
Research Article
Dengue Risk Forecast with Mosquito Vector: A Multicomponent
Fusion Approach Based on Spatiotemporal Analysis

Linlin Li ,1,2 Zhiyi Fang,1 Hongning Zhou,3 Yerong Tang,3 Xin Wang,2 Geng Liang,2

and Fengjun Zhang 2,4

1College of Computer Science and Technology, Jilin University, Changchun, China
2Institute of Software, Chinese Academy of Sciences, Beijing, China
3Yunnan Institute of Parasitic Diseases, Puer, China
4State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

Correspondence should be addressed to Fengjun Zhang; fengjun@iscas.ac.cn

Received 21 March 2022; Revised 7 May 2022; Accepted 10 May 2022; Published 2 June 2022

Academic Editor: Shan Zhong

Copyright © 2022 Linlin Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dengue as an acute infectious disease threatens global public health and has sparked broad research interest. However, existing
studies generally ignore the spatial dependencies involved in dengue forecast, and consideration of temporal periodicity is
absent. In this work, we propose a spatiotemporal component fusion model (STCFM) to solve the dengue risk forecast issue.
Considering that mosquitoes are an important vector of dengue transmission, we introduce feature factors involving mosquito
abundance and spatiotemporal lags to model temporal trends and spatial distributions separately on the basis of statistical
properties. Specifically, we conduct multiscale modeling of temporal dependencies to enhance the forecast capability of relevant
periods by capturing the historical variation patterns of the data across different segments in the temporal dimension. In the
spatial dimension, we quantify the multivariate spatial correlation analysis as additional features to strengthen the spatial
feature representation and adopt the ConvLSTM model to learn spatial dependencies adequately. The final forecast results are
obtained by stacking strategy fusion in ensemble learning. We conduct experiments on real dengue datasets. The results
indicate that STCFM improves prediction accuracy through effective spatiotemporal feature representations and outperforms
candidate models with a reasonable component construction strategy.

1. Introduction

Dengue is an acute infectious disease transmitted by mos-
quito vectors that cause flu-like symptoms and can be fatal
[1]. According to World Health Organization (WHO) esti-
mates, 40% of the world’s regions are exposed to dengue
risk. About 50-100 million people are infected with dengue
each year, including up to 500,000 life-threatening cases of
dengue shock syndrome [2]. Dengue poses a continuous
threat to global public health and has become one of the
new infectious diseases in China. In the absence of an effec-
tive vaccine against dengue, the impact of responses as cases
occur on the epidemic is limited and valid methods are
urgently required to forecast dengue outbreak risks.

The current dengue-related forecast models utilize simi-
lar characteristic parameters, generally only considering the

case sequence and meteorological factors [3]. However, den-
gue is transmitted by mosquitoes in actual scenarios, and its
risk forecast requires considering the direct impact of mos-
quito vector abundance. As the dengue vector, Aedes mos-
quitoes carry on the spread primarily rely on Aedes aegypti
and Aedes albopictus [1]. Their reproduction precedes
disease transmission, and inhibition in its immature stage
would alleviate the pressure of disease outbreaks. Vector
surveillance quantitatively measures the number and
distribution of mosquitoes by investigating their breeding
environment. Larval indices as a favorable candidate for
interpreting mosquito vector density can be considered a
predictor of dengue risk [4]. But apart from utilizing larval
indices as features to construct forecast models [5], the
application of the correlation quantification between dengue
cases and mosquito abundance in the risk forecast of
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mosquito-borne infectious diseases remains limited, espe-
cially in the spatial dimension [6, 7].

In practical forecast scenarios, it is crucial to explore spa-
tiotemporal correlations between dengue cases and larval
indices by constructing data contexts embedded in continu-
ous space and vary dynamically over time [8]. Specifically, it
is to learn static attribute features and dynamic spatiotemporal
features with a global perspective. Figure 1 visualizes the spa-
tiotemporal correlation between dengue risk and mosquito
abundance. The horizontal direction denotes three time slices,
each covering five nodes in the spatial dimension, where nodes
within adjacent grids are considered neighbors. The yellow
line indicates the temporal dependence of the node at the cur-
rent moment on historical moments. The blue line indicates
the spatial dependence of the node on the adjacent nodes at
the same time. The red line indicates the spatiotemporal
dependence of the node at the current moment on adjacent
nodes at historical moments. Mining crux features and accu-
rately forecasting dengue risk from such complex multivariate
spatiotemporal data remain exploratory. There are still issues
not fully resolved by existing research works, which are sum-
marized as follows:

