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Background. Lower-grade gliomas (LGGs) are less aggressive with a long overall survival (OS) time span. Because of individualized
genomic features, a prognostic system incorporating molecular signatures can more accurately predict OS. Methods. Differential
expression analysis between LGGs and normal tissues was performed using the Gene Expression Omnibus (GEO) datasets
(GSE4290 and GSE12657). Immune-related differentially expressed genes (ImmPort-DEGs) were analyzed for functional
enrichment. The least absolute shrinkage and selection operator (LASSO) analysis was performed to develop an immune risk
score signature (IRSS). We extracted information from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome
Atlas (CGGA) to establish and validate the model. The relationship of model gene sets with immune infiltration was analyzed
based on gene set variation analysis (GSVA) scores. Patients were divided into low- and high-risk groups based on the median
score. The time-dependent receiver-operating characteristic (ROC) curve and the Kaplan-Meier curve were used to evaluate
the model. Then, a precise prognostic nomogram was established, and its efficacy was verified. Results. A total of 18 related
immune genes were identified, building a 6-gene IRSS (BMP2, F2R, FGF13, PCSK1, PRKCB, and PTGER3). DEGs were
enriched in T cell and NK cell regulatory pathways. Immune infiltration analysis confirmed that the gene signature correlated
with a decrease in innate immune cells. In terms of model evaluation, ROC curves at 1, 3, and 5 years showed moderate
predictive ability of IRSS (AUC = 0:930, 0.797, and 0.728). The Cox regression analysis revealed that IRSS was an independent
prognostic factor, and the nomogram model had good predictive ability (C − index = 0:828). Meanwhile, the predictive power
of IRSS was also confirmed in the training cohort. The Kaplan-Meier results showed that the prognosis of the high-risk group
was significantly worse in all cohorts. Conclusion. IRSS may serve as a novel survival prediction tool in the classification of
LGG patients.

1. Introduction

Adult gliomas are the most prevalent central nervous system
tumors, accounting for 75% of all primary intracranial
malignancies [1]. Gliomas are graded I-IV by the World
Health Organization (WHO) based on clinical symptoms
and molecular marker status [2]. Lower-grade gliomas
(LGGs) are defined as WHO grade II and III gliomas com-
bined. Although the course of glioma patients varies, most
gliomas, especially LGGs, can evolve progressively into glio-
blastoma (GBM), and molecular biomarkers are used to
refine the branching of gliomas [3, 4]. Despite considerable
advances in our understanding of gliomas, such as isocitrate

dehydrogenase (IDH) [5] and methylguanine methyltrans-
ferase (MGMT) [6], the survival time of LGG patients
remains highly variable [1]. Therefore, favorable treatment
options remain inadequate.

Glioma therapeutic approaches are continually being
researched, and immunotherapy may be indicated as a viable
glioma treatment strategy. In the case of glioma, monoclonal
antibodies, dendritic cell vaccines, and innate immune cells
have all been found to have potential uses [7]. However,
due to specific variances in glioma patients’ immune states,
the prognosis of glioma patients is difficult to predict [2,
8]. Hence, dependable strategies for identifying patient
groups that may be responsive to further immunotherapy
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are required. Various mRNA sequence-based survival pre-
diction indicators have turned out to be effective survival
strategies [9–12]. So, an integrated immune gene risk assess-
ment method might be useful for LGG prognosis prediction.

A simple and feasible prognostic indicator is more valu-
able in clinical applications [13]. One study constructed a
genetic signature sensitive to IDH mutation status that could
effectively predict survival in patients with groin cancer [11].
However, insufficient sample size included and available
clinical data led to a bias in the ability of practical applica-
tion. We obtained microenvironment-related immune genes
to develop an immune prognostic risk profile based on six
genes and combined them with clinical information from
The Cancer Genome Atlas (TCGA) to build a prediction
model. More importantly, we applied two larger sequencing
cohorts from the Chinese Glioma Genome Atlas (CGGA)
[14] database to validate this association. The immune risk
score profile established in this study is robust, and it can
be used for prognostic prediction of LGG patients to provide
an accurate assessment for clinical treatment.

2. Material and Methods

2.1. Datasets. Data from 513 lower-grade glioma samples
(TCGA-LGG), including mRNA sequencing data, clinical
information, and survival information, were downloaded
from the GlioVis network (http://gliovis.bioinfo.cnio.es/).
Two CGGA (http://www.cgga.org.cn/) datasets were col-
lected as validation sets, containing 325 and 693 tumor sam-
ples, respectively. Differential analysis was performed on
GSE4290 and GSE12657 from the Gene Expression Omni-
bus (GEO) database (https://www.ncbi.nlm.nih.gov/geo).
GSE4290 contained 157 tumor samples and 23 normal sam-
ples. GSE12657 contained 20 tumor samples and 5 normal
samples.

The original datasets were reprocessed according to cer-
tain rules. The exclusion criteria were as follows: (1) GBM
samples were excluded from the GEO dataset to eliminate
potential effects; (2) patients with no follow-up data were
removed from the TCGA-LGG and CGGA datasets; and
(3) patients with overall survival (OS) of less than 90 days
in the TCGA-LGG and CGGA datasets were removed
because their cause of death was most likely tumor inde-
pendent. Based on this, the model was further developed
and analyzed. We downloaded a gene list identified to be
involved in the process of immune activity from the
Immunology Database and Analysis Portal (ImmPort)
database [15] (https://immport.niaid.nih.gov).

