognostic model.

Protein P valuea HR 95% CI (lower) 95% CI (upper) P valueb

X4EBP1_pT37T46 0.01899 0.577475 0.39181 0.85112 0.005528669

BAK 0.034163 1.449073 1.067948 1.966213 0.017211745

EGFR_pY1173 0.048016 1.240488 1.021306 1.506709 0.02981831

HER3_pY1289 0.009158 3.574414 1.405492 9.090362 0.007479537

NF2 0.00516 3.409989 1.589803 7.314126 0.001628719

BRAF_pS445 0.029428 0.129952 0.039403 0.428582 0.000803566

KEAP1 0.035003 0.630596 0.406964 0.977117 0.039059154

CI: confidence interval; HR: hazard ratio. aP value derived from the Kaplan-Meier method. bP value derived from the univariate Cox regression analysis.
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differences between the low- and high-expression groups
were examined with the 2-sided log-rank test. Only proteins
with a value of P < 0:05 were considered candidate proteins.

2.3. Definition of Protein-Related Prognostic Model and Risk
Score. Based on the above method, 7 proteins were chosen to
be candidates and received a multivariate Cox regression
analysis to identify the preferred mathematical model with
the Akaike Information Criterion (AIC). A predictive model
by AIC has the best informative efficacy and goodness of fit.
After the multivariate Cox regression analysis, the risk score
of each patient was calculated by a formula: Survival Risk
Score =∑n

k=1ðCk ×VkÞ. Specifically, n is prognostic proteins’
number; CK is the Kth protein’s coefficient in the multivar-
iate Cox regression analysis; and Vk represents the Kth pro-
tein expression value. Proteins were considered to have a
high-risk signature (CK > 0) and a low-risk signature
(CK < 0). All functional proteomic data were analyzed using
the R package software version 3.6.3.

2.4. Risk Stratification and Survival Curve. Based on the cal-
culated risk score, the 168 patients were pigeonholed as low-

risk (< median score) and high-risk (> median score)
groups. With the Kaplan-Meier method and R software, an
OS curve was generated. And the survival time differences
were compared by the log-rank test.

We also developed 3 survival curves of the low- and
high-expression groups that were based on the final 3 pro-
teins included in the predictive model. Finally, risk curves,
survival maps, and heat maps were plotted to show the risk
score’s distributions of each protein for training set patients.

2.5. Independent Analysis of Prognosis and Comparison of
Receiver Operating Characteristic (ROC) Curves. To appraise
clinical factors’ prognostic ability (age, gender, disease stage,
and smoking history) and the risk score, the multivariate
and univariate Cox regression analyses were conducted
using survival state and time as the dependent variables;
and P < 0:05 was considered that the factors had indepen-
dent prognostic values.

Besides, the ROC curve analysis was employed for eval-
uating the performance of the prognostic model and the
clinical parameters, and the R Survival ROC package was
used for drawing and analyzing the ROC curve. The

Table 3: Risk degree of the 3 proteins included in the model.

Protein Coefficient HR 95% CI (lower) 95% CI (upper) P value

X4EBP1_pT37T46 -0.544877895 0.579913 0.397571 0.845882 0.00467

HER3_pY1289 1.016464597 2.763408 1.055127 7.237447 0.038527

NF2 1.122403466 3.072229 1.419427 6.649579 0.004385

CI: confidence interval; HR: hazard ratio. P values derived from the univariate Cox regression analysis.
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Figure 2: Forest plot of the 3-protein signature. A hazard ratio ðHRÞ < 1 meant protective (i.e., X4EBP1_pT37T46), and HR > 1 suggested
increased risk (i.e., HER3_pY1289 and NF2). The multivariate survival analysis revealed the 3 proteins were independent prognostic factors.
The figure was created with the R package software version 3.6.3, the R Foundation.
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calculation of areas under the ROC curves (AUCs) was gone
on for comparing the prognostic value of clinical factors and
the prognostic model.

2.6. Validation in the Testing Set and in Combined Cohorts.
Based on the results obtained with the training set, we calcu-
lated the 164 patients’ risk scores in the test set. The subjects
were partitioned as low- and high-risk groups in the light of
the median score. In addition, this process was also carried

out in all 332 patients combined (combined cohort). The
Kaplan-Meier survival curves of the testing set and that of
the combined testing and training set were plotted, and sur-
vival differences between the low- and high-risk groups were
compared via the log-rank test. And the model’s prognostic
value was estimated by the AUC of both ROC curves.

