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The worldwide outbreak of the new coronavirus disease (COVID-19) has been declared a pandemic by the World Health
Organization (WHO). It has a devastating impact on daily life, public health, and global economy. Due to the highly
infectiousness, it is urgent to early screening of suspected cases quickly and accurately. Chest X-ray medical image, as a
diagnostic basis for COVID-19, arouses attention from medical engineering. However, due to small lesion difference and lack
of training data, the accuracy of detection model is insufficient. In this work, a transfer learning strategy is introduced to
hierarchical structure to enhance high-level features of deep convolutional neural networks. The proposed framework
consisting of asymmetric pretrained DCNNs with attention networks integrates various information into a wider architecture
to learn more discriminative and complementary features. Furthermore, a novel cross-entropy loss function with a penalty
term weakens misclassification. Extensive experiments are implemented on the COVID-19 dataset. Compared with the state-
of-the-arts, the effectiveness and high performance of the proposed method are demonstrated.

1. Introduction

The number of patients with the new coronavirus disease
(COVID-19) has increased sharply, placing an unprecedented
burden on the global systems. Especially in many countries,
the healthcare systems have already been overwhelmed [1].
As of July 13, 2022, the total number of COVID-19 infective
cases worldwide is 557,035,533, including 6,368,340 deaths.
Some COVID-19 virus particles images are illustrated in
Figure 1, which are released by the National Institute of
Allergy and Infectious Diseases (NIAID) and RockyMountain
Laboratories (RML) [2]. The clinical manifestations of
COVID-19 are more complicated and may include fever,
cough, and severe headache. There are not enough fully effec-
tive vaccines available for prevention of COVID-19. In view of
this, people are easily infected by the droplet of coronavirus.
Therefore, early detection of COVID-19 is very important to
isolate suspicious patients immediately and reduce the possi-
bility of infection in a healthy population. In recent years,
Reverse transcription polymerase chain reaction (RT-PCR)
has been used as the main method for screening COVID-19

[2]. However, RT-PCR is time-consuming and error-prone
[3]. Chest radiography imaging (X-ray) and computed tomog-
raphy (CT) can also be applied for pneumonia diagnosis.
Compared with CT and magnetic resonance Imaging (MRI),
chest X-ray is a cheap, fast, and common clinical diagnosis
method. In addition, chest X-ray images can provide patients
with lower radiation doses. Therefore, chest X-ray images are
chosen in our study to detect COVID-19. However, making
an accurate and correct diagnosis from chest X-ray images
requires expert experience and knowledge [4]. In the early
stage of COVID-19, a ground class pattern can be seen in
the marginal areas of pulmonary vessels edges, which may
be difficult to confirm visually. Diffuse airspace opacities or
asymmetric patches of COVID-19 have also been reported.
In fact, the differences between various lesions are small in
chest X-ray images. It is difficult to detect lung disease solely
on the basis of shape or area. That is, the representations
between target classes are too similar, and the differences
between classes are not obvious. It is difficult to interpret these
subtle abnormalities. This issue leads to lower accuracy of
lesion detection. Besides, considering the large number of

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 2484435, 12 pages
https://doi.org/10.1155/2022/2484435

https://orcid.org/0000-0003-1999-559X
https://orcid.org/0000-0002-3527-0380
https://orcid.org/0000-0001-6347-739X
https://orcid.org/0000-0001-6315-243X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2484435


suspected cases and the limited number of trained radiologists,
there is an urgent need for efficient and automatic methods to
identify COVID-19 [5].