2.2. Differential Expression Analysis. Using the data of gene
expression in GSE4290 and GSE12657, we utilized the
“limma” [16] package in R software for differential expres-
sion analysis to identify differentially expressed genes
(DEGs). The selection criteria were log2 ∣ fold change ðFCÞ ∣
>1:5 and adjusted P values < 0:05 [17]. The “ggplot2” and
“ggrepel” packages in R were used to visualize the DEGs
by plotting volcanoes.

2.3. Functional Analysis of DEGs. To analyze the biological
function of potential immune differential genes in LGGs,
DEGs were included in the functional enrichment analysis
as long as they were present in ImmPort’s gene list. We per-
formed Gene Ontology (GO) and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses to look for potential
biological processes and enriched pathways utilizing the
cluster profiler R package. An analysis of GO terms in the
categories of cellular components (CC), biological processes
(BP), and molecular function (MF) was conducted. KEGG is
a database integrating genomic, chemical, and systematic
functional information. Adjusted P values < 0:05 were con-
sidered statistically significant.

Table 1: The clinical characteristics of included patients in TCGA and CGGA.

Characteristic TCGA-LGG CGGA (mRNAseq_325) CGGA (mRNAseq_693) P

n 461 302 636

Gender, n (%) 0.254

Female 186 (13.7%) 113 (8.3%) 270 (19.9%)

Male 236 (17.4%) 189 (13.9%) 365 (26.9%)

Grade, n (%) <0.001
II 199 (14.7%) 97 (7.2%) 171 (12.6%)

III 223 (16.4%) 72 (5.3%) 243 (17.9%)

IV 0 (0%) 129 (9.5%) 222 (16.4%)

IDH status, n (%) <0.001
Mutant 196 (17.3%) 162 (14.3%) 328 (28.9%)

Wildtype 48 (4.2%) 139 (12.3%) 260 (22.9%)

Codel 1p/19q, n (%) 0.121

Codel 71 (6.4%) 62 (5.6%) 137 (12.3%)

Noncodel 177 (15.9%) 232 (20.8%) 435 (39%)

Diagnosis age, median (IQR) 41 (33, 53) 42 (36, 51) 43 (34, 51) 0.696

IDH: isocitrate dehydrogenase; IQR: interquartile range; TCGA: The Cancer Genome Atlas; CGGA: Chinese Glioma Genome Atlas.
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Figure 1: Continued.
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ImmPort gene lists were intersected with GSE4290-LGG
DEGs and GSE12657-LGG DEGs to obtain differentially
expressed immune genes (DEIGs). The Spearman correla-

tion was utilized to analyze correlations between gene
expression and visualized with the “ggplot2” package. Mean-
while, the protein-protein interaction (PPI) network was
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Figure 1: Gene expression differential analysis and potential functional analysis. (a) Volcano plot of GSE4290 differential expression. (b)
Volcano plot of GSE12657 differential expression. (c) Venn diagram of DEGs. (d, e) GO and KEGG analysis of 80 immune differential
genes. (f) Correlation heatmap of the intersection 18 immune differential genes. (g) Protein interaction network diagram.
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Figure 2: Flow chart.
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retrieved from the STRING (https://string-db.org/) network
and reconstructed with Cytoscape 3.7.0 software. Nodes
with interaction scores greater than medium confidence
(0.40) were included in the analysis.

2.4. Establishment of an Immune Risk Score Signature (IRSS).
The lead absolute shrinkage and selection operator (LASSO)
regression analysis was performed using the DEIGs to obtain
independent prognostic genes [18]. A tenfold cross valida-
tion was adopted. LASSO regression improved model accu-
racy and interpretability. Finally, the IRSS was constructed

using LASSO regression coefficients, calculating a risk score
for each patient. The formula was as follows:

IRSS = 〠
n

n=1
Expression ∗ LASSOCoefficientð Þ, ð1Þ

where Expression is the transformed relative expression
value of each selected gene and LASSO Coefficient means
represents the regression coefficient.
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Figure 3: Establishment of IRSS. (a) Fine-tuning parameter selection in the LASSO model for tenfold cross validation. (b) Distribution of
LASSO coefficients. (c) Risk scores and survival status of six immune genes in patients with LGGs. (d) Kaplan-Meier curves showed a
significant difference in OS between the high-risk and low-risk groups in TCGA-LGG. (e) The signature was visualized by time-
dependent ROC curves for predicting 1-, 3-, and 5-year survival. (f) Differential expression histogram of six immune genes between
different groups. ns, P ≥ 0:05; ∗, P < 0:05; ∗∗, P < 0:01; ∗∗∗, P < 0:001.
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An IRSS was calculated for each TCGA-LGG sample,
which was subdivided into low- and high-risk groups using
the median as the cutoff. Kaplan-Meier (KM) survival plots
and log-rank tests were used to show the prognostic value.
The time compliance receiver-operating characteristic
(ROC) curve was drawn, and the area under the curve
(AUC) was computed to analyze the predictive value of IRSS
for the prognosis of LGGs patients. The greater the value of
AUC, the greater the consistency between predicted survival
and actual survival. A decision curve analysis (DCA) was
calculated at 3 years to evaluate the clinical usefulness of
the constructed prognostic model [19]. The x-axis represents
the probability threshold, or the threshold probability, and
the y-axis represents the net benefit.