2.7. Protein Coexpression Analysis and the Sankey Diagram.
To identify the potential proteins correlated with the 3
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Figure 3: Kaplan-Meier (KM) curves of the 3 proteins in the training set. The shaded area stood for the 95% confidence interval (CI) of the
curves. (a) KM survival curves of 168 persons with HNSCC partitioned as high-expression and low-expression groups by X4EBP1_
pT37T46. (b) KM survival curves for NF2. (c) KM survival curves for HER3_pY1289. (d) Survival analysis in survival time of the high-
and low-risk groups. P values were derived from the log-rank test. The figure was created via the R package software version 3.6.3, the R
Foundation.
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proteins in the model, proteins identified in the functional
proteomic data whose expressions were significantly corre-
lated with the proteins in the predictive model were iden-
tified using 2-sided Pearson’s correlation coefficient
analysis and the Z-test. Proteins with an absolute Pear-
son’s correlation coefficient value of >0.4 and P value <
0.001 were considered to have positive or negative correla-
tion with the 3 proteins in the prognostic model. A Sankey
diagram was plotted using the “ggalluvial” R software
package to illustrate the potential correlations of the
proteins.

3. Results

3.1. Patient Characteristics. Table 1 presents 332 HNSCC
cases’ data clinically in the testing (n = 164) and training
(n = 168) sets. In these cases, 200 suffered Stage IV, 61 Stage
III, 57 Stage II, and 14 Stage I disease. Patients were ran-
domly divided into the testing set (n = 164) and training
set (n = 168). Few obvious differences were observed in var-
iables clinically (e.g., age, gender, TNM stage, survival time,
and survival status) between the two sets (all, P > 0:05)
(Table 1).
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Figure 4: The distribution of risk scores and the expression heat map of the 3 proteins. Red dots were high-risk patients, and green dots
were low-risk patients. (a) Risk curve of 168 HNSCC patients arranged in order. (b) Survival status map. (c) Expression heat map of the
3 prognostic proteins. The figure was made through the R package software version 3.6.3, the R Foundation. HNSCC: head and neck
squamous cell carcinoma.
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3.2. 7 Proteins Were Selected as Candidate Proteins to
Construct a Prognostic Model. A total of 237 proteins were
screened for the functional proteomic data of HNSCC from
TCPA datasets. As shown in Figure 1 (volcano plot), there
were 8 proteins that were defined as low risk and 16 proteins
that were defined as high risk. The 24 proteins’ prognostic
values were determined via the univariate Cox regression
analysis (all, P < 0:05). Then we conducted the Kaplan-
Meier analysis, and 7 proteins were selected as candidate
proteins to build a prognostic model (Table 2).

3.3. The 3-Protein Signature Constructed from X4EBP1_
pT37T46, HER3_pY1289, and NF2 Was Established by the
Multivariate Cox Regression Analysis. A 3-protein prognos-
tic model was established by 3 of the 7 proteins selected with
the stepwise multivariate Cox regression analysis. The 3 pro-
teins selected were X4EBP1_pT37T46, HER3_pY1289, and
NF2. The predictive model was based on the summed
expressions of the 3 proteins weighted by their relative coef-
ficients. The relative coefficients were calculated using the
multivariate Cox regression and represented each protein’s
risk degree (Table 3). The multivariate survival analysis out-
comes using the 3 proteins are shown in Figure 2.

Every patient’s survival risk score was calculated through
the formula: Survival Risk Score = ð−0:544877895 × X4EBP1
pT37T46 expression valueÞ + ð1:016464597 × HER3 pY
1289 expression valueÞ + ð1:122403466 × NF2 expression
valueÞ. Of the 3 proteins, the coefficient of X4EBP1_
pT37T46 was negative in the Cox regression analysis indi-
cating it is protective since high expression is associated with
longer OS. Conversely, the coefficients of the other 2 pro-
teins (HER3_pY1289 and NF2) were positive and thus were
considered risk factors because higher expression of the 2
proteins meant shorter OS.

3.4. The 3-Protein Signature Can Predict the Survival of
HNSCC Patients. First, 3 survival curves of the high- and
low-expression groups on basis of the expression of the 3
proteins in the predictive model were developed
(Figures 3(a)–3(c)). The Kaplan-Meier survival curves of
the 2 groups based on the 3 proteins’ expression were signif-
icantly different (P value, log-rank test).