2. Related Works

Deep convolutional neural networks (DCNNs) have been
proven to be superior to traditional machine learning
approaches due to their outstanding ability of automatic
abstract features extraction. Many deep leaning-based
methods have been proposed to detect COVID-19 cases
from X-ray images effectively [6–11]. In general, deep
learning-based methods require abundant labeled data.
However, one of the most serious challenges in medical
image analysis is the lack of available datasets. Furthermore,
labeling a large amount of data by radiologists is time-
consuming and costly. To conquer this dilemma, the
concept of transfer learning is proposed, where models
trained in one domain can be reused in another related
domain. In actual scenarios, transfer learning is conducted
by a CNN model trained on a larger dataset (e.g., ImageNet).
Hemdan et al. [11] used DenseNet and VGG19 to diagnose
COVID-19 from X-ray images. Uçar and Korkmaz [12]
introduced a model called COVIDiagnosis-Net, which fine-
tuned SqueezeNet pretrained network with the Bayes
optimization. Bargshady et al. [13] adopted CycleGAN for
data augmentation and then used InceptionV3 to detect
COVID-19. Sahinbas and Catak [14] used X-ray images to
detect COVID-19 with the well-known pretrained deep
CNNs such as VGG-16, VGG-19, ResNet, DenseNet, and
InceptionV3, and the experimental results have proven that
the pretrained VGG-16 can detect COVID-19 with the high-
est classification performance. Punn and Agarwal [15] used
ResNet, InceptionV3, and Inception networks separately to
detect COVID-19. Ahuja et al. [16] developed three-steps
to detect COVID-19 in CT images. The first step conducted
data augmentation, the second step used transfer learning
pretrained models to perform classification task, and the last
step was abnormality localization using deeper layers. Singh
et al. [17] used truncated VGG16 to extract features from the
input images and then employed the principle component

analysis (PCA) method for feature selection. Afshar et al.
[18] introduced the COVID-CAPSmodel, which is an alterna-
tive framework based on the capsule network. Sarker et al. [19]
used Densenet-121 to effectively detect COVID-19 cases.

The above methods used transfer learning-based
methods to detect COVID-19. In fact, in order to obtain
richer and more high-level features, the network structure
is usually designed to be deeper or wider. However, the con-
tinuous increase in depth of a single network may cause the
loss of discriminative details in the intermediate layers.
Although these details can be low-level features, they may
be essential for abnormalities in X-ray images that are diffi-
cult to classify. These problems have become obstacles and
bottlenecks in the development of DCNNs.

In view of this, many researchers try to expand the width
of the network to extract more useful feature information.
Based on this idea, Hou et al. [20] proposed a novel frame-
work which combined two isomorphic DCNN models to
extract more features. Hosseinzadeh [21] concatenated
different features extracted from AlexNet, ResNet50, Squee-
zeNet, and VGG19 networks. Gayathri et al. [22] integrated
Xception and InceptionResNetV2 pretrained models for
feature extraction. However, the features extracted from
these isomorphic or similar networks may be duplicated. Chen
et al. [23] proposed a dual asymmetric network called Dual-
CheXNet, which integrated the ResNet and DenseNet to learn
more discriminative features adaptively. ResNet adds input
features to the output through residual blocks. In contrast,
the input channels are concatenated with its outputs in each
dense block of DenseNet structure. According to these proper-
ties, the ResNet enables us to reuse early features while the
DenseNet tries to explore new features. Hence, it can be con-
cluded that the features extracted from ResNet and DenseNet
are unique and different and may be complementary.

In traditional classification method, a two-step proce-
dure including hand-craft feature extraction and classifica-
tion is generally conducted. Inspired by the previous
discussion, different from the traditional methods, we
employ an end-to-end network which can predict COVID-
19 directly from X-ray images. In our research, we use a
hierarchical structure with two identical configurations to

(a) (b)

Figure 1: Images of COVID-19 virus particles: (a) captured by scanning electron microscope; (b) captured by transmission electron
microscope.
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detect COVID-19 cases. In the rest of this paper, we use “fea-
ture extraction network” to represent these two identical
configurations. The feature extraction network comprises
two different DCNNs, and the subnetworks are pretrained
on the ImageNet dataset. The feature extraction network
contains ResNet-50 and DenseNet-201 DCNNs. Behind
the pretrained models, some auxiliary layers are added to
improve the classification performance. The following are
the main contributions of this paper:

(1) This work uses a hierarchical structure containing two
configurations to detect COVID-19 in stages. That is,
the samples are distinguished as “normal” or “pneu-
monia” in the first stage. If a case is classified as “pneu-
monia,” the second classifier will distinguish whether
it is pneumonia caused by “COVID-19”

(2) At each stage of the two classification tasks, two asym-
metric pretrained networks containing ResNet-50 and
DenseNet-201 are integrated to extract more discrim-
inative and complementary features

(3) Behind the pretrained subnetworks, the original classi-
fication layers are discarded. An attention mechanism
called SE module and a GlobalAveragePooling opera-
tion are used to improve the performance of classifica-
tion tasks. By concatenating the features from the
above architecture, three fully connected layers are
included, and dropout mechanism is added to the fully
connected layer

(4) Based on the traditional binary cross-entropy (CE)
loss function, the proposed framework utilizes a
novel loss function by adding a penalty term to the
traditional cross-entropy, which introduces a differ-
ence between the predicted and the true label proba-
bility values. With this novel loss function, the
generation of optimal model has been accelerated
to a large extent

The rest of the research is organized as follows. Section 3
presents the proposed method in detail. Section 4 shows
some experimental results and the related detail discussion.
Finally, Section 5 concludes the whole work.