2.5. Immune Infiltration Analysis of Model Genes. A gene set
variation analysis (GSVA) score of 6 gene integration was
selected to analyze immune infiltration in TCGA samples
using the Gene Set Caner Analysis (GSCA) (http://bioinfo
.life.hust.edu.cn/GSCA) online tool. The GSVA score repre-
sents, in an unsupervised case, changes in gene set activity
within a given cancer sample population, calculated by the
R package GSVA. Briefly, the GSVA score represents a com-
prehensive level of gene set expression with a positive corre-
lation with gene expression. The association between
immune cell infiltration and genomic expression levels was
expressed as a correlation coefficient, which was assessed
by Spearman’s correlation analysis. P values were adjusted
for the false discovery rate (FDR). FDR < 0:05 was examined
as statistically significant.

2.6. Construction of Nomogram Models. Univariate Cox
regression was employed to analyze the correlation between
IRSS and OS, and multivariate Cox regression analysis was
employed to evaluate whether the established IRSS could
serve as an independent prognostic predictor. Then, we
constructed a nomogram containing IRSS and different clin-
icopathological information using the “RMS” package. For

graphical evaluation, calibration curves at 1, 3, and 5 years
were plotted, and the 45-degree line represented the best
predicted value. In addition, the predictive accuracy of the
nomogram was evaluated with the concordance index (C-
index). Similarly, DCA at 3 years was calculated to evaluate
the clinical predictive value of the nomogram.

2.7. External Cohort Validation. To assess the robustness
and prognostic performance of the IRSS model, we selected
two CGGA datasets to further validate the established
model. The risk score for each patient in the CGGA cohort
was calculated according to the IRSS formula established
from the TCGA-LGG dataset. Multivariate Cox regression
analysis combined with clinical information was carried
out to understand the role of IRSS in the training set. CGGA
(mRNAseq_325) and CGGA (mRNAseq_693) samples were
stratified into high-risk and low-risk groups with reference
to the median value of IRSS in the cohort. KM curves were
used to compare the survival differences between the two
groups of patients, and ROC curves were used to evaluate
the accuracy of feature prediction. Likewise, DCA was
employed to compare the clinical utility of both IRSS and
IDH status. Meanwhile, to eliminate the potential influence
of GBM samples, both cohorts were analyzed and evaluated
again after excluding GBM samples.

2.8. Statistical Analysis. The downloaded data was orga-
nized using Excel software. An unpaired t-test was used
to evaluate the difference in gene expression. Data analysis
and visualization were done mainly by R (v3.6.1). Differ-
ences in clinical characteristics were analyzed with SPSS
(version 20). Survival ROC curves were plotted using the
“survival ROC” package. The KM curves were plotted by
the “survival” package in R. Multivariate Cox regression
analysis was performed using SPSS 20.0 with a P value
threshold of 0.1 for inclusion in the multivariate analysis.
All statistical tests were bilateral, and a P value < 0.05 was
considered statistically significant.

3. Results

3.1. Differential Gene Analysis. The basic clinical character-
istics of the reprocessed dataset are shown in Table 1. There
were 76 LGGs samples in reprocessed GSE4290 and 13
LGGs samples in reprocessed GSE12657. We performed
differential analysis on GSE4290 and GSE12657 to obtain
genes significantly associated with LGGs. 802 DEGs were
identified in GSE4290, and 541 DEGs were identified in
GSE12657, and both were visualized with volcano plots
(Figures 1(a) and 1(b)). The Venn diagram (Figure 1(c),
supplementary Table S1) showed that 18 DEIGs were
chosen from the overlap of GSE-4290, GSE-12657, and
immune genes. The flow chart of this study is shown in
Figure 2.

3.2. Functional Analysis of Immune-Related Genes. To
explore the potential link between gene expression and
immunity in DEGs, we performed GO and KEGG enrich-
ment pathway analyses, and a total of 80 genes were
included. GO analysis revealed significant increases in BP

Table 2: The correlation between immune infiltration and gene set
expression (GSVA) score.

Cell type Estimate FDR

CD8 naive 0.242601948 6.56307E-08

Cytotoxic -0.123955504 0.038948698

Tr1 -0.124189758 0.038948698

Th1 -0.273846784 4.228E-10

Th2 -0.279453379 1.6547E-10

Th17 0.183505459 0.000134952

Tfh -0.22634499 6.40253E-07

Central memory 0.234462786 2.10196E-07

Effector memory -0.21962321 1.53777E-06

DC -0.384131451 2.11922E-20

Monocyte -0.356591092 1.97859E-17

Macrophage -0.407711973 3.54139E-23

Infiltration score -0.425173149 2.22905E-25

DC dendritic cells, FDR false discovery rate.
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in G protein-coupled receptor signaling pathway, neuron
death, and in response to neuropeptide signaling pathway;
MF is mainly enriched in receptor ligand activity, neuropep-
tide hormone activity, and G protein-coupled receptor bind-
ing; CC is mainly enriched in genes regulating neuronal cell
body, axon terminus, and perikaryon (Figure 1(d)). KEGG
was mainly enriched in neuroactive ligand-receptor interac-
tions, natural killer (NK) cell mediated cytotoxicity, T cell
receptor signaling pathways, ErbB signaling pathways, and
human cytomegalovirus infection (Figure 1(e)).

Correlation analysis showed a negative correlation
between the expression of F2R, BMP2, and other genes.
There was a positive correlation between each of the remain-
ing genes (Figure 1(f)). The protein interaction network
showed that somatostatin (SST) protein was the most widely
connected protein (Figure 1(g)).