Next, with the median risk score described previously as
a standard, training set’s patients were divided into a high-
risk group and a low-risk group. Survival analysis indicated
a great difference in the high- and low-risk groups’ survival
time, further confirming the prognostic effectiveness of the
3-protein signature (Figure 3(d)). The risk curve, survival
map, and heat map of the 3-protein signature are shown in
Figure 4. As shown in Figures 4(a)–4(b), the deaths in the
high-risk areas were obviously larger than those in the low-
risk areas. As shown in Figure 5(c), the expression patterns
of the 3 proteins were correlated with risk scores.
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Figure 5: Forest plots derived from (a) univariate and (b) multivariate Cox regression analyses. The risk score and N stage (both, P < 0:05)
were considered independent predictors. The figure was constructed by the R package software version 3.6.3, the R Foundation.
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3.5. The 3-Protein Signature Have Better Prognostic Value
than Clinical Factors. Figures 5(a)–5(b) exhibit the results
of the univariate and multivariate Cox regression analyses
of the 3-protein signature and clinical factors. The OS had
significant association with the risk score and N stage, and
the 3-protein signature risk score and N stage were both
independent predictors of survival. To compare the 3-
protein signature risk score and the clinical factors’ prognos-
tic power, ROC curves of each independent variable were
plotted, and the AUCs were calculated (Figure 6). The
results showed greater AUC of the 3-protein signature
(0.750) than the AUC of N stage (0.624) in the training

set, indicating that the 3-protein signature exhibited better
sensitivity and specificity in predicting survival. Taken
together, these results indicate that the 3-protein signature
exhibits better predictive value for survival of HNSCC cases
(hazard ratio ðHRÞ = 1:471, 95% confidence interval (CI):
1.255-1.726, P < 0:0001, Figure 5(b)), as compared with con-
ventional clinical factors like age, sex, smoking history, and
TNM stage.

3.6. The 3-Protein Prognostic Signature Model Exhibits Good
Performance in the Testing Set. The Kaplan-Meier survival
curves and ROC curves of the 3 proteins in the testing set
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Figure 7: Kaplan-Meier and receiver operating characteristics (ROC) curves for the 3-protein signature in both validation sets. The shaded
area in Kaplan-Meier curves meant the 95% confidence interval (CI) of the curves. The risk table under the survival curve suggested the
number of patients remaining at each time point. (a) Kaplan-Meier curves for the 3-protein signature in the test set. (b) ROC curves for
the 3-protein signature in the test set. (c) Kaplan-Meier curves for the 3-protein signature in the combined cohort. (d) ROC curves for
the 3-protein signature in the combined cohort. P values derived from the log-rank test. The figure was created with the R package
software version 3.6.3, the R Foundation.
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and combined cohort set are shown in Figures 7(a)–7(d).
Consistent with results of the training set, differences
(P < 0:05) of OS were statistically significant between the
low- and the high-risk groups in the testing set and combine
cohort. The AUC for the 3-protein signature in the testing
set was 0.655 (Figure 7(b)) and in the combined cohort
was 0.699 (Figure 7(d)), suggesting good performance of
the 3-protein signature for predicting OS.

3.7. Other Proteins Potentially Correlated with the Survival of
HNSCC. Applying Pearson’s correlation and the Z-test to
the 3 proteins in the model and other proteins identified
showed that there was coexpression between 12 proteins
and 1 of the 3 proteins in the model
(∣Pearson correlation coefficient ∣ >0:4 and P < 0:001). The
Sankey diagram showing the correlations of the proteins is
shown in Figure 8. Thus, the 12 proteins may be related to
HNSCC’s prognosis.

4. Discussion

In this study we identified 3 proteins (X4EBP1_pT37T46,
HER3_pY1289, and NF2) related to HNSCC patients’ sur-
vival and developed a model using the 3 proteins for predict-
ing their OS. A training set was used to develop the model,

and the model was validated with a testing set. The AUC
for the 3-protein signature in the testing set was 0.655 and
in the combined cohort was 0.699, indicating great perfor-
mance of the 3-protein signature in the OS prediction of
HNSCC patients. In addition, the 3-protein signature exhib-
ited better predictive value for survival of HNSCC patients
as compared with conventional clinical factors (age, sex,
smoking history, and TNM stage).

HNSCC is a relatively common malignancy and is very
common in certain parts of the world [22]. Although there
have been many advances in understanding of the molecular
biology of HNSCC [1, 4, 7–9], as well as treatment options,
the mortality of patients with HNSCC remains high. As
such, there is a need for the development of novel markers
to predict prognosis and help guide treatment.