(i) I1 : Multiscale Analysis of Historical Variations in
Dengue Risk and Mosquito Vectors. Some studies
analyzed temporal correlations between entomolog-
ical indicators and dengue cases as mosquito abun-
dance exhibits weather-influenced seasonal
variation and induces disease [4, 9, 10]. Analyzing
the historical variation patterns of time series can
obtain valuable information, but most existing stud-
ies consider adjacent historical segments. Given
long-term trends and short-term anomalies reflect
temporal variations from different perspectives, a
multiscale analysis of history should be considered

(ii) I2 : Explaining the Geographic Distribution of Den-
gue Risk by the Spatial Cluster Pattern of Mosquito
Vectors. In addition to the analysis of environmental
factors, the existing spatial modeling methods of
mosquito vector density mainly involve the explora-
tion of spatial aggregation but only cover the range
of spatial autocorrelation [11]. Specifically, the local
Moran’s index serves as a spatial autocorrelation
metric to explore local changes in spatial aggrega-
tion by measuring the relative contribution of vari-
ables in each region [12]. Evidence for the spatial
correlation between dengue cases and mosquito
abundance is still lacking

(iii) I3 : Introduce Spatiotemporal Correlation Factors
into Predictive Models. Due to the spatiotemporal
properties of dengue transmitted by mosquitoes,
the assessment strategy to investigate the associa-
tion between dengue risk and mosquito abundance
from both temporal and spatial dimensions is a req-
uisite consideration for studying dengue dynamics.
Multivariate spatiotemporal correlations have the
potential to be feature factors in dengue risk forecast
models, but the availability has not been further val-

idated. To bridge this research gap, this work intro-
duces spatiotemporal correlation factors into the
dengue risk forecast task and verifies the effective-
ness of its mathematical metrics in the prediction
model

By jointly considering the above issues, we propose a
multicomponent fusion forecast approach based on multi-
variate spatiotemporal analysis, STCFM. It analyzes the
temporal-lag cross-correlation of dengue risk and larval
indices and simultaneously explores the binary expansion
of spatial autocorrelation, i.e., multivariate spatial correla-
tion. The spatiotemporal correlation metrics are further
introduced into the dengue risk forecast model. Empirical
studies indicate STCFM boosts performance and provides
crux spatiotemporal features for forecast. The specific con-
tributions of this paper are summarized as follows:

(i) We utilized the temporal lag cross-correlation func-
tion to analyze the mathematical association
between dengue risk and larval indices and con-
structed multiscale features at different time inter-
vals (addressing I1). By capturing the short-, mid-,
and long-period variation patterns of time series, it
can more comprehensively depict the periodicity
characteristics and build the component model for
prediction (addressing I3)

(ii) Considering the nature of dengue risk and larval
indices as spatiotemporal data, we conducted a spa-
tial analysis of temporal data containing geographic
information. Specifically, we exploit the multivariate
domain expansion of local spatial autocorrelation to
explore the impact of the spatial cluster pattern of
mosquito vectors on the dengue transmission
region (addressing I2) and introduce the correlation
indicator as an additional feature into the spatial
component model (addressing I3)

(iii) We train a fusion model involving spatiotemporal
components on a real dengue infectious disease data-
set to verify the performance. Empirical results show
that STCFM outperforms other candidate models,
and both the temporal and spatial components can
efficaciously improve the forecast consequence

2. Related Work

Time series forecast in epidemiology has a broad discussion
involving multivariate feature extraction and diverse
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Figure 1: Abstract schematic diagram of spatiotemporal
dependence.
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prediction models. Existing models have demonstrated com-
petitiveness in disease risk forecast, albeit with different tasks
and characteristics. Considering disease transmission
exhibits spatiotemporal dependence, we have the following
two concerns for disease risk forecast models based on spa-
tiotemporal analysis.

2.1. Forecast Models. Statistical analysis approaches and deep
learning algorithms are widely adopted in time series fore-
casting. Statistical analysis approaches such as Autoregres-
sive Integrated Moving Average (ARIMA) validate the
significance of inferences by analyzing associations among
variables, focusing on the analytical process. Deep learning
algorithms are specialized in mining rules from historical
data for prediction instead of hypothesis testing in statistical
models to demonstrate statistical significance. These include
feedforward neural networks (FNN), recurrent neural net-
works (RNN), and convolutional neural networks (CNN).
Statistical analysis approaches for dynamic forecast of dis-
ease risks are difficult to capture seasonal patterns and irreg-
ular variations simultaneously, and deep learning algorithms
have obvious advantages in this regard [3, 13]. Some
research works combine statistical analysis approaches and
deep learning algorithms to provide fruitful solutions,
exploiting the unique strength of each independent model
through model fusion to capture different patterns in the
data [14–16]. Specifically, the fusion of classical time series
regression models with neural networks indicates the valid-
ity of the hybrid approach involving linear and nonlinear
components in forecast tasks [17, 18]. In addition, there
are studies focusing on optimizing the weight pattern of
fusion strategies to produce enhancements in the overall
forecast fitting [14, 15, 18].