3.3. Development and Evaluation of IRSS. To explore the
possibility of immune genes as biomarkers for LGG prog-
nosis, we selected prognostic genes from the DEIGs for
further analysis. Subsequently, LASSO regression analysis
obtained 6 model genes. As shown in Figures 3(a) and
3(b), the model was the best fit with a penalty coefficient
of 6, and the corresponding six immune genes were

BMP2, F2R, FGF13, PCSK1, PRKCB, and PTGER3
(Figure 3(e)). LASSO regression analysis of the six immune
genes entered into the model yielded corresponding regres-
sion coefficients of -0.415, 0.142, -0.088, 0.068, -0.078, and
-0.036 for each gene. According to the above formula, IRSS
was finally established: IRSS = ð−0:415 × expressionBMP2Þ
+ ð0:142 × expressionF2RÞ + ð−0:088 × expressionFGF13Þ +
ð0:068 × expressionPCSK1Þ + ð−0:078 × expressionPRKCBÞ
+ ð−0:036 × expressionPTGER3Þ.

Following the above formula, we calculated a risk score
for each patient in the study cohort. The sample was then
divided into a high-risk group and a low-risk group
according to the median IRSS. The KM curve results
showed that the high-risk group had a worse prognosis
than the low-risk group (Figure 3(d), log − rank P <
0:001; HR = 2:80, 95%CI = 1:96 − 4:00). The ROC curve
was used to assess the accuracy of the developed predic-
tion model for OS in patients with LGGs. As shown in
Figure 3(e), the AUC values at 1, 3, and 5 years were
0.930, 0.797, and 0.728, respectively, which illustrated the
robustness and accuracy of the model in predicting the
prognosis of patients. There was no significant difference
in the expression of the PCSK1 gene between the two
groups (Figure 3(f)).

Table 3: Univariate or multivariate Cox regression analysis of clinicopathological features of LGGs associated with OS.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Diagnosis age 461

≧50 145 Reference

<50 316 0.320 (0.220-0.465) <0.001 0.407 (0.239-0.695) <0.001
Gender 422

Female 186 Reference

Male 236 1.134 (0.769-1.673) 0.525

Grade 422

II 199 Reference

III 223 3.323 (2.163-5.103) <0.001 2.567 (1.410-4.672) 0.002

IDH1 status 248

Mutant 189 Reference

Wild-type 59 4.927 (3.009-8.067) <0.001 2.465 (1.238-4.907) 0.010

IDH2 status 286

Wild-type 274 Reference

Mutant 12 1.121 (0.351-3.579) 0.847

Codel 1p/19q 285

False 200 Reference

True 85 1.249 (0.755-2.067) 0.386

TERT promoter status 284

Wild-type 156 Reference

Mutant 128 0.953 (0.586-1.551) 0.848

TP53 status 286

Mutant 146 Reference

Wild-type 140 0.818 (0.505-1.324) 0.414

IRSS 461 3.172 (2.559-3.932) <0.001 1.565 (1.052-2.329) 0.027

CI: confidence interval; IDH: isocitrate dehydrogenase; IRSS: immune risk score signature; TP53: tumor protein p53; TERT: telomerase reverse transcriptase.
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3.4. Immune Infiltration of Model Genes. Immune cell infil-
tration is a significant factor in the tumor microenviron-
ment. Based on GSVA scores, immune infiltration analysis
revealed significant negative correlations between model
gene set expression and multiple immune cells, including
mainly dendritic cells (DC), macrophages, helper T cell
(Th) 1, Th 2, and monocytes. In addition, a negative total

immune infiltration score indicated that this gene set was
linked to immunosuppression (Table 2).

3.5. Construction of a Nomogram Incorporating Clinical
Features. To determine the prognostic value of the estab-
lished IRSS, we performed univariate and multivariate
Cox regression analyses in combination with common
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curve. (c) Decision curve analysis to assess 3-year IRSS, IDH status, and nomogram net benefit. (d) The calibration curve for predicting
OS rate at 1, 3, and 5 years.

10 Computational and Mathematical Methods in Medicine



clinicopathological features. The risk score, tumor grade,
IDH status, and age were prognostic predictors in TCGA-
LGG patients, with the exception of telomerase reverse tran-
scriptase (TERT) promoter status, TP53 status, gender, and
1p/19q status. Besides that, the risk score was also an inde-
pendent predictor in the multivariate Cox regression analysis
(Table 3). The above results proved that the established IRSS
could serve as a reliable and novel prognostic biomarker.
Nomograms are widely utilized in the prognostic evaluation
of tumors, which quantify statistical prediction models as
estimates of event probability tailored to a single patient sit-
uation. Therefore, we built a nomogram prognostic assess-
ment map containing multiple clinicopathological features
and IRSS to individualize the prognosis of patients. The
score of each variable can be comprehensively calculated
to predict the prognosis of LGGs patients (Figure 4(a)).
Figure 4(b) presents the ROC curves at 1, 3, and 5 years
for the nomogram with AUC values of 0.933, 0.924, and
0.826, respectively. The calibration plot showed a better
diagonal fit (Figure 4(d)).

3.6. Model Evaluation. Glioma patients’ IDH status is a rec-
ognized indicator that can affect the prognosis of glioma
patients. We calculated the C-index to assess accuracy. The
C-indices of the nomogram, risk signature, IDH status, and
IDH + risk signature were 0.828 (0.803-0.853), 0.708

(0.666-0.750), 0.749 (0.719-0.779), and 0.759 (0.722-0.796),
respectively. In summary, the TCGA-LGG cohort had mod-
erate predictive power for IRSS, but lower than traditional
IDH status. Nomogram prediction accuracy, integrating
multiple pieces of information, was the most robust. Consis-
tent with the above results, the DCA plot (Figure 4(c)) also
demonstrated that the nomogram had better clinical appli-
cation value.

