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The precise identification of arrhythmia is critical in electrocardiogram (ECG) research. Many automatic classification methods
have been suggested so far. However, efficient and accurate classification is still a challenge due to the limited feature
extraction and model generalization ability. We integrate attention mechanism and residual skip connection into the U-Net
(RA-UNET); besides, a skip connection between the RA-UNET and a residual block is executed as a residual attention
convolutional neural network (RA-CNN) for accurate classification. The model was evaluated using the MIT-BIH arrhythmia
database and achieved an accuracy of 98.5% and F1 scores for the classes S and V of 82.8% and 91.7%, respectively, which is
far superior to other approaches.

1. Introduction

The latest survey statistics on global causes of mortality and
disability of the World Health Organization demonstrate
that cardiovascular disease (CVD) is one of the most serious
diseases that threaten human health. The ECG signal reflects
the electrical activity of the heart and is the primary basis for
the diagnosis of CVD. With the development of computer
technology, automatic arrhythmia detection technology has
become a research hotspot.

Traditional machine learning approaches such as inde-
pendent component analysis [1–3], principal component
analysis (PCA) [4], support vector machine (SVM) [5],
and K-nearest neighbor (KNN) [6] have been utilized to
identify arrhythmias. However, these methods require arti-
ficial feature extraction and intervention. With the devel-
opment of technology, deep learning has gradually
become the mainstream method for automatic ECG classi-
fication [7]. There are mainly two kinds of deep learning
approaches from the perspective of the dimension of

ECG representation, i.e., one-dimensional (1-D) and two-
dimensional (2-D).

Some studies exploit the original ECG signal as the
model input. Although the proposed 1-D deep convolutional
neural network (CNN) has achieved good classification
results [8, 9], however, beat-by-beat classification cannot be
achieved due to the fixed time window size. Lin et al. [10]
proposed a method based on normalized and nonnorma-
lized RR intervals that extract ECG morphology by wavelet
analysis and linear prediction model, but this method
requires lots of signal preprocessing and has low prediction
accuracy. Llamedo and Martínez [11] proposed a method
based on a linear classifier and a clustering algorithm; how-
ever, the clustering algorithm cannot effectively represent
class at the edge, making more likely arrhythmia misjudg-
ment. In addition, the abovementioned 1-D studies also
introduced a small degree of preprocessing.

The ECG signal can also be converted from one dimen-
sion into two dimensions in various manners, such as fre-
quency spectrum and time-frequency images. Al Rahhal
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et al. [12] use the continuous wavelet transform (CWT) to
generate time-frequency information, then migration learn-
ing. However, denoising and data augmentation operations
reduce model efficiency. Xia et al. [13] use the heartbeat
extraction method to convert multiple signals contained
within 5 s into an image. However, the proposed structure
not only limits the effect of the model due to the immutabil-
ity of the short-time Fourier transform window but also eas-
ily causes misjudgment of normal data in verification
because as long as one of the multiple heartbeats contained
in the image is abnormal, the entire image will be marked
as abnormal. Li et al. [14] exploited three distinct types of
wavelet transforms paired with CNN to create a depth tech-
nique for automatically distinguishing time-frequency
images, which identified ventricular ectopic heartbeat (V)
as more than 97%; however, preprocessing operations such
as noise reduction increase the complexity of the model.
Salem et al. [15] utilized DenseNet to classify ECG spectra
from the perspective of transfer learning, but it also has the
same risk of misjudgment as [13]. But in terms of overall
performance, the 2-D ECG data is weaker than the 1-D sig-
nal noise interference, which has also been proved in the
research [16, 17].

In order to solve the problems of cumbersome prepro-
cessing and difficult beat-by-beat classification in the above
research, inspired by structural variants such as fully convo-
lutional network, U-Net, residual network, and attention
mechanism [18–27] that have been successfully used in var-
ious tasks (such as natural image classification and medical
image segmentation), this paper proposes an RA-CNN
model for the classification of arrhythmia between patients.
Firstly, the CWT is used to convert the ECG heartbeat into
an image and classes with much fewer samples are enhanced
by data augmentation techniques. Secondly, the attention
mechanism and residual skip connection are integrated into
the U-Net which is called residual attention U-Net (RA-
UNET). Finally, the RA-CNN constitutes by a skip connec-
tion between the RA-UNET and a residual block. We
trained and tested the models on the MIT-BIH database,
and the final experimental results demonstrate the superior-
ity of the proposed method.

