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Many studies have indicated that an entropy model can capture the dynamic characteristics of resting-state functional magnetic
resonance imaging (rfMRI) signals. However, there are problems of subjectivity and lack of uniform standards in the selection of
model parameters relying on experience when using the entropy model to analyze rfMRI. To address this issue, an optimized
multiscale entropy (MSE) model was proposed to confirm the parameters objectively. All healthy elderly volunteers were
divided into two groups, namely, excellent and poor, by the scores estimated through traditional scale tests before the rfMRI
scan. The parameters of the MSE model were optimized with the help of sensitivity parameters such as receiver operating
characteristic (ROC) and area under the ROC curve (AUC) in a comparison study between the two groups. The brain regions
with significant differences in entropy values were considered biomarkers. Their entropy values were regarded as feature
vectors to use as input for the probabilistic neural network in the classification of cognitive scores. Classification accuracy of
80.05% was obtained using machine learning. These results show that the optimized MSE model can accurately select the brain
regions sensitive to cognitive performance and objectively select fixed parameters for MSE. This work was expected to provide
the basis for entropy to test the cognitive scores of the healthy elderly.

1. Introduction

With the aging population becoming grimworldwide, the cog-
nitive level of the old people has especially garnered massive
attention [1–4] because it is related to the quality of life. Deter-
mining the cognitive ability of the elderly as early as possible is
a prerequisite for prevention or intervention for slowing down
the time course of degenerative or pathological cognitive
decline. Therefore, the detection of cognitive ability of healthy
old people is the basis for distinguishing between a degenera-
tive and pathological decline, and it is also an effectual control
to evaluate cognitive impairment [5–7].

The brain is a complex nonlinear system, and it is thus
essential to study the complexity of physiological signals
from the perspective of nonlinear dynamics. Physiological
complexity can reflect functional changes by quantitatively
analyzing the regularity (orderliness) in the time-series sig-
nals of the brain [8–10]. Studies have evidenced that brain
nerve cells also have cooperative activities in the resting state
(closed eyes, awake, no specific cognitive task) and maintain
the complex network system that appears in the task state.
The low-frequency fluctuation of the blood-oxygen-level-
dependent (BOLD) signal is not random noise. It can reflect
the spontaneous neural activity of the human brain, which
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has certain physiological significance [11, 12]. According to
studies, the BOLD signals measured by resting-state func-
tional magnetic resonance imaging (rfMRI) are important
for modeling the link between blood flow and neural activ-
ity, which is an advanced tool for us to learn about the
human brain activity [13]. rfMRI not only has the advan-
tages of high spatial resolution and noninvasiveness [14]
but is also faster (less than 15min) than task-state fMRI
[13, 15]. In recent decades, rfMRI as a novel technique offers
a remarkable opportunity to explore cognitive studies. Kha-
zaee et al. used rfMRI to study functional brain network
alterations in patients with Alzheimer’s disease (AD) [16].
Hojjati et al. predicted conversion from mild cognitive
impairment to AD by integrating rfMRI and structural
MRI [17].

Entropy, as a classical physical parameter, is extensively
used in nonlinear systems, such as medicine [18], electricity
[19], machinery [20], and other sciences and humanities
fields [21]. The entropy model has gone through the devel-
opment process of approximate entropy (ApEn), sample
entropy (SampEn), multiscale entropy (MSE), etc. The
ApEn model, first proposed by Pincus, can estimate the
complexity of time series from a small amount of data.
One of its advantages is classifying complex systems into
two categories, namely, deterministic and stochastic [22].
The SampEn model, improved by Richman, was eventually
declared the solution to the probability deviation caused by
the self-matching problem of the ApEn model, and it could
be simpler than the ApEn model and less dependent on the
length of the time series [23]. However, the model was diffi-
cult to adapt to different states in a complex system because
of its fixed scale. Therefore, the concept of MSE was pro-
posed to eliminate the error caused by a fixed scale. Gener-
ally, SampEn quantifies the temporal irregularity of
temporal patterns in the signal. As an extension of SampEn,
MSE aimed to describe temporal irregularity at different
time scales—varying from fine to coarse [24].