3.7. External Validation. Two CGGA cohort datasets with
similar tissues were employed to validate the general appli-
cability of IRSS. First, a risk score was calculated for each
patient in the CGGA cohort based on the IRSS formula that
had been obtained. Multivariate Cox regression analyses in
the test set confirmed that IRSS was also an independent
predictor (Figure 5). In addition, the samples were separated
into high- and low-risk groups according to the median IRSS
of each cohort.

The results of KM analysis confirmed that the low-risk
group had a significantly better prognosis than the high-
risk group in the four cohorts (Figures 6(a), 6(d), 6(g), and
6(j)), consistent with the results of TCGA-LGG. The areas
under the time-dependent ROC curves of the four cohorts
all showed good agreement between model’s predicted OS
and the actual OS (Figures 6(b), 6(e), 6(h), and 6(k)). The
C-index and DCA results showed that the prognostic
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Figure 5: Forest plot of multivariate Cox regression analysis in the training set. (a) CGGA (mRNAseq_325); (b) CGGA (mRNAseq_693).
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predictive ability of IRSS for LGG was superior to that of
IDH status (Figure 6(c), 0.705 vs. 0.630; Figure 6(f), 0.708
vs. 0.617; Figure 6(i), 0.711 vs. 0.655; Figure 6(l), 0.676 vs.
0.586). In summary, we found that IRSS had broad applica-
bility and could be used as a prognostic predictive biomarker
for LGGs.

4. Discussion

Glioma remains one of world’s deadliest brain malignancies,
and its prognosis varies widely [2]. Several studies have
found that the process of glioma development is closely
related to the immune inflammatory response [20, 21].
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Figure 6: Validation in the CGGA cohort included Kaplan-Meier curves, time-dependent ROC curves, and decision curves. (a–c) CGGA
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Meanwhile, glioma immunotherapy has been explored to
varying degrees in recent years [7]. Despite the increasing
number of biomarkers associated with the survival of glioma
patients with the development of high-throughput sequenc-
ing technology, the regulatory mechanisms of key genes in
the tumor immune microenvironment have not yet been
elucidated [5, 22–24]. Therefore, our goal is to establish
immune-related biomarkers to effectively predict the prog-
nosis of glioma.

In this study, we selected the TCGA-LGG database as
the training set for the feature analysis associated with tumor
immune genes. First, functional enrichment analysis of
DEGs showed that immune regulatory signaling pathways
were significantly enriched. Intercellular signaling is an
important basis for immune regulation. Tumor-induced
dysfunction of T and NK cells is a way for tumor cells to
evade detection and destruction by the immune system
[22, 25, 26]. The PPI network map constructed revealed that
the most adjacent nodes are SST. SST is a peptide hormone
involved in inhibiting cell proliferation and promoting apo-
ptosis by binding to specific cell surface SSTRs [27]. SST
peptides are thought to be key physiological regulators of
immune cell function [28, 29]. It has been shown that SSTs
are involved in T cell proliferation and thymocyte selection
[30]. Furthermore, immune infiltration indicated an associa-
tion with a partial immune cell reduction. Accumulating
evidence suggests that the loss of innate immune cells such
as DC, macrophages, and monocytes promotes the develop-
ment of a tumor immunosuppressive state as well as
immune escape. [22, 31]. Thus, the set of gene signatures
we identified was strongly associated with immune function.

In addition, we combined multiple clinical datasets to
establish a nomogram survival probability score. Results
from DCA and C-index showed that IRSS has good predic-
tive accuracy and clinical application with considerable
predictive accuracy. In glioma, IDH mutation is a good inde-
pendent prognostic marker [10]. Interestingly, IRSS was less
predictive than conventional IDH status in TCGA-LGG, but
the results were reversed in the four cohorts of CGGA. The
number of patients with IDH status differed significantly
between cohorts, which may account for the different results.
In any case, for the results of this study, the predictive prog-
nostic value of IRSS was comparable to that of IDH status.

Six key prognostic immune genes have complex biologi-
cal functions. Bone morphogenetic protein (BMP) is a mem-
ber of the transforming growth factor-β (TGF-β) family.
BMP ligands and receptors regulate multiple functions of
neural stem cells throughout neural development [32].
BMP2 induces differentiation and apoptosis in tumor cells
[32–34]. Fibroblast growth factor 13 (FGF13) is a member
of the FGF subfamily. Some studies have reported that
FGF13 regulates glioma cell invasion and bevacizumab-
induced glioma invasion [35]. Coagulation factor II throm-
bin receptor (F2R) is a ligand of thrombin, and thrombin
has an important role in tumorigenesis and development
[36]. Studies show that F2R can influence platelet mobiliza-
tion as well as epidermal growth factor receptor signaling
pathways to promote cancer progression [37]. Proprotein
convertase subtilisin/kexin type 1 (PCSK1) encodes propro-

tein convertase 1/3 involved in processing neuropeptide
precursors in the neuroendocrine system. However, several
PC1/3 knock-out mouse models have demonstrated that
neuropeptides such as enkephalin participate in immune
response regulation while modulating macrophage activity
[38]. Prostaglandin E2 (PGE2) is a major metabolite of
cyclooxygenase-2 (COX-2) in the tumor microenvironment,
which is an important mediator of immune regulation [39].
The protein encoded by prostaglandin E receptor 3
(PTGER3), EP3, is one of four receptors for PGE2, which
exerts multiple effects through G protein-coupled receptors
as well as downstream components of cell proliferation
pathways [36, 40]. Protein kinase C beta (PRKCB) is a mem-
ber of the serine and threonine-specific protein kinase fam-
ily. This protein kinase is involved in many different
cellular functions, such as B-cell activation, apoptosis induc-
tion, and regulation of neuronal function [41].