3. The Proposed Method

3.1. Hierarchical Structure. For classification tasks, there is a
certain relationship among interclass. In general, in actual
scenarios, classes are organized in a hierarchical structure,
which can be regarded as a tree. In our research, we adopt
a hierarchical classification framework. We take the input
as the root node, which is the target to be classified. The
target classes are located in the leaves of the tree, and each
parent node in the tree represents a classifier. The diagram
of this research is given as Figure 2. In our research, two
classifiers are needed, and one is at the root node, used
to distinguish between the normal and pneumonia; the
other is on the second layer, dedicated to distinguishing
between the COVID-19 and non-COVID-19. Therefore,

this research divides the classification task into two stages.
At the first stage, the instance is input to the first classifier.
If the result is predicted as “normal,” the inference ends.
Otherwise, it will be fed to the second classifier. Then
the second classifier will distinguish whether it is pneumo-
nia caused by “COVID-19.”

3.2. Problem Definition and Formulation. In this section, we
present the problem definition and formulation of this
paper. In a broad sense, transfer learning refers to a learning
strategy that uses the knowledge gained in solving one prob-
lem S to solve another problem T . We define transfer learn-
ing in terms of domain and task. The domain D is defined
by a feature space X and a probability distribution PðXÞ
defined on X . The task T is defined by a label space Y

and a prediction function Pðy ∣ xÞ. Next, we define two sets,
one contains source domain and task (Ds,T s), and the other
contains target domain and task (DT ,T T), where Ds ≠
DT s,T s ≠T T . The purpose of transfer learning is to use
the knowledge gained in learning from f s for the subsequent
learning task f T .

The proposed method consists of two asymmetric pre-
trained DCNNs to construct a wider architecture. This paper
formulated this process with the formal definition putted
forward in [23]. We define the input images of two pretrained
networks as IP and IQ, respectively, where IP = fp1, p2,⋯,pNg,
IQ = fq1, q2,⋯,qNg, and N denotes the number of training
samples. Specifically, the input images of the two subnetworks
are the same. The feature map outputs of the different DCNNs
are represented as fP = αðIP, xÞ and fQ = αðIQ, xÞ, respectively.
These two different feature spaces can complement each other.
We use CF to represent the classification results of the classi-
fier, and CF can be formulated as Equation (1). In addition,
we use LF to denote the loss of the classifier, and LF can be
formulated as Equation (2).

CF= δ fFð Þ = δ fP ⊕ fQ
À Á

, ð1Þ

LF= φ CFð Þ, ð2Þ
where δ is a activate function and φ is the loss function.

3.3. Feature Extraction Network. The block diagram of the
proposed method is shown in Figure 3. The overall classifi-
cation task can be divided into two modules: feature extrac-
tion module and classification module. In the feature
extraction module, it has attracted widespread attention in
enhancing DCNN with larger capacity. To achieve this goal,
the network is usually designed to be deeper or wider. Differ-
ent from traditional “deeper” DCNN networks, this paper
designs a “wider” architecture to learn richer features. Com-
pared with a single DCNN model, concatenating different
DCNNs will integrate different information to create a more
discriminative and comprehensive feature representation. In
this work, two asymmetric networks are integrated into a
“wider” architecture. The core idea of this “wider” architec-
ture is to learn richer and complementary features by differ-
ent DCNNs. ResNet [24] uses global average pooling instead
of fully connected layers. Besides, shortcuts are added
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between layers, which can prevent distortion as the
network gets deeper and more complex. DenseNet [25]
provides a compact and thinner structure that can achieve
good performance with fewer parameters. It is instantly
favoured for many medical image diagnostic tasks. This
paper employs these two asymmetric networks to extract
more discriminative features.