Relative to general epidemics, the restrictions of available
data require dengue forecast models to have the ability to
learn valid information from limited features. Although
meteorological factors can be used to predict the epidemic
situation, taking them as principal characteristic variables
and ignoring other disease-related features lack robustness
and interpretability [3, 19]. Given the singleness of the
expression ability of meteorological characteristics, some
studies supplemented the vector surveillance data and veri-
fied the potential of mosquito-borne features to improve
the predictive ability for dengue risk [5, 20]. Considering
that mosquito abundance as a driver of dengue can provide
a sufficient window period for early prevention of dengue
outbreaks [4], some studies are dedicated to the forecast of
mosquitoes themselves [21, 22]. However, to the best of
our knowledge, there is still a lack of studies linking the high
variability of mosquito fluctuations with dengue cases in the
spatiotemporal dimension and as predictors of impending
dengue risk. [23]

2.2. Correlation Analysis. Although the significance of spatio-
temporal associations between mosquitoes and dengue in
forecasting dengue risk is not emphasized, some studies ana-
lyzed the correlation in terms of time or space [4, 6, 7, 10, 11].

Various approaches such as cross-correlation function
and regression modeling were adopted to depict the tempo-

ral correlation between dengue risk and larval indices, which
validated that mosquito abundance was the determinant of
dengue [4, 7, 10]. The potential of larval indices as an early
warning signal for dengue was estimated by receiver operat-
ing characteristic (ROC) curves without demonstrating its
availability in actual forecast scenarios by specific modeling.

Relative to temporal correlation analysis, it is of great
significance to assess the spatial distribution pattern of den-
gue cases and mosquito abundance. In addition to visual
analytical modeling of epidemic transmission dynamics
[24, 25], several studies are aimed at exploring the spatial
dependence of variables, including Pearson correlation anal-
ysis and Moran’s index [11, 26]. However, Moran’s index as
a spatial autocorrelation indicator only measures the neigh-
borhood dependence of univariate and is not utilized to ana-
lyze the multivariate spatial association that considers the
cross-correlation among variables.

3. Preliminaries

3.1. Problem Formulation.We formalize the aggregation pat-
tern of dengue risk as a spatiotemporal structure diagram
shown in Figure 1, where each time slice t covers a spatial
graph G = ðV , AÞ including grid node set V of cases and vec-
tors, and adjacency matrix A ∈ℝN×N with grid node number
N . The mathematical notations are shown in Notations. We
assume a time series of length T and generate time-ordered
records of case numbers and larval indices, denoted as xt ∈
ℝD×Nðt = 1, 2,⋯, TÞ with each record xt containing D fea-
tures on N nodes. xd,it denotes the observed value of feature
d for node i at t-th time step. Thus the forecast issue is for-
mulated as given the dengue data X = ðx1, x2,⋯, xτÞ in τ
time steps to predict case numbers ŷτ+γ ∈ℝ with the forecast
window length γ.

3.2. Data Preprocessing. Data were collected according to
dengue cases, mosquito vectors, and geographic information
and uploaded to the monitoring center by relevant personnel
as shown in Figure 2. The cases were divided by source
region adopting the regular matching approach. Due to the
clutter of raw data, data cleaning is required before feature
extraction, including time slice segmentation based on time-
stamps and grouping in line with grid nodes. The extraction
approach of mosquito density is to select more than 400
households distributed in four streets to check all water con-
tainers within 5 meters outdoor and then calculate larval
indices as shown in (1). Thereinto, pos_con and pos_house
are the number of mosquito larva-positive containers and
households, and sum_con and inv_house indicate the total
amount of investigated containers and households.

BI = pos con
inv house ∗ 100,

CI = pos con
sum con ∗ 100,

HI = pos house
inv house ∗ 100:

ð1Þ
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We follow up with data filtering and normalization to
eliminate outliers after data segmentation. Affected by the
sampling frequency of mosquito vector monitoring, there
are missing values in time series data that need to be filled.
Missing value processing adopts the surrounding mean fill-
ing method to conduct the calculation based on the weighted
average of the nearby data. Further, forward-filling is
adopted, assuming that missing values are the same as vari-
able observations at the previous time step, taking into
account the temporal correlation of time series data. After
preprocessing the data according to Figure 2, feature extrac-
tion is carried out by components separately.