Potential biomarkers for predicting prognosis are now
widely used in glioma. Previous studies have focused on
different single prognostic genes, and therefore, the findings
are not robust and comprehensive. Several immune-related
gene signatures have been reported, which may imply that
the prognosis of gliomas is closely related to the degree of
immune infiltration [9, 12, 22]. However, most of the genetic
marker studies for the prognosis of LGGs patients lack exter-
nal large-scale model validation. Although we used a bioin-
formatics approach to identify immune prognosis-related
genes, this approach has limitations in clinical practice and
lacks corresponding functional experiments to validate our
characterization. All cohorts, although with the same mRNA
sequencing data, differed in their sequencing platforms.
Therefore, the model needs to be further validated in a large
sample of clinical studies with uniform criteria.

5. Conclusion

In summary, this study elaborated a prognostic evaluation
model related to immune genes. The IRSS has advantages
compared to previous signatures, but its limitations cannot
be ignored. These risk scores allow for a more accurate clas-
sification of LGGs patients at the molecular subtype level.
Furthermore, this knowledge has the potential to be trans-
lated into meaningful practice.

Abbreviations

AUC: Area under the curve
BP: Biological process
BMP2: Bone morphogenetic protein 2
C-index: Concordance index
CC: Cellular component
CGGA: Chinese Glioma Genome Atlas
CI: Confidence interval
COX-2: Cyclooxygenase-2
DC: Dendritic cells
DCA: Decision curve analysis
DEGs: Differentially expressed genes
DEIGs: Differentially expressed immune genes
F2R: Coagulation factor II receptor

15Computational and Mathematical Methods in Medicine



FC: Fold change
FDR: False discovery rate
FGF13: Fibroblast growth factor 13
GBM: Glioblastoma
GEO: Gene Expression Omnibus
GSCA: Gene Set Caner Analysis
GSVA: Gene set variation analysis
GO: Gene Ontology
IDH: Isocitrate dehydrogenase
ImmPort: Immunology Database and Analysis Portal
IRSS: Immune risk score signature
KEGG: Kyoto Encyclopedia of Genes and Genomes
KM: Kaplan-Meier
LASSO: Lead absolute shrinkage and selection operator
LGGs: Lower-grade gliomas
MGMT: Methylguanine methyltransferase
NK: Natural killer
OS: Overall survival
PCSK: Proprotein convertase subtilisin/kexin
ROC: Receiver-operating characteristic
PPI: Protein-protein interactions
PRKCB: Protein kinase C beta
PTGER3: Prostaglandin E receptor 3
SST: Somatostatin
TCGA: The Cancer Genome Atlas
TGF-β: Transforming growth factor-β
Th: Helper T cell
TP53: Tumor protein p53
TERT: Telomerase reverse transcriptase
WHO: World Health Organization.

Data Availability

The datasets supporting the conclusions of this article are
available in the public databases The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov/), the Chinese glioma
Genome Atlas (CGGA, http://www.cgga.org.cn/), the Gene
Set Caner Analysis (GSCA) (http://bioinfo.life.hust.edu.cn/
GSCA), and the Gene Expression Omnibus (GEO, https://
www.ncbi.nlm.nih.gov/geo/) with the accession numbers:
GSE4290 and GSE12657.

Ethical Approval

There was no need for ethical approval as all data in this
study were downloaded from public databases (TCGA and
CGGA), and the data processing met the publication
guidelines.

Conflicts of Interest

There is no conflict of interest to declare.

Authors’ Contributions

Yuxi Wu, Zesheng Peng, and Haofei Wang designed the
study. Yuxi Wu, Zesheng Peng, Sujie Gu, and Haofei Wang
conducted the data analysis. Yuxi Wu and Zesheng Peng

wrote the paper. Wei Xiang revised the paper. All authors
read and approved the final manuscript.

Supplementary Materials

Supplementary Table S1: Venn diagram data. (Supplementary
Materials)

References

[1] Q. T. Ostrom, H. Gittleman, G. Truitt, A. Boscia, C. Kruchko,
and J. S. Barnholtz-Sloan, “CBTRUS statistical report: primary
brain and other central nervous system tumors diagnosed in
the United States in 2011-2015,” Neuro-Oncology, vol. 20,
suppl_4, pp. iv1–iv86, 2018.

[2] P. Wesseling and D. Capper, “WHO 2016 classification of gli-
omas,” Neuropathology and Applied Neurobiology, vol. 44,
no. 2, pp. 139–150, 2018.

[3] A. E.Walker, M. Robins, and F. D.Weinfeld, “Epidemiology of
brain tumors: the national survey of intracranial neoplasms,”
Neurology, vol. 35, no. 2, pp. 219–226, 1985.

[4] J. C. DeWitt, A. Mock, and D. N. Louis, “The 2016 WHO clas-
sification of central nervous system tumors: what neurologists
need to know,” Current Opinion in Neurology, vol. 30, no. 6,
pp. 643–649, 2017.

[5] R. G. Verhaak, K. A. Hoadley, E. Purdom et al., “Integrated
genomic analysis identifies clinically relevant subtypes of glio-
blastoma characterized by abnormalities in PDGFRA, IDH1,
EGFR, and NF1,” Cancer Cell, vol. 17, no. 1, pp. 98–110, 2010.