MSE has an adequate recognition ability for biomedical
signals without the self-matching defect in calculating prob-
ability. The MSE values derived from the heart rate variabil-
ity can clarify the difference between healthy and diseased
states, substantiating the theory of “complexity loss” of aging
and disease that with the aging or disease of the human
body, and the complexity of physiological signals would
gradually decrease [1, 25, 26]. Furthermore, MSE values
derived from biomedical signals can also assess different
physiopathological states [27–29]. Turianikova et al. found
that MSE analysis of heart rate and blood pressure is sensi-
tive to changes in autonomic balance [29]. Blons et al. found
that changes in cardiac entropy accompany acute responses
to cognitive load and stress [27].

By dint of fMRI, the MSE model can uncover changes in
brain physiology, pathology, and functions from the complex-
ity perspective [30–32]. Therefore, applying the MSEmodel to
study the complexity of rfMRImay provide new ideas for eval-
uating the cognitive scores of the healthy elderly.

Conventionally, there are three ways to select the opti-
mal parameters for complexity measures of BOLD signals.
The first one is to roughly select empirical values for param-

eters according to previous work and signal features. The
second one is to select a range of parameters that maxi-
mize the significant differences in complexity measures of
brain BOLD signals between two different groups. The
third one is to minimize the relative error of the entropy
of BOLD signal in cerebrospinal fluids that could contain
minimal physiologic information but uncorrelated noise
[33, 34]. Ran et al. developed a novel K-means clustering
algorithm to automatically select the optimal number of
clusters and sensitively initialize the center cluster [35].
Cui et al. adaptively optimized and determined the system
parameters of stochastic resonance by using the subsam-
pling technique [36]. Taking the evaluation of the cogni-
tive performance of the healthy elderly as an example,
this paper tried to solve the problem that MSE parameter
selection depended on the experience and lacked a unified
objective basis [37].

This paper highlighted the importance of optimizing
parameters in the MSE model and innovatively optimized
the parameters of multiscale entropy through the receiver
operating characteristic (ROC) and area under the ROC
curve (AUC). The optimized MSE model could accurately
extract the functional imaging markers sensitive to the cog-
nitive scores. This study integrated the optimized MSE
model with a machine learning model to classify the cogni-
tive scores of the healthy elderly.

2. Materials and Methods

The process of this study can generally be divided into the
following steps: (1) the MSE model parameters were opti-
mized by the “maximizing between-group difference”
approach. Using the ROC curve and AUC values, the
approach can find a combination of parameters that maxi-
mize the differences of BOLD complexity between two
groups. (2) The functional biomarkers of brain regions sen-
sitive to the cognitive scores were validated by the statistical
significance of the optimized entropy values between two
groups. (3) The optimized entropy values of biomarker areas
were regarded as feature vectors input into the probabilistic
neural network (PNN) to classify the cognitive scores. The
accuracy of classification was tested by N-fold crossvalida-
tion. This study’s flowchart is depicted in Figure 1.

2.1. Subjects. The elderly participants were selected from a
public dataset of a cohort study involving 1,051 Portuguese
elderly people over 50 years old (http://github.com/
juanitacabral/LEiDA) whose cognitive behaviors were
assessed by the scores derived from a total of nine series of
neuro-psychological scale tests that they conducted before
the rfMRI scan.