4. Methods

Taking the transmission of dengue is exposed by spatiotem-
poral factors, we propose STCFM to characterize temporal
trends and spatial distributions based on considering statis-
tical properties and integrating them for forecast tasks. Spe-
cifically, it is discussed from the following three components.

(1) Since the observations of dengue cases exhibited
autocorrelation, we adopted the attribute representa-
tion in general statistical analysis to construct the
statistical component model. Analyze multidimen-
sional statistical properties of dengue cases at inde-
pendent time steps

(2) Considering the lag cross-correlation between den-
gue risk and mosquito abundance, we constructed a
temporal component model with three subcompo-
nents that could depict the short-, mid-, and long-
period characteristics of time series

(3) We assessed multivariate spatial dependencies of
dengue risk and mosquito abundance based on spa-
tial aggregation analysis and constructed the spatial
component model with correlation metrics as addi-
tional features

The model structure is shown in Figure 3.

4.1. Statistics Component Model. Given that risk outbreaks of
dengue are observed to be autocorrelated, we propose a sta-
tistics component model to characterize the statistical prop-
erties of dengue case sequences. The transmission of dengue
is affected by the latency, so we define a time window as the
length of the incubation period and calculate the statistical

properties in the window, including Sum, Incr, Mean,
Med, Max, and Min. Moreover, the same period last year
(SPLY) was added as a feature attribute due to the observed
seasonality of dengue outbreaks. Connecting the above fea-
tures, the input variables of the statistical component model
are constructed as follows:

St = Sumt ∘ Incrt ∘Meant ∘Medt ∘Maxt ∘Mint ∘ SPLYt , ð2Þ

where the subscript denotes the time step. Statistical
property forecast adopts LSTM (long short-term memory)
model applicable for sequence learning tasks involving tem-
poral order recognition in noisy input streams [27].

The structure shown in Figure 4 exhibits the information
flow in the memory unit, where the hidden cell state C can
save long-interval related information to alleviate the time
dependence issue to a certain extent. The LSTM model has
three inputs in the form, xt is the current sequence data,
ht−1 is the output of the previous unit, and Ct−1 denotes
the memory of the previous moment. The training of the
hidden layer is to process input vectors through forget,
input, and output gates in LSTM cells to generate the output
value Ht and update the memory Ct . Update functions are as
follows:

Monitoring center
Temporal segmentation

Grid grouping

Dirty data filtering

Missing value filling

Preprocessing
Data collection

Figure 2: Data preprocessing flowchart.
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f t = σ Wf ht−1 +Uf xt + bf
� �

, ð3Þ

it = σ Wiht−1 +Uixt + bið Þ, ð4Þ
~Ct = tanh Wcht−1 +Ucxt + bcð Þ, ð5Þ

Ct = f t ⊙ Ct−1 + it ⊙ ~Ct , ð6Þ
ot = σ Woht−1 +Uoxt + boð Þ, ð7Þ

ht = ot ⊙ tanh Ctð Þ: ð8Þ
As the output of the forget gate, f t determines the forget-

ting probability of the hidden cell state in the previous layer
through the nonlinear activation function σ (sigmoid) with
the value in [0,1].W ∈ℝH×H and U ∈ℝH×D denote the coef-
ficient matrix of hidden states and input vectors, where H is
the number of hidden units, and b refers to the bias param-
eter. The input gate consists of (4) and (5) to selectively store
new information in the cell state. it and f t act on the previ-
ous state Ct−1 and the candidate vector ~Ct obtained by tanh
activation at the current moment, respectively, as weight
parameters to update the cell state Ct as (6), where ⊙ is
Hadamard product. ht is updated by (8) with the output gate
ot obtained by (7) that determines the portion of the cell
state Ct activated by tanh. The output layer computes the
output value ŷt through weighted connections of the hidden
layer series h1, h2,⋯, ht .

4.2. Temporal Component Model. Generally, even if time
series data has evident periodic characteristics, it presents
stochastic variations, which are difficult to represent by
independent models. Embedding temporal information
into forecast models as explanatory factors rather than
casual factors to learn the feature trends at different stages
is required to be explored, and verifiable interpretability
needs to be provided to guarantee the credibility of the
model. The majority of current time series forecast models
rely only on historical segments adjacent to the forecast
period, which are sensitive to missing data and lead to a
lack of robustness in forecasting [28]. Given the seasonal-
ity of dengue outbreaks, periodic information contained in
historical data may not be reflected in recent data. We
propose a solution that combines short-, mid-, and long-
period features, which divide time series into three stages
and model them separately to flexibly capture the impact
of multivariate temporal dependencies on forecasting tasks
[28]. Specifically, we construct a temporal component

model with three subcomponents to depict the feature in
short-, mid-, and long-periods, and the corresponding
temporal segments are denoted as Ts, Tm, Tl, as shown
in Figure 5.