[6] The Cancer Genome Atlas Research Network, “Comprehen-
sive, integrative genomic analysis of diffuse lower-grade glio-
mas,” The New England Journal of Medicine, vol. 372, no. 26,
pp. 2481–2498, 2015.

[7] M. Lim, Y. Xia, C. Bettegowda, and M. Weller, “Current state
of immunotherapy for glioblastoma,” Nature Reviews. Clinical
Oncology, vol. 15, no. 7, pp. 422–442, 2018.

[8] F. Pignatti, Y. Xia, C. Bettegowda, and M. Weller, “Prognostic
factors for survival in adult patients with cerebral low-grade
glioma,” Journal of Clinical Oncology, vol. 20, no. 8,
pp. 2076–2084, 2002.

[9] Z. Qian, Y. Li, X. Fan et al., “Prognostic value of a microRNA
signature as a novel biomarker in patients with lower-grade
gliomas,” Journal of Neuro-Oncology, vol. 137, no. 1,
pp. 127–137, 2018.

[10] X. Deng, D. Lin, B. Chen et al., “Development and validation of
an IDH1-associated immune prognostic signature for diffuse
lower-grade glioma,” Frontiers in Oncology, vol. 9, p. 1310,
2019.

[11] B. Liu, J. Liu, K. Liu et al., “A prognostic signature of five pseu-
dogenes for predicting lower-grade gliomas,” Biomedicine &
Pharmacotherapy, vol. 117, article 109116, 2019.

[12] W. Cheng, X. Ren, C. Zhang et al., “Bioinformatic profiling
identifies an immune-related risk signature for glioblastoma,”
Neurology, vol. 86, no. 24, pp. 2226–2234, 2016.

[13] C. Zhu, Q. Xia, B. Gu et al., “Esophageal cancer associated
immune genes as biomarkers for predicting outcome in upper
gastrointestinal tumors,” Frontiers in Genetics, vol. 12, article
707299, 2021.

[14] Z. Zhao, K. N. Zhang, Q. Wang et al., “Chinese Glioma
Genome Atlas (CGGA): a comprehensive resource with

16 Computational and Mathematical Methods in Medicine

https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
http://bioinfo.life.hust.edu.cn/GSCA
http://bioinfo.life.hust.edu.cn/GSCA
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://downloads.hindawi.com/journals/cmmm/2022/2558548.f1.pdf
https://downloads.hindawi.com/journals/cmmm/2022/2558548.f1.pdf


functional genomic data from Chinese glioma patients,”Geno-
mics, Proteomics & Bioinformatics, vol. 19, no. 1, pp. 1–12,
2021.

[15] S. Bhattacharya, S. Andorf, L. Gomes et al., “ImmPort: dissem-
inating data to the public for the future of immunology,”
Immunologic Research, vol. 58, no. 2-3, pp. 234–239, 2014.

[16] M. E. Ritchie, B. Phipson, D. I. Wu et al., “Limma powers
differential expression analyses for RNA-sequencing and
microarray studies,” Nucleic Acids Research, vol. 43, no. 7,
article e47, 2015.

[17] M. I. Love, W. Huber, and S. Anders, “Moderated estimation
of fold change and dispersion for RNA-seq data with DESeq2,”
Genome Biology, vol. 15, no. 12, p. 550, 2014.

[18] R. Alhamzawi and H. T. M. Ali, “The Bayesian adaptive lasso
regression,” Mathematical Biosciences, vol. 303, pp. 75–82,
2018.

[19] B. Van Calster, L. Wynants, J. F. Verbeek et al., “Reporting and
interpreting decision curve analysis: a guide for investigators,”
European Urology, vol. 74, no. 6, pp. 796–804, 2018.

[20] S. Zhong, B. Wu, Y. Han et al., “Identification of driver genes
and key pathways of pediatric brain tumors and comparison
of molecular pathogenesis based on pathologic types,” World
Neurosurgery, vol. 107, pp. 990–1000, 2017.

[21] E. Franceschi, A. Mura, G. Lamberti et al., “Concordance
between RTOG and EORTC prognostic criteria in low-grade
gliomas,” Future Oncology, vol. 15, no. 22, pp. 2595–2601,
2019.

[22] S. Han, C. Zhang, Q. Li et al., “Tumour-infiltrating CD4(+)
and CD8(+) lymphocytes as predictors of clinical outcome in
glioma,” British Journal of Cancer, vol. 110, no. 10, pp. 2560–
2568, 2014.

[23] L. Mu, C. Yang, Q. Gao et al., “CD4+ and perivascular Foxp3+
T cells in glioma correlate with angiogenesis and tumor pro-
gression,” Frontiers in Immunology, vol. 8, p. 1451, 2017.

[24] J. Liu, T. Lichtenberg, K. A. Hoadley et al., “An integrated
TCGA pan-cancer clinical data resource to drive high-quality
survival outcome analytics,” Cell, vol. 173, no. 2, pp. 400–
416.e11, 2018.

[25] N. V. Serão, K. R. Delfino, B. R. Southey, J. E. Beever, and S. L.
Rodriguez-Zas, “Cell cycle and aging, morphogenesis, and
response to stimuli genes are individualized biomarkers of
glioblastoma progression and survival,” BMC Medical Geno-
mics, vol. 4, no. 1, p. 49, 2011.