Principal component analysis was used to determine the
scores of two main dimensions related to memory and cog-
nitive executive functions: Mini-Mental State Examination
(MMSE) and Geriatric Depression Scale (GDS, long ver-
sion). These two dimensions scores did not form any corre-
lation with other grouping of neuropsychological variables.
Based on the scores of these two dimensions, four separate
cluster solutions were tested, ranging from 2 to 5. To
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determine the most suitable solution, an analysis of variance
was performed on each cluster solution, and the four-cluster
solution was deemed to provide the best cluster solution.
According to cognitive performance, 1051 subjects were
ranked C1 > C2 > C3 > C4, where C1 and C4 represented
an excellent cognitive level and a poor cognitive level,
respectively [38].

Then, two groups of participants were formed by ran-
domly selecting 60 subjects from each of the above C1 and
C4 groups resulting in two groups with different cognitive
performance: 60 subjects with excellent cognitive perfor-
mance and 60 subjects with poor cognitive performance.
In the subsample of 120 subjects, 9 subjects refused to
undergo MRI screening, 4 had previously undiagnosed
brain pathologies, and 9 subjects were excluded due to
excessive motion. The final samples consisted of 98 subjects,
55 with excellent cognitive scores (denoted as the excellent
group) and 43 with the lowest cognitive scores (denoted as
the poor group) [39, 40].

2.2. Data Acquisition. During the scanning process, partici-
pants were asked to keep their eyes closed, stay awake, and
not think of anything in particular. Data of rfMRI were col-
lected at Braga hospital, Portugal, by using a clinically
approved 1.5 T Siemens magnet Avanto 12-channel head
coil scanner. Using BOLD-sensitive echo plane imaging
sequence, the parameters were set as follows: 30 axial slices,
TR/TE = 2000/30ms, FA = 90°, slice gap = 0:48mm, and
voxel size = 3:5 × 3:5 × 3:5mm3.

This study was performed in accordance with the Decla-
ration of Helsinki (59th amendment), and all subjects pro-
vided written informed consent.

2.3. Data Preprocessing. The preprocessing of rfMRI data
was performed using FMRIB software library tools [41,
42]. The steps followed can be enumerated as follows: (1)
the first five data values were removed to stabilize the signal;
(2) slice timing was corrected; (3) MCFLIRT [41] software
was used to align each volume of a rigid body with the aver-
age image for motion correction (FD < 0:2mm); (4) brain
extraction tool was used for skull peeling [43]; (5) FLIRT
software was used to obtain the structure through continu-
ous rigid body registration to normalize the nonlinear func-
tion. The nonlinear registration was due to the original space
of the structure to the Montreal neurological institute stan-
dard space, and FNIRT was used to resample to a 2mm3 iso-
tropic voxel size; (6) linear regression of motion parameters,
average cerebral spinal fluid and white matter signals, and
other customized covariables, such as age or gender of sub-
jects; and (7) band-pass time filtering of regression residual
(0.01–0.08Hz). To compute the MSE, the mean time course
was extracted for each brain region by the anatomical auto-
matic labeling (AAL) atlas.

2.4. Sample Entropy. For one-dimensional N-length discrete
time series fx1, x2, x3,⋯,xNg, a new coarse-grained time
series fyðτÞg is obtained by transforming Equation (1):

yτj =
1
τ

〠
jτ

i= j−1ð Þτ+1
xi: ð1Þ

A coarse-graining procedure at scale factors 2 and 3 is
illustrated in Figure 2.
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Figure 1: Study flowchart.
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1 ≤ j ≤N/τ, τ, is the scale factor, and the length of {y(τ)}
is L =N/τ.

Then, a set of m-dimension vectors (m is embedding
dimension) Ym ðiÞ that is formed: YmðiÞ = yi+k, f0 ≤ k ≤m
− 1g. For each i value, calculate its distance from other j
values, that is, the distance between Ym ðiÞ and Ym ðjÞ,
shown in Equation (2):

d Ym ið Þ, Ym jð Þ½ � =max y i + kð Þ − y j + kð Þj j
  0 ≤ k ≤m − 1, i, j = 1 − L −m + 1, i ≠ jð Þ: ð2Þ