In this work, we use a hierarchical structure to detect
COVID-19, which contains two identical configurations.
The overall architecture of the proposed method is shown
in Figure 4. The feature extraction network integrates
ResNet-50 and DenseNet-201 models, which have been
pretrained on the ImageNet dataset. The architecture of
ResNet-50 is illustrated in Figure 5, starting with a convolu-
tional layer and ending with a fully connected layer. Figure 6
shows the network framework of DenseNet-121, which is a
similar framework of DenseNet-201. This network is com-
posed of 4 dense blocks. The structure between two adjacent
blocks is referred to as transition layers, which can be used to
adjust the sizes of the feature maps through convolution and
pooling operations.

In our research, the original classification layers at the
end of the DCNNs are discarded, and the SE block and a
GlobalAveragePooling operation are added behind the pre-
trained DCNNs. SE network improves the representation
ability of the network by explicitly modelling the interdepen-
dence between feature channels. The structure of SE block is
shown in Figure 7, consisting of squeeze and excitation oper-
ations. After pretraining, the extracted features from two
subnetworks are concatenated directly to form new feature
vectors. The upper part of Figure 4 is the stage of feature
extraction using transfer learning.

3.4. Classifier. The lower part of Figure 4 is the classification
stage. In this stage, the features extracted from different sub-
networks are concatenated. Then the concatenated features
are fed into the classifier to generate classification outputs.
In general, a fully connected layer is the last and the most
important layer for DCNNs. The function of these layers is
similar to a multilayer perceptron. In this work, three fully

connected layers are constructed into the classifier. In addi-
tion, dropout mechanism is added to the fully connected
layer, which is used to avoid overfitting. The activation func-
tion of the first two layers is ReLU, and the last is Softmax.
The following equations give the definition of these two
activation functions.

Re LU xð Þ =
0, if x < 0

x, if x ≥ 0,

(
ð3Þ

Softmax xið Þ = exi

∑m
y=1e

xy
: ð4Þ

3.5. Training Strategy. To coordinate the two extractors to
learn complementary features, the training strategy plays a
vital role. In this paper, we adopt an improved cross-
entropy cost function to minimize the distance between the
true label and predict probabilities. The basic cross-entropy
is defined as Equation (5). In this research, we add a penalty
term which introduces the difference between the predicted
and the true label probability values as Equation (6). The
penalty term can be formulated as Equation (7). By this
way, it can assist the network to increase its capacity to focus
on misclassification.

ℓce = −〠
N

i=1
pi log qi, ð5Þ

ℓloss = −
1
N
〠
N

i=1
pi log qi + ℓpenalty
À Á

, ð6Þ

ℓpenalty = piqi − qi, ð7Þ
where pi and qi represent the true label and predicted prob-
abilities for each image, respectively. From Equations (6)
and (7), it is clear that if the sample is classified correctly,
the penalty term is 0. This cost function will be minimized
by using stochastic gradient descent (SGD) algorithm.

4. Experiments and Discussion

4.1. Dataset. In this paper, an open-access dataset called
COVID-19 radiography database [28] is used to estimate the
performance of the proposed method. This dataset is available
on the website: https://www.kaggle.com/tawsifurrahman/
covid19-radiography-database/. This dataset was created by
a team of researchers from some universities and hospitals,
which comprises 1200 COVID-19 cases, 1341 normal images,
and 1345 viral pneumonia cases [9]. Figure 8 shows a few
examples of chest X-ray images of three categories.

For our research purposes, our experiments are con-
ducted on two binary classification datasets (Dataset-1 and
Dataset-2) corresponding to the two classifiers.

In Dataset-1, the classifier only distinguishes the class
between “normal” and “pneumonia.”

In Dataset-2, the samples related to the “normal” class
are removed. This dataset consists of samples related to
pneumonia and COVID-19 cases.

Root node

Normal Pneumonia

COVID-19 Non-
COVID-19

Figure 2: Hierarchical classification presentation. Each parent
node in the tree represents a classifier, and each leaf node is a
category.
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In this research, considering the performance of software
and hardware devices and avoiding the problem of data
imbalance, we adjusted the dataset appropriately. More spe-
cifically, in the Dataset-1, we have randomly chosen 500
normal (healthy person) samples and 1000 abnormal cases
for training. The 1000 abnormal cases included 500 viral
pneumonia cases and 500 pneumonias caused by COVID-
19. Therefore, the proposed method performs classification

tasks on “normal” and “pneumonia” on Dataset-1. If the
case was classified as “pneumonia,” it would be sent to the
second classifier. Next, in the Dataset-2, we use the above
1000 abnormal cases including 500 viral pneumonia cases
and 500 COVID-19-positive samples from the COVID-19
radiography database to train the second classifier.