Considering that the epidemic outbreak is affected by the
incubation, we define the adjacent time segment of the fore-
cast target as Ts, covering the length of the incubation period
(14 days). Additionally, the outbreak peak of dengue is
observed to exhibit seasonal variation, so Tl is defined as
the time segment one year before the forecast target to
model the variation pattern with an annual cycle. Unlike
Ts and Tl, Tm as the midterm segment requires temporal
correlation analysis to determine the appropriate value,
which cannot be obtained simply by observation or experi-
ence. Since dengue is transmitted through dense populations
established by mosquitoes, larval indices can serve as an
early warning signal to explain dengue outbreaks [4]. To rea-
sonably introduce larval indices into predictors, we con-
ducted temporal lag correlation analysis on monthly data
collected from mosquito-borne infectious disease surveil-
lance reports and found a lag relationship between vector
density index and dengue case numbers. Specifically, we
assessed the dynamic variation of fitted correlations between
time series with time through the temporal lag cross-
correlation function. We select Spearman’s rank correlation
coefficient, commonly considered a metric of monotonic
correlation, to quantify the interseries correlation with the
lag of k‐th time step. Suppose the time series X1,⋯, XT
and Y1,⋯, YT denote larval indices and dengue case num-
bers. The lag correlation between Xt and Yt+k is defined as
follows:

ρXY kð Þ =
1 − 6∑T−k

t=1 ~Yt+k − ~Xt

� �2
T − kð Þ T − kð Þ2 − 1

� � , ifk ≥ 0,

1 − 6∑T
t=1−k ~Yt+k − ~Xt

� �2
T + kð Þ T + kð Þ2 − 1

� � , ifk < 0,

8>>>>><
>>>>>:

ð9Þ

where ~Yt+k and ~Xt denote the position of Yt+k and Xt
after sorting separately, and T represents the length of the
time series as shown in Notations. The value is between -1
and 1, with the absolute value indicating the correlation.
The results illustrated that dengue cases exhibited a signifi-
cant positive correlation with larval indices lagged by one-
month period (r = 0:638, p < 0:001), which is used to deter-
mine Tm to build an midperiod temporal model. Based on
the above analysis, we intercepted Ts, Tm, and Tl to con-
strain feature sequences in different periods and maintain
the length consistency. The specific definitions are illustrated
in Figure 5. We train temporal correlation features through
the LSTM model, where each subcomponent shares the neu-
ral network structure. The significant superiority lies in that
it can use contextual information when mapping input and
output sequences to solve the vanishing gradient problem
for long temporal lag tasks [29].

4.3. Spatial Component Model. Lag is generally expounded in
terms of time, whereas spatial lag measures the spatial
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Figure 4: LSTM framework.
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dependence of variables according to topological associa-
tions. Specifically, it represents the local influence of sur-
rounding areas on the current region in a fine-grained
manner through the weighted average observations of vari-
ables in the neighbors. The Moran index is a quantitative
study of aggregation phenomena in different geographic
locations based on spatial lag, usually limited to spatial auto-
correlation analysis [11]. Instead, our work estimates bivari-
ate spatial cross-correlation coefficients between larval
indices and dengue cases to measure the spatial dependence
among different variables and explore its potential as a pre-
dictor. Specifically, we extend the concept of local spatial
autocorrelation to the binary spatial correlation issue with
the essential difference that the spatial lag calculation under
bivariate pertains to different variables. In addition to topo-
logical associations of observations, it also focuses on cross-
correlations [30].

We partition the geographic layer into N grids and
extract spatial factors according to the spatial distribution
of cases in the actual scenario. Extend the spatial lag to a
bivariate dimensional context by analyzing the relevance
between dengue cases y at region i and larval indices x at
the adjacent region j as follows: LtðyiÞ =∑N

j aijxj, where yi
and xj are both normalized. Spatial correlation within the
general definition does not account for different variables
in the same region but requires to be considered in our
context. In this regard, we consider the node itself
through self-connection and realize the calculation of
intrinsic correlation. The specific method is to obtain
the adjacency matrix A as the spatial weight value
according to the geographical distribution of the region,
where aij is 1 indicates that regions i and j are adjacents,
and 0 is not. Besides, A is updated by A + IN that added
self-connection.