The main advantages of the proposed method are sum-
marized as follows:

(1) The converted 2-D ECG will improve the effective
area that the model can learn and use data enhance-
ment methods to make up for the deficiency of
waveforms [28]. The data enhancement on 1-D
ECG may change its time domain information, but
this problem does not exist in 2-D images

(2) A new residual block (R-block) with judgment
branches is proposed as the basic module of RA-
CNN; it judges whether to retain the original feature
map and thus solves the performance degradation

(3) RA-UNET integrates the “split-transform-fusion”
principle, splits the feature map into two groups after
each sampling operation, uses the two branches of
spatial and channel generate attention weights in

parallel, and then fuses the weight feature maps of
the two branches together to guide model learning

The rest of this paper is organized as follows. The pro-
posed model is discussed in detail in Section 2, followed by
the experimental design and verification in Section 3. Con-
clusions are finally drawn in Section 4.

2. Methodology

2.1. Database. The suggested approach is trained and evalu-
ated using the MIT-BIH arrhythmia database [29]. It was
developed in collaboration between the Massachusetts Insti-
tute of Technology and Beth Israel Hospital in Boston and is
now considered one of the three primary databases in aca-
demic circles. The database contains 48 Holter records from
25 men and 22 women between the ages of 32 and 89 (of
which 201 and 202 are from the same male), all of which
have significant variances. Each recording is a dual-channel
signal with a sampling rate of 360Hz and a length of slightly
more than 30 minutes, with the R peak value of each heart-
beat indicated.

2.2. Preprocessing

2.2.1. ECG Heartbeat Segmentation. Because each heartbeat
in an ECG has a distinct duration, the length of it segmented
from an ECG is not equal. Different methods of heartbeat
segmentation were employed in the literature [30–32] in
the study of 2-D.

We directly used the R peak position in the MIT-BIH
database without additional positioning and confirmed the
beat length after positioning the QRS complex according to
the R peak position [33]. Rcurrent, Rprevious, and Rlast represent
the R wave peaks of the currently located heartbeat and the
adjacent heartbeats before and after; the R-R interval
between two adjacent R waves is regarded as a segment. In
order to fully ensure the integrity of the segmented heartbeat
medical information, the middle 3/4 position of the two R
peaks of Rprevious and Rlast is taken as the intercepted heart-
beat length; therefore, the intercepted n-th heartbeat can be
expressed as Formula (1) (Figure 1):

EBeat =
3 Rlast − Rprevious
� �

4
, ð1Þ

where EBeat represent the extracted heartbeat, Rprevious and
Rlast, respectively, represent the abscissa values of the previ-
ous and next heartbeat of the extracted heartbeat on the
coordinate axis. If the extracted heartbeat has no heartbeat
Rprevious or Rlast, the coordinates correspond to the heartbeat;
then the current heartbeat will not be segmented.

2.2.2. Transforming the 1-D ECG into 2-D ECG. After deter-
mining the sampling length of each beat, the 1-D ECG is
converted to the time-frequency domain by CWT [28].
The choice of CWT is motivated by its success at analyzing
ECG signals. The dimension of this output is higher than
the dimension of the input. Unlike feature reduction,
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overcomplete representations allow finding more robust and
sparse feature representations from the data [12]. For ECG
time series, its CWT relative to a given mother wavelet
EBeat is defined as follows:

Ca,bEBeat tð Þ =
1
aj j1/2

ð∞
−∞

EBeat tð Þψ
t − b
a

� �
dt: ð2Þ

Among them, a and b are the scale and translation
parameters, respectively. EBeatðtÞ is the given signal; ψ is
the mother wavelet.

2.2.3. Heartbeat Augmentation. Even in patients with
arrhythmia, the majority of the swings in the ECG analysis
are normal signals, leading to fewer damage data in the
ECG database. The use of data augmentation techniques to
boost damage data can effectively make up for the absence
of training data. Decrease the danger of overfitting, and
increase the algorithm’s robustness.

According to the characteristics of the 2-D ECG wave-
form, this article will move the beat to the left and right,
move up, and move down to obtain multiple enhanced
heartbeat images. The signal characteristics in the original
ECG can be significantly retained by using the augmented
images [34–36]. Multiple focal heartbeat data can be created

after performing the preceding technique on the original
ECG. In Figure 2, step (i) depicts the process of turning
the extracted heartbeat into an image and step (ii) depicts
a portion of the data augmentation impacts.