Setting the tolerance threshold (i.e., similarity factor)
r ðr > 0Þ, the number Bm ðiÞ of d ½YmðiÞ, YmðjÞ� < r is calcu-
lated for each i value, and its ratio with the total distance
can be obtained using Equation (3):

Cm
τ rð Þ = Bm ið Þ

L −m
: ð3Þ

Then, the average of Cm
τ ðrÞ can be found using Equation

(4):

Cm rð Þ = 1
L −m + 1

〠
L−m+1

i=1
Cm
τ rð Þ: ð4Þ

Similarly, the m + 1 dimension can be derived using
Equation (5):

Cm+1 rð Þ = 1
L −m

〠
L−m

i=1
Cm+1
τ rð Þ: ð5Þ

When L is a finite value, the SampEn with the sequence
length L can be estimated as SampEn in Equation (6):

SampEn m, rð Þ = − ln
Cm+1 rð Þ
Cm rð Þ

� �
: ð6Þ

A high entropy value indicates a lot of complexity in the
time course and vice versa.

2.5. MSE. With a total of three parameters to estimate MSE,
namely, the scale factor τ, embedding dimension m, and
similarity factor r, a set of SampEn values will be formed,
denoted as MSE in Equation (7):

MSE = τ SampEn m, rð Þ = − ln
Cm+1 rð Þ
Cm rð Þ

� �����
����

� �
: ð7Þ

When computing the MSE value, a very short length of
time series data will make the SampEn unreliable. According
to Richman and similar studies, when calculating the Sam-
pEn by BOLD time series, the length of 10m–20m data
should be enough to estimate the SampEn [22]. For a
short-term BOLD signal processing, at least 10–20 data are
needed when m = 1, and 100-400 data values are required
when m = 2.

2.6. Optimization Parameters. The selection of the MSE
model parameters such as dimension m and similarity r is
dependent on the signal features and is determined by the
experience. Based on data length and previous work, the
empirical value for parameters could be roughly selected
[34]. For example, Protzner et al. chosen parameters m = 2
and r = 0:5 when the time series length of EEG was 400
points [44]; the length of the time series was 40,000, and m
= 2 and r = 0:15 were employed [45]. Costa selected m = 2
and r = 0:15 when time series with 3000 points in a study
of heart rate [8]. In other words, there is an absence of a uni-
form parameter standard or specification for MSE to process
biomedical signals, which would lead to subjectivity in
entropy calculation.

Because of the considerations above, it is necessary to
optimize the parameters of the MSE model. Herein, an
approach is proposed that the sensitivity indexes, namely,
the ROC curve and AUC values, are employed to indicate
the parametric optimization effects quantitatively. The
ROC curve can directly display the classification effect, and
the AUC values can quantitatively show the optimization
effect [46].

The higher the ROC curve above the reference line and
the greater the AUC values, the better the optimization effect
is, and vice versa. Customarily, an AUC value could be
divided into five levels, i.e., 0.50–0.59, 0.60–0.69, 0.70–0.79,
0.80–0.89, and 0.90–1, representing poor, bad, medium,
good, and excellent classification effect, respectively [46].

Considering the mutual influence of the parameters in
the MSE model, all three parameters are integrated to assess
the optimization effect during the optimization process of
each parameter.
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Figure 2: Coarse-graining procedure. (a) Scale factor 2. (b) Scale factor 3. x is the original time series, and y is coarse-grained time series.
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2.7. Functional Biomarker Brain Regions. The brain regions
with the significant difference in the AUC values between
the two groups could be considered the functional bio-
marker sensitive to the cognitive scores while optimizing
the parameters. Otherwise, the brain region cannot be
regarded as a functional biomarker. All 90 cortical brain
regions were involved in assessing functional biomarkers of
a person. The p values of the t-test revealed the significance
using the Statistical Package for the Social Sciences (SPSS)
software (IBM SPSS statistics 21; USA). The significance
level of this paper is set to 0.05. Finally, using BrainNet
Viewer visualizes the marked brain regions sensitive to the
scores of elders (http://www.nitrc.org/projects/bnv/) [47].