In order to validate the trained model, we randomly
selected 300 samples from the remaining dataset. The 300

Image
dataset

Split the 
dataset

Pre-process
dataset

Load pre-trained
models

Model
evaluation

Classification
results

Ensemble model
implementation

Figure 3: The block diagram of the proposed method with transfer learning.
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Figure 4: The architecture of the proposed method, in which the upper is transfer learning for feature extraction and the lower one
is classifier.
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samples consisted of 100 normal and 200 pneumonia cases.
And the 200 pneumonia cases comprised of 100 COVID-19
and 100 viral pneumonia cases.

4.2. Data Augmentation. In the tasks of image-based super-
vised learning, augmentation strategy was widely applied in
natural images. Geometric transforms (or affine transforms)
were most commonly used in the training process [29]. For
medical images, specific structures such as lesions and
tissues are relatively sensitive to some operations. Excessive
enhancement will distort the actual distribution of the train-
ing data due to the introduction of too many outliers. There-
fore, it is necessary to choose the appropriate enhancement
methods carefully. The data augmentation strategies used
in this research were rotation, horizontal, and vertical flip.

4.3. Implementation Details. In this paper, all images were
resized to 224 × 224 pixel size in the Dataset-1 and
Dataset-2. We used the “ImageDataGenerator” class from
Keras in Python to augment the dataset. The data augmen-
tation was used with rotation = 90°, vertical flip = true, and
horizontal flip = true. This paper adopted a training strategy
with a novel loss function proposed in this paper, with a
learning rate of 0.0001. Besides, 80% of the samples in the
training dataset were reserved for training, and the remain-
ing 20% was for validating. In this research, the pretrained
networks were trained from scratch without freezing layers,
and these two networks were trained separately. By this
way, two binary classification models were obtained. The
first classifier only distinguished the class between “normal”
and “pneumonia,” and the second can distinguish whether it
is pneumonia caused by COVID-19. All of the training
processes in experiments were conducted for 50 epochs, with
a batch size of 20.

4.4. Indicators. There are several metrics which can be
applied to evaluate the performance of classification tasks.
The indicators used in this research were accuracy, sensitiv-
ity, F1-score, precision, and specificity, which were formu-
lated as follows, respectively.

Acc =
True positive TPð Þ + True negative TNð Þ

Total number of tested images
, ð8Þ

Sensitivity =
TP

TP + False negative FNð Þ , ð9Þ

Specificity =
TN

TN + False positive FPð Þ , ð10Þ

Precision =
TP

TP + FP
, ð11Þ

F1‐Score = 2 × Precision × Sensitive
Precision + Sensitive

: ð12Þ

4.5. Results and Discussion. We conducted 2 binary classifi-
cations with hierarchical structure for COVID-19 detection.
In the first stage, the target samples were distinguished as
“normal” or “pneumonia.” To validate our trained model,
we selected 300 samples, including 100 normal and 200

pneumonia cases. The 200 cases of pneumonia consisted of
100 COVID-19 and 100 viral pneumonia cases. In the second
stage, the cases classified as “pneumonia” from the first stage
continued to distinguish whether it is pneumonia caused by
“COVID-19.” For evaluating the trained model, the above
100 abnormal cases were used to distinguish whether pneu-
monia was caused by “COVID-19.” Finally, as shown in
Table 1, the obtained sensitivity, specificity, precision, F1
-score, and accuracy values of the proposed method were
99.00%, 100%, 100%, 99.50%, and 99.67%, respectively.

4.6. Ablation Analysis. The hierarchical structure to detect
the COVID-19 is adopted in this paper. This structure can
be regarded as a tree, in which the target classes were located
in the leaves of the tree. To prove the validity of the hierarchi-
cal structure, this paper conducted a comparative experiment,
which only trained the proposed model once, and directly
classified the results into three categories: normal, pneumo-
nia, and COVID-19. In order to ensure the consistency of
the data, this comparative experiment used the same data as
that from Section 4.1, which is 500 normal (healthy person)
samples, 500 viral pneumonia cases, and 500 COVID-19-
positive samples. And we also used the same test data to
evaluate the comparative experiment. The experimental con-
figurations were the same as the proposed method. We
reported the performance of the comparative experiment
and the proposed method in Table 1. It can be noted from
Table 1 that the proposed hierarchical structure achieved
higher performance under different evaluation indicators.