The abovementioned heartbeat enhancement approach
is utilized to improve the data in DS1 (introduced in detail
in this work 3.1.3). Following processing, the data balance
is achieved in order to properly train the RA-CNN model.
Table 1 shows the number and percentage of heartbeats
before and after enhancement.

2.3. Model Architecture. Figure 3 shows the overall flowchart
of the proposed RA-CNN model to classify arrhythmia. The
encoding as images module (left) is the preprocessing pro-
cess in this work 2.2 to use CWT transform the 1-D ECG
into 2-D ECG heartbeat. The RA-CNN model (middle) is
designed to learn 2-D ECG features so as to transform it to
the forms that easy to classify. The arrhythmia prediction
module (right) realizes the classification in terms of the out-
put of RA-CNN according to arrhythmias in the AAMI
standard.

The RA-CNN model consists of three parts: top layer,
middle layer, and bottom layer (as shown in Figure 4). The
left part of the top layer uses conv2d, avg pooling, and R-
block to perform a certain degree of feature reduction on

R–R segment

Rcurrent Rprevious

Rprevious Rcurrent

Rcurrent Rlast

Rlast

R–R segment
4 4

Figure 1: Heartbeat segmentation schematic diagram.

ECG original signal Generate2–D images heartbeat augmentation

……

n

(ii)(i)

Figure 2: 2-D data generation and enhancement.

Table 1: Data comparison before and after dataset enhancement.

Database Enhancement Type
Number of heart beats

Total
N S V F

MIT-BIH

Before
Amount 90042 2779 7007 802 100630

Percentage (%) 89.48 2.76 6.96 0.80 —

After
Amount 90042 20696 41099 8668 160505

Percentage (%) 56.10 12.89 25.61 5.40 —
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the 2-D ECG image, which is conducive to reducing the size
of the input (record the output as initial feature map) and
expanding the receptive fields. The right part of the top layer
reduces the image dimension to 1 × 1 in order to classify by
multiple consecutive R-block and avg pooling. The skip con-
nection in the top layer is to connect the initial feature map
and the output features of the other two layers. In the middle
layer, the initial feature map passes through only an R-block
and then connects with the output of the bottom layer. The
bottom layer is residual attention U-Net (RA-UNET) which
is an hourglass structure from top-to-bottom to bottom-to-
top, i.e., from downsampling to upsampling; the downsam-
pling is achieved by R-block that extracts the essential fea-
tures from high-dimensional images and upsampling to be
done by bilinear interpolation. A-block is applied after each
downsampling and upsampling to intensify the output by
generating the attention weight distribution, so that the

model can efficiently focus on the appropriate area of the
ECG feature. At the same time, each output of downsam-
pling is used as a carrier to save the characteristics of the fea-
ture map via the skip connection with the output of the
upsampling in the same size, which prevents inaccurate fea-
ture reconstruction. The number of image channels and size
changes in the RA-CNN model structure are shown in
Table 2.

(1) Residual block (R-block): it is an encapsulated resid-
ual module with several convolution layers as the
network infrastructure; it performs general feature
learning operations or dimensionality reduction
operations (such as 2.3.1).

(2) Residual Attention UNET (RA-UNET): it includes a
complete downsampling and upsampling process
through the hourglass structure; the module has fully
learned the inherent characteristics of 2-D ECG. RA-
UNET converts the intrinsic feature map output of
each upsampling into an attention mask to guide
the feature learning of the model through skip con-
nection, so that the model can suppress the worthless
area of the feature map while enhancing specific
important information (such as 2.3.2).

(3) Attention block (A-block): channel attention and
spatial attention are learned in parallel by grouping
feature maps along the channel axis to achieve more
accurate attention to important information areas
(such as 2.3.3).

2.3.1. R-Block. R-block is a basic residual block with judg-
ment branches, which is made up of three BatchNorm2d-
Relu-Conv2d layers and then distributed throughout the
RA-CNN model to accomplish the general function of fea-
ture processing.