[26] K. Kataoka, Y. Nagata, A. Kitanaka et al., “Integrated molecu-
lar analysis of adult T cell leukemia/lymphoma,” Nature
Genetics, vol. 47, no. 11, pp. 1304–1315, 2015.

[27] L. Sun and D. H. Coy, “Somatostatin and its analogs,” Current
Drug Targets, vol. 17, no. 5, pp. 529–537, 2016.

[28] C. Pivonello, M. C. de Martino, M. Negri et al., “The GH-IGF-
SST system in hepatocellular carcinoma: biological and molec-
ular pathogenetic mechanisms and therapeutic targets,” Infect
Agents Cancer, vol. 9, no. 1, p. 27, 2014.

[29] A. Massa, F. Barbieri, C. Aiello et al., “The phosphotyrosine
phosphatase eta mediates somatostatin inhibition of glioma
proliferation via the dephosphorylation of ERK1/2,” Annals
of the New York Academy of Sciences, vol. 1030, pp. 264–274,
2004.

[30] S. Pech-Pool et al., “Thyrotropin-releasing hormone (TRH)
and somatostatin (SST), but not growth hormone-releasing
hormone (GHRH) nor ghrelin (GHRL), regulate expression
and release of immune growth hormone (GH) from chicken

bursal B-lymphocyte cultures,” International Journal of Molec-
ular Sciences, vol. 21, no. 4, 2020.

[31] D. C. Hinshaw and L. A. Shevde, “The tumor microenviron-
ment innately modulates cancer progression,” Cancer
Research, vol. 79, no. 18, pp. 4557–4566, 2019.

[32] N. Zhou, Q. Li, X. Lin et al., “BMP2 induces chondrogenic
differentiation, osteogenic differentiation and endochondral
ossification in stem cells,” Cell and Tissue Research,
vol. 366, no. 1, pp. 101–111, 2016.

[33] Y. H. Kim, W. G. Jang, S. H. Oh et al., “Fenofibrate induces
PPARα and BMP2 expression to stimulate osteoblast differen-
tiation,” Biochemical and Biophysical Research Communica-
tions, vol. 520, no. 2, pp. 459–465, 2019.

[34] K. Zhou, Z. Zhao, S. Li, Y. Liu, G. Li, and T. Jiang, “A new gli-
oma grading model based on histopathology and bone mor-
phogenetic protein 2 mRNA expression,” Scientific Reports,
vol. 10, no. 1, p. 18420, 2020.

[35] Y. Otani, T. Ichikawa, K. Kurozumi et al., “Fibroblast growth
factor 13 regulates glioma cell invasion and is important for
bevacizumab-induced glioma invasion,” Oncogene, vol. 37,
no. 6, pp. 777–786, 2018.

[36] Y. Tian, T. Yang, S. Yu, C. Liu, M. He, and C. Hu, “Prostaglan-
din E2 increases migration and proliferation of human glio-
blastoma cells by activating transient receptor potential
melastatin 7 channels,” Journal of Cellular andMolecular Med-
icine, vol. 22, no. 12, pp. 6327–6337, 2018.

[37] G. Gao, M. Yang, F. Wang et al., “Coagulation factor 2 throm-
bin receptor promotes malignancy in glioma under SOX2 reg-
ulation,” Aging (Albany NY), vol. 12, no. 11, pp. 10594–10613,
2020.

[38] C. L. Chou, T. J. Chen, C. Y. Lin et al., “PCSK1 overexpression
in rectal cancer correlates with poor response to preoperative
chemoradiotherapy and prognosis,” Oncotargets and Therapy,
vol. Volume 13, pp. 3141–3150, 2020.

[39] Y. Zhao, Y. Sun, H. Zhang et al., “HGF/MET signaling pro-
motes glioma growth via up-regulation of Cox-2 expression
and PGE2 production,” International Journal of Clinical and
Experimental Pathology, vol. 8, no. 4, pp. 3719–3726, 2015.

[40] C. Rodriguez-Aguayo, E. Bayraktar, C. Ivan et al., “PTGER3
induces ovary tumorigenesis and confers resistance to cisplatin
therapy through up-regulation Ras-MAPK/Erk-ETS1-ELK1/
CFTR1 axis,” eBioMedicine, vol. 40, pp. 290–304, 2019.

[41] S. Patergnani, S. Marchi, A. Rimessi et al., “PRKCB/protein
kinase C, beta and the mitochondrial axis as key regulators
of autophagy,” Autophagy, vol. 9, no. 9, pp. 1367–1385, 2013.

17Computational and Mathematical Methods in Medicine


	A Risk Score Signature Consisting of Six Immune Genes Predicts Overall Survival in Patients with Lower-Grade Gliomas
	1. Introduction
	2. Material and Methods
	2.1. Datasets
	2.2. Differential Expression Analysis
	2.3. Functional Analysis of DEGs
	2.4. Establishment of an Immune Risk Score Signature (IRSS)
	2.5. Immune Infiltration Analysis of Model Genes
	2.6. Construction of Nomogram Models
	2.7. External Cohort Validation
	2.8. Statistical Analysis

	3. Results
	3.1. Differential Gene Analysis
	3.2. Functional Analysis of Immune-Related Genes
	3.3. Development and Evaluation of IRSS
	3.4. Immune Infiltration of Model Genes
	3.5. Construction of a Nomogram Incorporating Clinical Features
	3.6. Model Evaluation
	3.7. External Validation

	4. Discussion
	5. Conclusion
	Abbreviations
	Data Availability
	Ethical Approval
	Conflicts of Interest
	Authors’ Contributions
	Supplementary Materials