A = A + IN =

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ ann

2
666664

3
777775
+

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1

2
666664

3
777775
:

ð10Þ

The spatial cross-correlation pattern between dengue
cases and mosquito abundance was then calculated by
the bivariate local Moran’s index as follows:

Ii = C~yi 〠
N

j

aij~xj, ð11Þ

where ~xi = xi − �x, ~yj = yj − �y, and C is for standardization.
In the context of this work, Ii > 0 denotes there was a positive
spatial cross-correlation between cases in the region i and
mosquito abundance in the surrounding area, and ∑N

j aij~xj
indicates the corresponding spatial lag value. A bivariate
Moran scatter plot is optimized in the form of a bubble chart
to visualize the spatial lag relationship, as shown in Figure 6
(a), where the abscissa is the ~yi value of case and the ordinate
indicates the spatial lag in the context of larval indices. The
product of abscissa and ordinate maps the bivariate local Mor-
an’s index. And the size of bubble data points is determined by
the number of regions corresponding to this value. The fitted
trend line demonstrated a positive spatial correlation between
dengue cases and larval indices. Mapping the quadrants in the
scatter plot on the geographical location in the form of a color
block diagram is the Moran Map in Figure 6(b), and its spe-
cific mapping rules are depicted in the legend. Moran map
intuitively exhibits the spatial correlation of variables in differ-
ent geographic locations.

Spatial lag values and bivariate local Moran’s index
obtained from multivariate spatial correlation analysis were
added as features to the spatial component model. It is worth
mentioning that the spatial correlation metric among three
larval indices (BI, CI, and HI) and dengue cases has high
pertinence. Considering the impact of redundant inputs on
the robustness of neural networks, we use BI as the proxy
of mosquito abundance features for spatial correlation calcu-
lation. We choose ConvLSTM [31] as the spatial component
model to learn the spatial dependencies of dengue cases and
mosquito abundance. ConvLSTM is based on LSTM struc-
ture but adopts convolution instead of state-state full con-
nection mode, which further extracts spatial information
compared to LSTM, as shown in Figure 7. Specifically, the
input is regarded as an eigenvector distributed on the spatial
grid, and ConvLSTM determines the future state of the

Lag

…

Long period Medium period Short period

Year

TpTsTmTl

Figure 5: Multiscale time series segment construction.
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current spatial node by convolution operations on the past
states of other grid cells. The update equations are as follows:

f t = σ Whf ∗ ht−1 +Wxf ∗ xt +Wcf ⊙ Ct−1 + bf
� �

,
it = σ Whi ∗ ht−1 +Wxi ∗ xt +Wci ⊙ Ct−1 + bið Þ,

Ct = f t ⊙ Ct−1 + it ⊙ tanh Whc ∗ ht−1 +Wxc ∗ xt + bcð Þ,
ot = σ Who ∗Ht−1 +Wxo ∗ xt +Wco ⊙ Ct + boð Þ,

ht = ot ⊙ tanh Ctð Þ,
ð12Þ

where ∗ denotes the convolution operation and ⊙ denotes
the Hadamard product. It can be interpreted that the quantity
of dengue cases in the designated region is not merely related
to the current region but also affected by other areas.

4.4. Fusion Strategy. A single decision model tends to ignore
the indeterminacy, and complexity of data and is not univer-
sal. The fusion methodology exploits the unique preponder-
ances of component models and theoretically be capable of
improving the forecast performance of time series in con-
trast with independent models. Considering the characteris-
tics that different models recognize different data patterns in
practical scenarios, this study utilizes an ensemble learning
strategy to fuse N learners to train spatiotemporal features.

Due to the heterogeneity of component learners, this
work introduces the Stacking ensemble framework with
two-tier architecture to model component learners. Specifi-
cally, the outputs obtained by the primary learner based on
original samples are used as the input features of the second-
ary model, and the metalearner is utilized in the second layer
instead of voting or averaging to fuse the strength of the
independent model and fit the regression results. Compared
with Bagging and Boosting algorithms in ensemble learning,
the Stacking method enhances the expressiveness and gener-

alization and reduces bias and variance. And relative to the
BMA combination strategy being sensitive to model approx-
imation error, the advantage of Stacking is reflected in
robustness [32].

To integrate the superiority of each submodel to improve
performance, component learners should be discriminative
and accurate. By constructing statistics, temporal, and spa-
tial components, we simultaneously capture the characteris-
tics of the three dimensions in statistical properties,
temporal trends, and spatial distributions. Considering the
influence of metalearner on the generalization performance,
we select the commonly used multiple linear regression
(MLR) model to seek the optimal function by minimizing
the sum of squared errors. And on account of the temporal
dependence, forward chain cross-validation was adopted to
reduce the risk of overfitting. Suppose the output sequence
ŷ = ½ŷ1, ŷ2,⋯, ŷT�⊤, and T denotes the length of the time
series. For output ŷt ∈ℝ, multiple linear regression is repre-
sented by the following:

ŷt =w0 +w1ŷ
1
t +w2ŷ

2
t+⋯+wnŷ

n
t , ð13Þ

where a total of n forecast models, ŷit denotes the forecast
result of the i-th model at time t, and wi measures the
impact of different component models on the forecast
results.