Top layer (le�) Top layer (right)

Middle
layer

Bottom
layer

⊕

⊗

⊕⊕

Figure 4: RA-CNN model.
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⊗

⊗

⊕
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Figure 3: RA-CNN model training flowchart.
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Figure 5 shows the structural details of the R-block,
which was inspired by the ResNet to solve the “degradation”
problem caused by very deep levels and designed a structure
with a judgment function (the Exit? branch shown in
Figure 5), which decides whether to retain more original fea-
ture information by setting different steps and channels, so
the purpose of it is to ensure that the essential characteristics
of the feature map will not be destroyed to the maximum
extent. Therefore, we can set appropriate parameters for dif-
ferent needs, followed by the residual connection.

For the input XR of R-block, the expected output RðXRÞ
can be expressed as

R XRð Þ =
f i θT σ1 XRð Þð Þ
� �

⊕ XR ið Þ,

f i θT σ1 XRð Þð Þ
� �

⊕ f1 θT σ1 XRð Þð Þ
� �

iið Þ,

8><
>:

ð3Þ

where f ið∙Þ is the ith BatchNorm2d-Relu-Conv2d opera-
tion, θ is a convolution operation, σ1ð∙Þ is a ReLU function,

Table 2: The number of channels and output dimensions of each layer.

Layer name Operate Kernel size Stride Output size Channels

Input 224 × 224 3

Top layer

conv2d 7 × 7 2 112 × 112 16

Max Pool2d 3 × 3 2 56 × 56 16

R-block1
conv2d, 1 × 1, 4
conv2d, 3 × 3, 4

conv2d, 1 × 1, 16

0
BBBB@

1
CCCCA × 1

1
1
1

56 × 56 16

Middle layer R-block5
conv2d, 1 × 1, 4
conv2d, 3 × 3, 4

conv2d, 1 × 1, 16

0
BBBB@

1
CCCCA × 1

1
1
1

56 × 56 16

Bottom layer RA-UNET 56 × 56 16

Top layer

R-block2
conv2d, 1 × 1, 8
conv2d, 3 × 3, 8

conv2d, 1 × 1, 32

0
BBBB@

1
CCCCA × 1

1
2
1

28 × 28 32

R-block3
conv2d, 1 × 1, 16
conv2d, 3 × 3, 16

conv2d, 1 × 1, 64

0
BBBB@

1
CCCCA × 1

1
2
1

14 × 14 64

R-block4
conv2d, 1 × 1, 16
conv2d, 3 × 3, 16

conv2d, 1 × 1, 64

0
BBBB@

1
CCCCA × 1

1
2
1

7 × 7 64

Avg Pool2d 7 × 7 1 1 × 1 64

Output 4

Input

BN
Relu

Conv2d

BN
Relu

Conv2d

BN
Relu

Conv2d

Output

Exit?⊕

(ii) (i)

Figure 5: R-block.
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and ⊕ denotes the element-wise sum. In the Exit? process of
judgment, when the number of input and output channels is
equal or the convolution step is 1, the flow is shown in pro-
cess ðiÞ of Figure 5 and the expected output RðXRÞ is shown
in the formula 3-ðiÞ. If not, the flow is shown in process ðiiÞ
in Figure 5 and the expected outputRðXRÞ is shown in for-
mula 3-ðiiÞ. Then the final output feature map RðXRÞ ∈
RC×H×W .

The R-block solves the problem of degradation and gra-
dient disappearance through the residual connection with
judging branches, which improves the network performance
and reduces the feature dimension by changing the number
of channels or stride in the branch structure.

2.3.2. RA-UNET. RA-UNET is an improvement of the U-
Net [18–22] by incorporating residual and attention mecha-
nisms. RA-UNET is an encoder-decoder structure (as shown
in Figure 6), which extracts high-level information based on
three layers of downsampling and then reconstructs the fea-
ture by three layers of upsampling. In our design, the most
significant thing is the attention block (A-block) inserted
after each downsampling and upsampling, which can assist
the model in accurate and efficient feature reduction and
reconstruction. We will introduce its implementation in
detail:

(i) Encoder: using max pooling to realize the resample
of vital information of the input image, i.e., down
sampling, at the same time, the A-block is used to
strengthen the effect of key areas.

(ii) Decoder: the upsampling operation is accomplished
through the bilinear interpolation layer, which can
be intuitively understood as the restoration process
of the feature map. After each step of the upsam-
pling operation, the A-block is also used to encour-
age the model to use the learned knowledge to learn
more feature map information.