To prove the effectiveness of the proposed dual asym-
metric network, we compared the proposed framework with
their corresponding baseline single networks, ResNet-50 and
DenseNet-201. In these experiments, we also used a two-
stage hierarchical structure for COVID-19 detection. The
experimental configurations were the same as the proposed
method. Next, we analysed the classification results of the
single baseline network and the proposed network.
Figure 9 shows the training and validation accuracy and loss
analyses of 3 methods in the first stage. In this stage, the
models were trained to distinguish whether the sample was
“normal” or “pneumonia.” Figure 10 shows the training
and validation accuracy and loss analyses of 3 methods in
the second stage. In this stage, the models were trained to
distinguish whether the “pneumonia” cases from the first
stage were caused by “COVID-19.” From Figures 9 and 10,
it can be noted that there is a significant improvement of
the proposed method in accuracy and loss values. The
obtained sensitivity, specificity, precision, F1-score, and
accuracy values are summarized in Table 2, and our method
achieved higher performance against other single models.
Besides, compared with the corresponding baseline single
DCNNs, the proposed method requires more time and a
larger memory for model training.

Next, we discussed the effectiveness of the proposed
novel loss function. In the training process, this paper pro-
posed a novel trained strategy which added a penalty term
to the traditional cross-entropy loss function. To prove its
effectiveness, this paper conducted comparative experiments
by using traditional cross-entropy loss function. The analysis
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Table 1: Sensitivity, specificity, precision, F1-score, and accuracy values of different frameworks.

Method
Performance metrics

Sensitivity Specificity Precision F1-score Accuracy

Nonhierarchical structure 0.9137 0.9267 0.9384 0.9259 0.9267

The proposed method 0.9900 1.0000 1.0000 0.9950 0.9967
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Figure 9: Training and validation analysis of the first stage over 50 epochs. (a, b) Comparisons of 3 different models. In this stage, the
models were trained to distinguish whether the sample was “normal” or “pneumonia”.
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Figure 10: Training and validation analysis of the second stage over 50 epochs. (a, b) Comparisons of 3 different models. In this stage, the
models were trained to distinguish whether the “pneumonia” cases from the first stage were caused by “COVID-19”.
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of training and validation accuracy on Dataset-1 over 50
epochs is illustrated in Figure 11, and the Dataset-2 is given
in Figure 12. Figure 13 shows the analysis of validation loss
on Dataset-1 and Dataset-2. Each of the subfigure of

Figures 11–13 included the performance of traditional
cross-entropy loss function and our improved cross-
entropy cost function. It showed that the validation accuracy
of the proposed method is 100% in 12 epochs in the first

Table 2: Sensitivity, specificity, precision, F1-score, and accuracy values of different models.

Method
Performance metrics

Sensitivity Specificity Precision F1-score Accuracy

Single ResNet 0.9289 0.9365 0.9497 0.9348 0.9351

Single DenseNet 0.8990 0.9453 0.8900 0.8945 0.9300

The proposed method 0.9900 1.0000 1.0000 0.9950 0.9967
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Figure 12: Training and validation accuracy analysis of the second stage on Dataset-2 over 50 epochs. (a, b) Comparisons of the traditional
cross-entropy loss function with our improved cross-entropy cost function.
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Figure 11: Training and validation accuracy analysis of the first stage on Dataset-1 over 50 epochs. (a, b) Comparisons of the traditional
cross-entropy loss function with our improved cross-entropy cost function.
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stage, and the validation accuracy of the proposed method is
100% in 13 epochs in the second stage. The training and val-
idation accuracy of the proposed method were higher than
the traditional cross-entropy loss function on the whole. In
addition, it can be seen that the validation loss convergence
value of the traditional method was larger than the proposed
method. From Figures 11–13, we can conclude that the
novel loss function by adding penalty term can increase its
capacity to focus on misclassification and accelerate the
convergence speed of the model.