2.8. PNN Model and N-Fold Crossvalidation. After the func-
tional biomarkers were confirmed, the optimized entropy

values of those brain regions were averaged over the subjects.
The average entropy values were regarded as feature vector
input into the machine learning model. The elderly with
excellent cognitive scores were marked as “1,” and those
with poor cognitive scores were marked as “0.”

The machine learning model of PNN was employed to
classify the cognitive scores. A PNN is a nonlinear model
used for classification and prediction by estimating condi-
tional probability [48]. It is a forward neural network model
derived from a radial basis neural network by combining a
density function estimation with Bayesian decision theory.
This model replaces the S-type function commonly used in
neural networks with an exponential function as the activa-
tion function. This neural network model based on the sta-
tistical principle does not need the connection weights of
training samples and directly constitutes the hidden layer
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Figure 5: Continued.
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from given samples. The training is simple, and the classifi-
cation ability is strong. The PNN model consists of four
layers: input, mode, summation, and decision, as shown in
Figure 3.

As a training set, 34 subjects were randomly selected
from 43 subjects in the poor group. The rest nine subjects
were included in the test set. Likewise, from 55 subjects in
the excellent group, 44 subjects were randomly selected for
training set, and the remainder 11 subjects were included
in the test set. Thus, 78 subjects formed the training set,
and 20 subjects formed the test set.

In the PNN model, 98 neurons in the input layer and 20
neurons in the summation layer were selected at first. The
expected classes were then transformed into vectors.We chan-
ged the smoothing factor from 0.1 to 2 in steps of 0.1, and the
classifier had the highest accuracy when the smoothing factor
was 1.5. The smoothing factor parameter was set as 1.5 for the
network prediction. The classification effects on the training
data and the prediction effect on the unknown data were
observed through mapping. To appraise the classification
accuracy, it was noted whether the prediction outputs were
consistent with the known original outputs.
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Figure 5: Plot optimization effects indicated by ROC curves and AUC values in a single brain region. (a)–(c) ROC curves of STG.R
with r = 0:45, 0.50, and 0.55, respectively, where the character of all ROC curves beyond the reference lines indicates STG.R to be a
functional biomarker. (d)–(f) ROC curves of PoCG.R with r = 0:45, 0.50, and 0.55, respectively, where ROC curves around the reference
lines suggest that PoCG.R was not a functional biomarker. (g) AUC values of STG.R. (h) AUC values of PoCG.R.
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N-fold crossvalidation is often used to appraise the algo-
rithm accuracy of classification in a machine learning model.
In a small scale of samples, the dataset is divided into N
parts, where N − 1 parts are regarded as training data and
1 part as test data in turn for the test procedure. An accuracy
(or error rate) can be obtained in each test. Thus, the accu-
racy of classification algorithm can be determined by averag-
ing the error rate over N tests. In this study, the value of N
was taken to be 10.

3. Results

3.1. Parametric Optimization of MSE Model

3.1.1. Optimization of Embedding Dimension m. After pre-
processing, the length of the BOLD signal was observed to
be 175 time points in the elderly. Thus, the value of m can
be 1 or 2. Therefore, according to previous experience (see
MSE in Section 2.5), the optimized parametric spaces were
initially confirmed in a range of m = 1 − 2, r = 0:05 − 0:60,
and τ = 1 − 6.

After the t-test, the embedding dimension m was opti-
mized by the number of significant brain regions between
two groups (p < 0:05), with the scale factor τ = 1 − 6, similar-
ity factor r = 0:05 – 0:6, and step size is 0.05, as shown in
Figure 4. It was found that the number of significant brain
regions of m = 1 was greater than that of m = 2, suggesting
that the former was better than the latter. Thus, m = 1 was
the optimization parameter. Additionally, only a very nar-
row value space of the similarity factor r, e.g., r = 0:45 –
0:55 could show significant differences on all scale factor
values τ.