(iii) Skip connections: in order to better train the deep
network, after downsampling and completing the
A-block, the R-block for feature processing not only
better integrates contextual semantic features and
prevents the disappearance of gradients caused by
the stacking of coding layers but also acts as a car-
rier to save the characteristics; it can better restore
the details of the same size feature map during the
upsampling process, so as to improve the recogni-
tion effect of the network on the diversity of wave-
form changes.

The specific size changes and convolution kernel size
during RA-UNET processing are shown in Table 3.

2.3.3. A-Block. A-block captures remote contextual informa-
tion in the spatial dimension and channel dimension,
respectively. The attention mechanism is an improvement
in the article [24], which is used to automatically learn and
calculate the contribution of input data to output data. First,
the sampled feature map is divided into n groups along the

channel axis, and each group of features is split into two
branches for channel attention and spatial attention, respec-
tively, and then concatenates the attention results of the two
branches together. Finally, the n groups of features are
merged to obtain a feature map with the same size as the
input. Figure 7 shows in detail one group of attention mech-
anisms after channel grouping.

Take the feature map X ∈RC×H×W as an example, which
is the output after the first use of max pooling in RA-UNET.
First, divide its channel dimension into n groups of subfea-
tures Xi ∈R

ðc/nÞ×H×W ð1 ≤ i ≤ n); then split each subfeature
along the channel axis into two branches Xi1, Xi2 ∈
Rðc/2nÞ×H×W ð1 ≤ i ≤ nÞ; hence, the channel attention is per-
formed on the first branch to embed global information
and generate channel statistical attention weight distribution
by average pooling layer and softmax function. Then, the
channel attention weight distribution is imposed on Xi1 to
help model focus on the distinct channel, followed with the
residual connection. The final output feature map Xi1′ of
the channel attention can be realized as follows:

Xi1′ = σ2 W1∙AVG Xi1ð Þ + b1ð Þ ⊗ Xi1ð Þ ⊕ Xi1: ð4Þ

Among them, σ2ð∙Þ represents the softmax function,
AVG (∙) is the average pooling operation, W1 ∈R

ðc/2nÞ×1×1

and b1 ∈R
ðc/2nÞ×1×1 are parameters used for scaling and

translation, and ⊗ stands for matrix multiplication.
Next, the spatial attention is performed on the second

branch to generate the spatial attention map which pays
more attention to the important pixel area that stands
for the principal character of the feature map. What is dif-
ferent from channel attention is that Xi2 obtained the spa-
tial attention weight distribution via group normalization,
and other operations are similar. The final output feature

⊕ ⊕

A–block

R–block

Max pooling

Upsampling

Element–wise sum⊕

Figure 6: RA-UNET structure diagram.
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map Xi2′ of spatial attention can be achieved as follows:

Xi2′ = σ2 W2∙GN Xi2ð Þ + b2ð Þ ⊗ Xi2ð Þ ⊕ Xi2: ð5Þ

Among them, GNð∙Þ denotes the group normalization,
W2 ∈R

ðc/2nÞ×1×1 and b2 ∈R
ðc/2nÞ×1×1 are model parameters

need to be trained.
In order to maintain the consistency of channel dimen-

sions after the attention operation, the channel attention

Table 3: Each layer structure and input size of RA-UNET.

Name Layer Kernel size Output size Channels

Encoder

Max Pool2d 3 × 3, stride 2 28 × 28 16

A-block — 28 × 28 16

R-block
conv2d, 1 × 1, 4
conv2d, 3 × 3, 4

conv2d, 1 × 1, 16

0
BBBB@

1
CCCCA × 1 28 × 28 16

Max Pool2d 3 × 3, stride 2 14 × 14 16

A-block — 14 × 14 16

R-block
conv2d, 1 × 1, 4
conv2d, 3 × 3, 4

conv2d, 1 × 1, 16

0
BBBB@

1
CCCCA × 1 14 × 14 16

Max Pool2d 3 × 3, stride 2 7 × 7 16

A-block — 7 × 7 16

Decoder

Upsample Size (14, 14) 14 × 14 16

A-block — 14 × 14 16

Upsample Size (28, 28) 28 × 28 16

A-block — 28 × 28 16

Upsample Size (56, 56) 56 × 56 16

A-block — 56 × 56 16

R-block
conv2d, 1 × 1, 4
conv2d, 3 × 3, 4

conv2d, 1 × 1, 16

0
BBBB@

1
CCCCA × 1 56 × 56 16

Output 56 × 56 16

⊗ ⊕

⊗ ⊕

Channel

Spatial

c
2n

c
2n

c
2n

c
2n

c
n

c

h

h

n

Xi

W

W

Xi2

Xi1

X′i

X′i1

X′i2

Figure 7: A-block.