5. Case Study

We conducted comparative experiments on real-world den-
gue datasets to verify the effectiveness of the proposed
model. The remainder of this section presents the dataset
and implementation details and a comparative analysis of
the empirical results.

5.1. Datasets. The Lancang-Mekong region, including Yun-
nan Province, has a high incidence of dengue due to its
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Figure 6: Multivariate spatial correlation visualization.
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subtropical climate, which is prone to breeding mosquitoes.
The surveillance sites deployed in Yunnan Province and sur-
rounding areas collected and recorded dengue and mosquito
data through relevant personnel, covering the Jinghong
region with the period spanning 2013 to 2019. We con-
structed the dataset as samples with geographic location
information of 14-day intervals, including features of statis-
tical properties, temporal trends, and spatial distributions
that accompany time windows.

Due to the temporal sequence sensitivity, the dataset was
split into the training set, validation set, and test set in a 6 : 2 : 2
ratio in chronological order. It is worth noting that, in contrast
to the majority of models that predict in an in-sample way, we
adopt out-of-sample modes to conduct retrospective analysis
and forecast to estimate performance, which has robust inter-
pretability for possible overfitting issues.

5.2. Implementation Details and Baselines. We contrast the
proposed forecast model against the following baselines to
verify the model performance.

(i) Historical Average (HA). Use the average of obser-
vations from adjacent historical segments as the
predicted value.

(ii) ARIMA. ARIMA(p, d, q) model [33] in the Box-
Jenkins method is the benchmark for time series
forecast, where p, d, and q are determined by mini-
mizing the Akaike information criterion (AIC).

(iii) SVR. Support vector regression (SVR) is a super-
vised learning method for regression analysis [34].
We select the radial basis function (RBF) kernel that

conforms to Mercer’s theorem for nonlinear model-
ing in time series prediction scenarios.

(iv) XGBoost. Extreme gradient boosting [35] is an opti-
mized ensemble tree model that implements parallel
forecast algorithms under the gradient boosting
decision tree framework.

(v) CNN. Convolutional neural networks (CNN) [36] are
feedforward neural networks with deep structure
composed of convolutional layers and pooling layers.

(vi) LSTM. A long short-termmemory network [29] con-
sisting of forget gates, input gates, and output gates
can learn the long-term dependency of time series.

We implement the above candidate models through the
sklearn library and the TensorFlow framework. For STCFM,
we set the hidden units of LSTM to 32 with a batch size of 8.
The loss function is set to mean squared error, and the
Adam optimizer is utilized [37] with the learning rate set
to 0.001. The spatial component model consists of three
layers of ConvLSTM with 32 filters for the convolutional
layers and a kernel size set to 3. The grid spacing in the spa-
tial dimension is partitioned according to the actual distance
of 5 kilometers, and the temporal window length is set to 14
days through the time step parameter.

5.3. Evaluation Criteria. Two general metrics are adopted to
evaluate the performance of candidate models.

(1) Root Mean Square Error (RMSE). RMSE is used to
assess the discrepancy between the predictive value
ŷ and the corresponding true value y, as closer RMSE
to 0, indicating a better forecast performance. The
calculation formula is

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T
〠
T

i=1
ŷi − yið Þ2

vuut ð14Þ

(2) Coefficient of Determination (R2). R2 is utilized to
measure the goodness of fit of the forecast model
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Figure 7: ConvLSTM framework.

Table 1: Forecast performance comparison with different models.

Model RMSE (week) R2 (week) RMSE (day) R2 (day)

HA 48.64 0.58 6.05 0.70

ARIMA 69.02 0.18 10.16 0.19

SVR 58.36 0.39 7.17 0.58

XGBoost 48.99 0.57 7.05 0.59

CNN 43.44 0.66 5.72 0.73

LSTM 42.18 0.68 5.61 0.74

STCFM 34.88 0.78 4.65 0.83
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with the value range of [0,1] and calculated as fol-
lows. The closer R2 is to 1, the more accurate the
forecast

R2 = 1 − ∑T
i=1 ŷi − yið Þ2

∑T
i=1 �yi − yið Þ2

ð15Þ

5.4. Empirical Results. We compared STCFM with six candi-
date models on the dengue dataset, where the forecast win-
dow is set to day and week, and the experimental results
are shown in Table 1. The results illustrate that STCFM
achieves optimum performance under both evaluation cri-
teria regardless of the forecast step length. Compared with
deep learning algorithms, the poor performance of general
machine learning approaches on the dengue risk forecast
task stems from limited modeling capabilities. STCFM out-
performs all candidate models due to its simultaneous con-
sideration of temporal correlation and spatial dependence.