3.1.2. Optimization of the Similarity Factor r and Scale
Factor τ. Taking the brain regions of the right superior tem-
poral gyrus (STG.R) and right postcentral gyrus (PoCG.R) as
examples, the optimization of similarity factor r and scale
factor τ was shown by the features of ROC curves and
AUC values in Figure 5 and Table 1.

By setting m = 1 fixed and r = 0:45, 0.50, and 0.55,
respectively, the ROC curves of STG.R at different τ values
are shown in Figures 5(a)–5(c), and it can be seen that the
ROC curves were all above the reference lines. So, STG.R
could be considered sensitive to the cognitive scores. In con-
trast, the ROC curves around the reference lines displayed

that the PoCG.R cannot be a functional biomarker in
Figures 5(d)–5(f).

Furthermore, Figures 5(g) and 5(h) show that the AUC
values of STG.R were greater than those of PoCG.R, and
they were largest at τ = 5, suggesting that τ = 5 was the opti-
mized value. In particular, when τ = 5, the AUC value of
STG.R was the largest at r = 0:5 as highlighted in Table 1,
indicating that r = 0:5 was the optimized value.

The same optimization method was applied to other
brain regions. Similar features and optimized parameters of
τ = 5 and r = 0:50 were found. Taken together, the optimized
parameters of entropy model were m = 1, r = 0:5, and τ = 5.

3.1.3. Functional Biomarker Brain Region and Feature Vector
Extraction.With the optimized MSE values of m = 1, r = 0:5,
and τ = 5, a total of nine AAL brain regions sensitive to cog-
nitive scores were obtained (p < 0:05), i.e., right calcarine fis-
sure and surrounding cortex (CAL.R, AAL44), left medial
superior frontal gyrus (SFGmed.L, AAL23), left posterior
cingulate gyrus (PCG.L, AAL35), left inferior temporal gyrus
(ITG. L, AAL89), right superior temporal gyrus (STG.R,
AAL82), right cuneus (CUN.R, AAL46), right lenticular
nucleus, putamen (PUT.R, AAL74), right hippocampus
(HIP. R, AAL38), and right temporal pole: middle temporal
gyrus (TPOmid.R, AAL88); all were located in the default
mode network (DMN) and surrounding areas. The classifi-
cation effect of the nine landmark brain regions and their
projections on the cortical surface is depicted in Figure 6.

The matrix of feature vector was formed after averaging
the entropy values over all nine functional biomarkers. The
training set data and the testing set data were then built
up. In Tables 2 and 3, when m = 1, r = 0:5, and τ = 5, there
was a significant difference between the excellent group
and the poor group (p < 0:001), supporting the optimization
method proposed above.

3.2. Classification by PNN and N-Fold Crossvalidation. The
classification accuracy of the PNN reached 80%. Then, N
-fold crossvalidation was carried out (N = 10), the max clas-
sification accuracy was 88.24%, and the average accuracy
was 80.05% (see Table 4).

4. Discussion

4.1. Parametric Optimization of MSE Model. MSE imple-
mentations use low-pass filters to coarse-grain the original
signal at coarser time scales, which introduces a sensitivity
to slower neural dynamics. This is related to the scale factor
τ, and the higher τ means the slower neural dynamics [24].
In the past, there was no uniform standard or specification
for entropy parameters of r and m to process biomedical sig-
nals. By the rfMRI signal characteristics, a parametric opti-
mization of the MSE model was conducted with the help
of classification effect indexes. This optimization overcame
the blindness and subjectivity in the calculation of MSE
and enhanced the objectivity of parameter selection. Koltcov
et al. proposed an approach based on Renyi entropy to solve
the issue of parameter optimization in hierarchical models
[49]. Siuly et al. investigated permutation entropy and

Table 1: Effect of similarity factor r and scale factor τ on sorting
rate by AUC value of each brain region.