7Computational and Mathematical Methods in Medicine



feature map and the spatial attention feature map are spliced
along the channel axis.

Xi′= Concat Xi1′ , Xi2′
n o

, ð6Þ

where Concat {∙} denotes the dimension concatenating
operation and Xi′∈Rðc/nÞ×H×W ð1 ≤ i ≤ nÞ.

Finally, after n groups of feature maps are also aggre-
gated along the channel dimension, the final attention fea-
ture map containing the weight coefficient is generated:
X ′ = Concat fX1′ , X2′ ,⋯Xn′g.
2.3.4. Arrhythmia Predication. Finally, the RA-CNN model
uses a fully connected layer to perform a fully connected
operation on the learned attention feature map to achieve
arrhythmia classification.

3. Experimental Design

3.1. Experimental Setup

3.1.1. Experimental Environment. The data preparation sec-
tion of this paper is done on an i7-10700K processor. The
experiment was done with the NVIDIAA 100 graphics card
and completed on the Ubuntu 18.04.3 operating system. Run
PyTorch, and then use WFDB packet to process the ECG
signal.

3.1.2. Classification Standard of ECG. This study used the
widely used [37–42] American progressive association
AAMI to develop medical device ANSI/AAMI EC57:2012
standards to classify arrhythmias. Arrhythmias are divided
into five classes, as shown in Table 4.

3.1.3. Database Set. The data from MIT-BIH is used to train
the model in this work. This paper strictly follows the AAMI

classification standard, ignoring 4 records with severe noise
among the 48 records. For the remaining records, an inter-
patient division scheme proposed in [37–42] is used. Divide
into training set (DS1) and test set (DS2). DS1 contains 22
records for training and parameter determination. DS2 is
only used as a test set for final performance evaluation.
Using this partitioning method, there is no need to worry
about including the same patient’s heartbeat in both training
and test sets. The number of heart beats after division is
shown in Table 5.

3.1.4. Training Parameter Setting. The learning rate is a key
training parameter in the proposed RA-CNN model. We
optimize the parameters in order to train the model for the
best performance in arrhythmia classification.

We set the initial learning rate to 0.001 and drop to the
original 0.1 every 20 epochs. In order to reduce the memory,
use a smaller batch size for training, and set the batch size to
a small batch of 16; the loss function uses cross entropy
error, and the optimization function uses Adam.

3.1.5. Evaluation Metrics. This study utilized the MIT-BIH
arrhythmia database to evaluate the RA-CNN model accord-
ing to the AAMI standard in order to test its performance.
These indicators have also been employed extensively in
research [37–42]: classification accuracy (Acc), sensitivity
(Sen), positive prediction rate (Ppr), and F1-score.

Acc is the proportion of correctly classified ECG samples
to the total sample and is also the most commonly used eval-
uation index in all classification problems.

Acc =
TP + TN

TP + TN + FP + FN
× 100%: ð7Þ

Table 4: Classification of ECG in the MIT-BIH database using AAMI standard.

Types Contains heartbeat type

Normal (N)
Normal (NOR), left bundle branch block (LBBB), right bundle branch block (RBBB), atrial

escape (AE), node (junction) escape heartbeat (NE)

Ventricular ectopic heartbeat (V) Premature ventricular contraction (PVC), ventricular escape heartbeat (VE)

Fusion heartbeat (F) Fusion of ventricular and normal (FVN)

Supraventricular ectopic heartbeat or
premature heartbeat (S)

Atrial premature (AP), aberrant atrial premature (AaP), nodal (junctional) premature (NP),
supraventricular premature (SP)

Unknown heartbeat (Q) Paced (/), fusion of paced and normal (FPN), unclassified (U), undetermined (?)

Table 5: Interpatient dataset partitioning scheme.

Database Datasets Partition
Number of heart beats

Total
N S V F

MIT-BIH
DS1

Training 45824 18860 37880 8280 110844

Percentage (%) 41.34 17.01 34.17 7.47 100

DS2 Testing 44218 1836 3219 388 49661

Total 90042 20696 41099 8668 160505
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Sen only processes positive heartbeats, which means the
ratio of the detected true positive heartbeats to the actual
positive heartbeats.