Bioinformatics studies have screened molecular bio-
markers such as mRNA, miRNA, and lncRNA to predict
the prognosis for HNSCC patients [11, 12, 23]. Advances
in high-throughput proteomics techniques allow the quanti-
tative assessment of large numbers of proteins in multiple
specimens. As an antibody-based protein microarray dot-
blot platform, the reverse-phase protein array (RPPA) allows
a large number of biological samples’ quantitative measure-
ment in protein expression level simultaneously as anti-
bodies with high quality are available [24–26]. Many

HER3_pY1289

NF2

X4EBP1_pT37T46

BRD4

CMET_pY1235

MRE11

NDRG1_pT346

P38_pT180Y182

PDCD4

RB_pS807S811

RBM15

S6_pS235S236

S6_pS240S244

SRC_pY527

X4EBP1_pS65

Figure 8: The Sankey diagram of the coexpression between 12 correlated proteins and 1 of the 3 proteins in the model. The figure was built
via the R package software version 3.6.3, the R Foundation.
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studies have used the RPPA technique to study protein bio-
markers relevant to cancer progression, treatment selection,
and prognostic prediction [19, 27].

With major advances in bioinformatics, proteomics, and
techniques of gene analysis, a great deal of researchers has
contributed themselves to developing signatures using dif-
ferent methods for predicting the prognosis of patients with
head and neck cancer. Prognostic signatures have been
developed using miRNA [28, 29], alternative splicing [30],
immune function molecules [31], and a signature according
to m6A RNA methylation regulators [32].

In a study similar to ours, Zhao et al. [33] reported a 5-
protein signature for predicting HNSCC prognosis. Notably,
the OS was much worse in patients with high-risk scores
than that in those with low-risk scores in the subgroups of
male sex, tumor grade 1-2, age < 60 years, and disease Stages
III-IV. OS differences were not significant in patients in the
subgroups of female sex, age ≥ 60 years, tumor grade 3-4,
and disease Stages I-II. In other notable research, Jin et al.
[34] reported that p53-targeted lncRNA-p21 serves as a
tumor suppressor through suppressing JAK2/STAT3 signal-
ing pathways in HNSCC. Zhang et al. [14] developed a
model using 5 genes as a novel signature for the prognosis
prediction of people with laryngeal cancer (KLHDC7B,
MMP1, DPY19L2P1, HOXB9, and EMP1). The ROC curve
analysis suggested good effect of the 5-gene signature on pre-
dicting laryngeal cancer prognosis (AUC = 0:862, P < 0:05).
Guo et al. [23] reported a 6-mRNA (ZNF324B, YIPF4,
TMC8, PDGFA, PCMT1, and FRMD5) signature model
for determining HNSCC prognosis. The AUC of the model
for predicting OS was 0.745 (P < 0:001). Wang et al. [35]
recently reported that 3 microRNAs (has-miR-1911, has-
miR-499a, and has-miR-99a) were independent risk factors
significantly related to patients with head and neck cancer
in survival (all, P < 0:01). In addition, GO and KEGG
analyses presented the association of cancer prognosis with
the JAK STAT signaling pathway and certain metabolic
pathways. In a unique study, You et al. [36] used cDNA
microarrays and bioinformatics methods to study radio-
resistance in head and neck carcinoma and identified 4
key functional pathways and molecular markers that
greatly promoted radio-resistance. A recent report by
Ribeiro et al. [37] studied tumor specimens of 40 patients
with HNSCC undergoing tumor resection, and tumor-
adjacent tissues from 32 of the patients. The authors iden-
tified a proteomic signature based on 3 proteins (DHB12,
HMGB3, and COBA1) and developed a model that
included the 3 proteins and tumor stage that exhibited
>80% predictive accuracy for the development of metasta-
sis and recurrence.

This study’s primary demerit is that the analysis was
based on information contained in large databases. While
this method provides important information and we were
able to develop a protein signature predictive of the OS of
patients with HNSCC, clinical validation of the results was
not performed. Clinical validation of the results was not part
of the research design and hence was not performed. While
the results are compelling, they need to be verified through
clinical study of HNSCC patients.

5. Conclusion

In this report, we developed a 3-protein signature to predict
HNSCC patients’ survival. The AUC for the 3-protein signa-
ture in the testing set was 0.655 and in the combined cohort
was 0.699, indicating the favorable role of the 3-protein sig-
nature in HNSCC patients’ OS prediction. In addition, the 3-
protein signature exhibits better predictive value for survival
of HNSCC patients as compared with conventional clinical
factors like gender, smoking history, age, and TNM stage.
These results add relevant information to the medical litera-
ture to help guide the management of patients with HNSCC.
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