τ
r

0.45 0.50 0.55
STG.R PoCG.R STG.R PoCG.R STG.R PoCG.R

1 0.628 0.514 0.628 0.508 0.623 0.511

2 0.606 0.517 0.614 0.510 0.609 0.518

3 0.635 0.529 0.620 0.521 0.603 0.509

4 0.578 0.506 0.617 0.512 0.637 0.492

5 0.621 0.519 0.683 0.550 0.616 0.547

6 0.532 0.561 0.534 0.539 0.538 0.540
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autoregressive model features to explore changes in EEG sig-
nals that effectively differentiate mild cognitive impairment
(MCI) from healthy control subjects [50]. Our means sup-
ported classifying early MCI and late MCI using the ROC
curve and AUC values.

To test the generalizability of the MSE model, an addi-
tional experiment was performed, which included 112 sub-
jects (56 major depressive disorder (MDD) and 56 healthy

individuals as a control), as detailed in the Supplementary
Material Section 1. According to Figure S1, the embedding
dimension m can be optimized, and the optimization of
similarity factor r and scale factor τ was shown by the
features of ROC curves and AUC values in Figure S2 and
Table S1 in Supplementary Materials. With the optimized
MSE values of m = 1, r = 0:54, and τ = 3, nine AAL brain
regions sensitive to MDD were obtained, including the left
amygdala (AMYG.L, AAL41), left inferior parietal (IPL.L,
AAL61), and left precuneus (PCUN.L, AAL67), among
others (see Supplementary Figure S3). Additionally,
significant differences in 9 brain regions between MDD
and healthy individuals are shown in Supplementary
Table S2. Finally, the classification accuracy of the PNN
reached 75.83%, as detailed in Supplementary Table S3.

4.2. MSE and Conventional FC Model of Pearson
Correlation. The critical technology of evaluating the cogni-
tive scores by entropy was to find the functional biomarked
brain regions that were sensitive to the cognitive scores
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Figure 6: (a) ROC curve and AUC value of a total of nine functional biomarked brain regions at the optimization parameters of m = 1,
r = 0:5, and τ = 5 in the MSE model. (b) Landmark brain regions shown on a brain template using BrainNet Viewer.

Table 2: Between-group difference significance of feature vectors
for different similarity factors (r).

r Significance (p value)

0.15 0.6220

0.25 0.0358

0.35 0.0160

0.45 0.0027

0.50 <0.001

Table 3: Between-group difference significance of feature vectors
for different scale factors (τ).

τ Significance (p value)

1 0.0559

2 0.0328

3 0.0069

4 0.0101

5 <0.001

Table 4: Classification rate (CR) tested by 10-fold crossvalidation.

N CR (%) N CR (%) N CR (%)

1 88.24 6 81.82

2 70.59 7 88.24

3 81.82 8 68.95 Average ± std 80:05 ± 7:82
4 68.95 9 88.24

5 81.82 10 81.82
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(here, the cognitive scores were referred by a series of scale
tests before the rfMRI scan). Our findings of the functional
biomarkers on the DMN highly converged with previous
work through the functional connection (FC) calculated
using Pearson correlation coefficient. Yang et al. found that
the MSE values of BOLD signals on DMN were positively
correlated with the main cognitive functions, such as atten-
tion, orientation, short-term memory, mental control, and
language [51]. Some studies have shown that the correlation
between MSE and the functional connection calculated by
the Pearson correlation coefficient depends on the dynamic
character of BOLD signals such as frequency [31]. However,
when the optimized MSE model was replaced with the con-
ventional FC model of Pearson correlation in this study, as
detailed in the Supplementary Material Section 2, the mean
classification accuracy was only 60.33% (see Supplementary
Table S4).