Sen =
TP

TP + FN
× 100%: ð8Þ

Ppr represents the proportion of positive heartbeats that
are correctly detected among all positive heartbeats.

Ppr =
TP

TP + FP
× 100%: ð9Þ

F1-score is a comprehensive evaluation index of preci-
sion rate and recall rate, used to reflect the overall situation.

F1 =
2 × Sen × Ppr
Sen + Ppr

× 100%: ð10Þ

Among the above four evaluation indicators, false posi-
tive (FP) is the number of heartbeats that are misclassified.
For example, it is actually a heartbeat of class N but is clas-
sified into one of the classes V , F, or S. False negative (FN) is
the number of heartbeats classified in different categories; it
is also a misclassification of samples. True positive (TP) is
the number of heartbeats that are correctly classified. True
negative (TN) is the number of heartbeats that do not belong
to a certain category and are not classified as such.

3.2. Experimental Verification

3.2.1. Analysis of the Impact of A-Block on Classification
Results. Figure 8 shows the heartbeat display of channel
attention and spatial attention after A-block processing in
the process of using RA-UNET. A-block explores attention
by assigning higher weights to pixels that are helpful for
accurate classification. Therefore, as the depth of the RA-
UNET deepens, the pixel area that represents the ECG curve
in the feature map will become more and more obvious. The
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Figure 9: Confusion matrix without data augmentation.
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Figure 10: Confusion matrix enhanced with data augmentation.

(i) Original image

(ii) Channel attention image

(iii) Spatial attention image

Figure 8: 2-D ECG data processing results of the two branches of A-block.
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RA-UNET model will not only focus more precisely on the
specific area of the lower part of the image where the wave-
form changes more but also filter the background informa-
tion. Thereby, it can “do no useless work” and has the
effect of improving the classification accuracy. In the figure,
(i) shows 8 beats randomly selected from 2-D ECG, (ii)
shows the visualization results output by Channel attention
in A-block for the first time, and (iii) shows the output result
of spatial attention structure processing. Obviously, it can be
seen that (iii) pays more attention to the lower area of the
image than (ii) and realizes that the large-scale, multichan-
nel features are concentrated in the key positions of the var-
ious waveforms at the bottom of the image.

3.2.2. Data Enhancement Experiment. Figures 9 and 10,
respectively, show the best results of classification of classes
N , S, V , and F ECG using RA-CNN when only setting var-
iables for data enhancement. It can be found that the num-
ber of correctly classified samples after enhancement has
increased compared with that before enhancement.

Table 6 shows the evaluation results before and after data
enhancement using the indicators mentioned in 3.1.5. It can
be seen that with the basic settings unchanged, the average
accuracy of the data enhancement method proposed in this
work has increased by about 0.8%. Other indicators have
also improved, so the data enhancement method proposed
in this work can promote the classification results.

The final experimental results show that the model has a
good classification effect on class N and class V , while the
class S classification effect is significantly lower than the
other two classes. The main reason is that the number of
training samples for class S is significantly less than the other
two categories even with data enhancement. The second is
that the similarity of the waveforms between class S and class
N is extremely high, causing the two types of samples to

overlap more in the distribution, and the classification effect
is not ideal.

3.2.3. Ablation Study. It has been proved by 3.2.2 that the
data enhancement method proposed in this work is effective.
Therefore, the effectiveness of the proposed two basic struc-
tures of R-block and A-block is verified in the same situation
using the enhancement method proposed in this work.
Table 7 presents the results of our ablation experiments.

First of all, we verify the influence of the R-block module
on the model effect. We use conv2d (the same as the conv2d
used in R-block) to replace the R-block that implements the
downsampling effect in the model and remove the R-block
that implements the general feature processing function.
The final implementation result (as shown without R-block)
shows that the classification effect would be reduced without
R-block, so R-block is effective for improving the classifica-
tion effect.

Secondly, we verify the effectiveness of A-block. First,
remove the A-block used to capture contextual information
after the sampling step. The experimental results show that
A-block also has a greater impact on the accuracy of classi-
fication. Then, the effectiveness of the channel attention
branch and the spatial attention branch in the A-block were
verified. By removing the two branches, respectively, it was
proved that the two branches also have an important influ-
ence on the context information capture of the A-block,
through the evaluation of the three classes of N , S, and V
through the general evaluation indicators.