The forecast performance of HA is acceptable compared
to other machine learning approaches because of the imbal-
anced nature of dengue data. It can be interpreted that HA
has a steady forecast effect in sequence stationary periods
with a higher proportion. But it only learns the information
of adjacent historical segments, resulting in low forecast
accuracy for the risk outbreak period with volatility. Given
the uncertainty of dengue risk due to multiple factors, deep
learning algorithms with higher flexibility are more suitable,
as shown by CNN and LSTM in Table 1. Compared to the
two best performing candidate models, CNN and LSTM,
STCFM achieves 18.2% and 9.8% relative improvement on
R2 in the week metric, 13.7% and 5.0% in the day metric.
It attributes to the mining of spatiotemporal dependencies

by the spatiotemporal component fusion strategy, which
introduces the convolution operation of CNN while exploit-
ing the long memory capability of LSTM to achieve the pur-
pose of capturing spatiotemporal features. We further adopt
R2 to assess the performance variation of each approach with
increasing forecast step length, as shown in Figure 8. It can
be seen from the figure that the goodness of fit of candidate
models decreases with the increase of forecast time. STCFM
outperforms the baselines mentioned above and exhibits
insensitivity to the variation of forecast step length, implying
that STCFM has potential for long-term prediction tasks.

In addition, to analyze the effectiveness of the spatiotem-
poral feature factors added in STCFM and the necessity of
component fusion, we conduct comparative experiments
from the feature dimension to verify the optimal combina-
tion pattern of features. Specifically, we separately analyzed
the forecast results of the statistical feature sequences of den-
gue cases and the multivariate feature sequence with tempo-
ral lag periods and spatial lag coefficients. And further,
explore the impact of component fusion and forecast step
length on the forecast performance. We measure the forecast
performance of different feature combinations with RMSE
and R2 as the forecast step length increases and shows in
Figures 9(a) and 9(b), respectively. The results intuitively
exhibit that the introduction of temporal and spatial factors
enhances the ability of the model to forecast dengue risk. It
confirms that the explicit modeling of data in different
periods by temporal component strengthened mining utility
for temporal features and represents the multiscale variation
patterns of dengue risk and mosquito abundance. Further,
introducing spatial correlation metrics into spatial compo-
nents constructs valid feature representations and improves
forecast performance with ConvLSTM that captures spatial
correlations. The above results validate that we have
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obtained an effective spatiotemporal feature representation
using a reasonable correlation analysis method. And utiliz-
ing them as predictors to solve the issue of dengue risk fore-
cast is a creditable attempt.

6. Conclusions

In this paper, we propose STCFM to fuse spatiotemporal
components for dengue risk forecast. Specifically, we first
construct the statistics component model based on statistical
analysis variables of dengue data. Then, considering the

influence of mosquito-borne factors on dengue transmis-
sion, the spatiotemporal lags obtained by correlation analy-
sis were drawn into multivariate feature sequences to
construct spatial and temporal components. The temporal
component model conducts multiscale modeling of time
dependencies by capturing short-period, mid-period, and
long-period historical variations of data, enhancing the pre-
dictive capacity because of relevant temporal segments with
potential impact. The spatial component model adopts spa-
tial correlation metrics as additional predictors and utilizes
ConvLSTM to train spatial features based on the positive
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correlation of data in the spatial dimension. Finally, all com-
ponents are fused through the stacking strategy in ensemble
learning.

Experimental results illustrate that STCFM outperforms
the candidate models, and the involved spatiotemporal fea-
ture learning approaches and component fusion strategies
can be extended to data analysis and forecast issues in other
domains. In future work, we expect to develop a general
forecast visualization framework to simultaneously visualize
feature representations and the spatiotemporal transfer pro-
cess of events, enabling optimization of the model structure
by providing various valuable visual information.

Notations

x: Input data
y: Observed value of forecast target
ŷ: Forecast result
τ: Time series length
γ: Forecast window length
T ,N ,D: Dimension in temporal, spatial, and feature
St ∈ℝD: Statistical property features at t-th time step
Ts, Tm, Tl: Time series segment construction in short, mid,

long period
A ∈ℝN×N : Adjacency matrix
Lt ∈ℝN : Spatial lag at t-th time step
It ∈ℝN : Bivariate local Moran’s index at t-th time step.
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