In addition, our work of functional biomarker brain
regions was fairly congruent with the evidence concerning
brain structure. Wang et al. found that there were significant
changes in the mediating centrality of the right anterior cin-
gulate gyrus, crevicular fissure and peripheral cortex, lentic-
ular putamen, and left anterior cingulate gyrus of patients
with amnesic mild cognitive impairment (aMCI) [52].
Moreover, Smart et al. found that the brain structure in sub-
jective cognitive decline was thinner than that in the middle
area of right tail, left posterior central gyrus, right cuneiform
lobe, right paracentral lobule, right calcarine fissure, sur-
rounding area, right middle frontal area, and right temporal
polar cortex [53].

4.3. Other Different Machine Learning Models. Other differ-
ent types of machine learning were tested, such as support
vector machine (SVM), random forest (RF), and K-nearest
neighbors (KNN), and 10-fold crossvalidation was carried
out, as detailed in the Supplementary Material Section 3.
The performance of different machine learning modes was
compared. The average accuracy of SVM, RF, and KNN is
74.60%, 65.84%, and 71.47%, respectively (see Supplemen-
tary Table S5). Finally, the PNN used in this paper has the
best results in classifying cognitive scores. The results
obtained by different machine learning models further
demonstrated the effectiveness of the optimized MSE model.

4.4. Sensitivity of MSE. Some studies have demonstrated the
sensitivity of MSE of rfMRI. Niu et al. analyzed the MSE of
four groups of subjects, including healthy subjects and
patients with early and late MCI and AD and as a control
group by a statistics of one-way analysis of variance [54]. It
was found that there were significant differences in several
scale factors among thalamus, insula, lingual and suboccipi-
tal gyrus, superior frontal gyrus and olfactory cortex, supe-
rior marginal gyrus, superior temporal gyrus, and middle
temporal gyrus [55, 56]. Compared to the healthy group,
the complexity of the BOLD signal in patients with MCI
and AD was significantly reduced, while the complexity in
AD patients was lower than that in MCI patients. This is
the first study to appraise the sensitivity of MSE of rfMRI
to the cognitive scores in the healthy elderly.

4.5. Limitations and Prospects. It is unknown whether the
entropy model parameters can classify the cognitive scores
at the medium level yet, which needs to be examined further
by acquiring pertinent data. In addition, the brain structure
of all the subjects in this paper had not changed significantly.
How to optimize the parameters of the entropy model in
accordance with the changes in the brain structure of the
elderly can be studied in the future. Furthermore, we divided
the brain into 90 brain regions by the AAL atlas, which is
coarse. Applying templates that more finely divided brain
regions, such as Yeo 400 atlas and Power 256 atlas, would
reveal more brain regions sensitive to cognition.

5. Conclusion

This paper finds out the optimized parameters of the MSE
model by the ROC and AUC values. Using an optimized
MSE model, a total of nine landmarks sensitive to the cogni-
tive scores of the healthy elderly could be obtained in right
calcarine fissure and surrounding cortex (CAL.R), left
medial superior frontal gyrus (SFGmed.L), left posterior cin-
gulate gyrus (PCG.L), left inferior temporal gyrus (ITG. L),
right superior temporal gyrus (STG.R), right cuneus
(CUN.R), right lenticular nucleus, putamen (PUT.R), right
hippocampus (HIP.R), and right temporal pole: middle tem-
poral gyrus (TPOmid.R). The MSE values of these brain
regions were input into a machine learning model as feature
vectors, and 80.05% classification accuracy was obtained.
The result shows that the parameters of MSE can be opti-
mized objectively through ROC and AUC values. In addi-
tion, the MSE value is closely related to cognitive behavior
and can effectively distinguish the cognitive performance of
the healthy elderly.
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healthy elderly, whose methodological description and
results were depicted in Supplementary Material Section 2.
In Supplementary Material Section 3, other three popular
machine learning models were employed to validate the clas-
sification performance of the optimized MSE model.
(Supplementary Materials)
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