Finally, we verify the effectiveness of the skip connection
used in the top layer and middle layer. The reason why the
skip connection structure is used is that RA-UNET uses
the function of ReLU in the feature learning process, which
will make the output result between (0, 1); therefore, the
value of the feature map will decrease over time as a result

Table 6: Comparison of effects before and after data enhancement.

Enhancement ACC
N (%) S (%) V (%)

SEN Ppr F1 SEN Ppr F1 SEN Ppr F1

Without 97.6 98.16 98.29 98.23 75.93 71.56 73.68 89.93 82.95 86.30

Proposed 98.5 98.87 98.64 98.75 83.06 82.48 82.77 93.46 90.04 91.72

Table 7: Data analysis of ablation experiments.

Works ACC
N (%) S (%) V (%)

SEN Ppr F1 SEN Ppr F1 SEN Ppr F1

Without R-block 97.4 97.49 98.41 97.94 77.72 71.85 74.67 91.92 78.26 84.54

Without A-block 97.2 97.72 98.15 97.94 71.35 66.23 68.69 88.38 78.77 83.30

Without channel attention 97.7 98.18 98.21 98.20 76.68 68.84 72.61 89.84 86.35 88.06

Without spatial attention 97.5 97.95 98.08 98.02 75.44 68.40 71.74 88.75 83.51 86.05

Without top layer 96.5 96.36 97.88 97.11 74.83 64.87 69.50 90.59 72.86 80.76

Without middle layer 97.3 97.28 98.48 97.88 80.39 72.60 76.30 92.17 77.19 84.02

Proposed 98.5 98.87 98.64 98.75 83.06 82.48 82.77 93.46 90.04 91.72
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of a series of feature learning operations, resulting in unsat-
isfactory learning effects. Through the addition of the rela-
tively original features of the top layer and middle layer, it
is possible to minimize the loss of important information
without attention learning. The final experimental findings
also fully validate the efficacy of this step.

3.2.4. Performance Comparison. We compared this study to
similar studies in recent years to verify the advanced nature
of RA-CNN in the classification of arrhythmia. Table 8 dis-
plays the research findings based on data from the MIT-BIH
arrhythmia database, which has been segmented in the same
way as this paper. Each method’s name, the year it was pro-
posed, and its performance in the classification task are
listed in the table.

[38] used traditional methods for classification research,
introduced 60 features for the classification step. Not only
was the preprocessing process complicated, but also the class
S Ppr value was 48.8%, which is not ideal. [39] It is necessary
to read multiple heartbeat features for heartbeat classifica-
tion, which undoubtedly increases the amount of calcula-
tion. [40] In addition to inputting the original signal as
input, the model also introduces RR interval information,
which requires additional feature extraction operations,
and the obtained classification effect is also worse than this
study [41]. After completing the initial classification using
a deep dual-channel CNN (DDCNN), it is necessary to fur-
ther use the central-towards LSTM supportive model
(CLSM) to distinguish classes N and S; however, the classifi-
cation effect of category S is still unsatisfactory. [42] not only
performed tedious noise reduction processing but also intro-
duced the RR interval relationship as a feature for learning,
which undoubtedly increased the difficulty of feature extrac-
tion. Compared with the above experiments, this model not
only has a simple feature extraction process but also has a
higher F1 value for beat-by-beat classification, which is supe-
rior in class S pathology identification [38–42].

4. Conclusion

In this work, we propose a novel and effective RA-CNN
model. Experiments on arrhythmia data interpatients show
that the model has a high ECG recognition ability, strong
generalization, and robustness. When doctors diagnose elec-

trocardiograms, they are mostly obtained in the form of
images, and two-dimensional research is more conducive
to visualization, thereby improving the efficiency of diagno-
sis and prevention of CVD. The data does not require any
form of noise reduction operation and manual feature
extraction, which avoids the loss of detailed information in
the original ECG data and affects the feature extraction effect
[16, 17]. The preprocessing does not need to strictly extract a
single heartbeat. Even if the heartbeat is mixed with the
information of the front and back heartbeats, the ECG char-
acterization information can be better expressed through the
CWT, and finally, a good classification performance can be
achieved.

In a further work, we will investigate the improved ECG
network and further improve the classification performance
of different types of diseases [43–46]. On the clinical side, we
will develop an ECG system that can be deployed on wear-
able medical devices and automatic diagnosis algorithm, test,
and improve its performance [9, 47].
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The ECG signal data used to support the findings of this
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