4.7. Comparison Analysis. To evaluate the effectiveness of the
overall proposed network, we compared our method to
some state-of-the-arts for COVID-19 detection. Chen et al.
[30] fused the pretrained MobileNet and SE block to form
a new network. Apostolopoulos et al. [31] trained the Mobi-
leNet v2 from scratch to extract the features for COVID-19
detection, which had been proven to achieve outstanding

performance in related tasks. Gayathri et al. [22] integrated
Xception and InceptionResNetV2 pretrained models for fea-
ture extraction. Then these features were concatenated to an
autoencoder for reducing dimensionality. Bargshady et al.
[13] adopted CycleGAN for data augmentation and then
used InceptionV3 to detect COVID-19. Irfan et al. [32] pro-
posed a hybrid deep neural network (HDNN) model, which
is a mixture of two deep learning models (LSTM + CNN).
Almalki et al. [33] introduced a novel model called CoV-
IRNet (COVID Inception-ResNet) for COVID-19 detec-
tion. Nguyen et al. [34] concatenated features extracted
from three pretrained deep CNNs for microscopic image
classification. The three pretrained networks were Incep-
tion-v3, ResNet152, and Inception-Resnet-v2. Chen et al.
[23] proposed a dual asymmetric model, which is a com-
plementary combination of ResNet50 and DenseNet-121
networks. Moreover, an iterative training strategy was
designed for training.
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Figure 13: Validation loss analysis on Dataset-1 and Dataset-2 over 50 epochs.

Table 3: Results using different classification models for COVID-19 detection.

Method
Performance metrics

Sensitivity Specificity Precision F1-score Accuracy

DenseNet-121 [19] 0.9159 0.9200 0.9227 0.9193 0.9200

Chen et al. [30] 0.9693 0.9700 0.9707 0.9701 0.9700

VGG-16 [14] 0.8724 0.8900 0.9133 0.8924 0.8900

Xception [35] 0.6800 0.6800 0.9273 0.7846 0.6800

Apostolopoulos et al. [31] 0.9487 0.9533 0.9604 0.9545 0.9533

Gayathri et al. [22] 0.9754 0.9402 0.9435 0.9596 0.9583

Bargshady et al. [13] 0.9001 0.8755 0.8877 0.8990 0.8769

Irfan et al. [32] 0.8824 0.9222 0.5945 0.7112 0.9220

Almalki et al. [33] 0.9628 0.9621 0.9628 0.9628 0.9625

Nguyen et al. [34] 0.9628 0.9633 0.9638 0.9633 0.9633

DualCheXNet [23] 0.8051 0.8100 0.9959 0.8904 0.8100

The proposed method 0.9900 1.0000 1.0000 0.9950 0.9967
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Table 3 displays the results of different literatures
conducted on the same dataset used in this paper. The per-
formance of the result was measured by five indicators
including sensitivity, specificity, precision, F1-score, and
accuracy. From Table 3, it was clear that the proposed
method obtained superior performance compared to other
studies. The advantages of the proposed method can be
summarized as follows:

(1) Compared with single network models, the “wider”
architecture built a multifeature description struc-
ture, which can extract more and richer features
from the input images by different DCNNs

(2) Compared with other “wider” models, our research
adopted a hierarchical structure to complete the clas-
sification task in stages, which can effectively solve
the problem of misclassification caused by too simi-
lar representation between different objects. This
mechanism was conducive to image exploration
and analysis of COVID-19

(3) In addition, we also made other improvements in
training strategy and in network. The improved loss
function and other improvements can make the
model focus on significant features representation
of the input images

The limitation of the proposed method is that no more
datasets are used for model validation. The proposed
method in this paper should be tested with more different
kinds of datasets.

5. Conclusions

In this paper, we develop a novel framework to detect
COVID-19 cases based on DCNNs and hierarchical struc-
ture. Specifically, two asymmetric pretrained subnetworks
are integrated to construct a wider architecture, which can
learn more discriminative and complementary features. To
improve the performance of the feature extraction network,
an attention mechanism based on SE block is introduced in
the network. Then, two tasks are trained with a novel loss
function which combines the cross-entropy with a penalty
term. To verify the effectiveness of the above modules, a
series of ablation analyses are implemented to show the con-
tribution of each module of the proposed method. To vali-
date the high performance of the overall algorithm, some
comparative experiments are carried out. The results show
that the proposed method achieves higher performance with
the accuracy for COVID-19 classification. In future work, we
will further improve the applicability of the algorithm so that
it can cope with multiple disease classifications in medical
image analysis.
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