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Brain cancer is a rare and deadly disease with a slim chance of survival. One of the most important tasks for neurologists and
radiologists is to detect brain tumors early. Recent claims have been made that computer-aided diagnosis-based systems can
diagnose brain tumors by employing magnetic resonance imaging (MRI) as a supporting technology. We propose transfer
learning approaches for a deep learning model to detect malignant tumors, such as glioblastoma, using MRI scans in this
study. This paper presents a deep learning-based approach for brain tumor identification and classification using the state-of-
the-art object detection framework YOLO (You Only Look Once). The YOLOv5 is a novel object detection deep learning
technique that requires limited computational architecture than its competing models. The study used the Brats 2021 dataset
from the RSNA-MICCAI brain tumor radio genomic classification. The dataset has images annotated from RSNA-MICCAI
brain tumor radio genomic competition dataset using the make sense an AI online tool for labeling dataset. The preprocessed
data is then divided into testing and training for the model. The YOLOv5 model provides a precision of 88 percent. Finally,
our model is tested across the whole dataset, and it is concluded that it is able to detect brain tumors successfully.

1. Introduction

A brain tumor is a clump of uneven cells that forms a mass.
Growth in this area might lead to cancerous consequences.
As benign or malignant tumors develop, the pressure inside
the skull will increase. Long-term brain damage and maybe
death will happen as a result of this damage [1]. In India,
this type of tumor affects 5 to 10 persons per 100,000 and
is on the rise [2]. Considering children’s brain and central
nervous system, tumors are the second most common
malignancy in children, accounting for around 26 percent
of all malignancies.

Various advancements in the field of computer-aided
diagnosis of brain tumors have been developed during the
previous decade. These approaches are always available to
assist radiologists who are unsure about the type of tumor

they are looking at or wish to investigate further. To identify
tumors, doctors utilize MRI (magnetic resonance imaging)
and CT-scan (computed tomography). MRI is the most pre-
ferred technique, and hence, researchers have concentrated
their efforts on MRI. A critical stage in the diagnosis of a
brain tumor is segmentation. To focus on this problem,
researchers are using deep learning techniques [3, 4].

Machine learning is a branch of deep learning. It
employs an artificial neural network to handle difficult prob-
lems containing large volumes of information. An artificial
neural network is a network that functions similarly to the
brain. The word “deep” in deep learning is defined as a net-
work with several layers. Every neuron symbolizes a func-
tion, and each link does have a certain bit of weight. The
backpropagation algorithm is employed by the network by
adjusting the weights. With increasing precision on
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complicated datasets, deep learning has changed the area of
computer vision [4]. Image analysis uses a type of network
called a convolutional network, which takes images as input
and uses a kernel to convolve them into a picture map [5].
Deep learning models have a lot of benefits in medical imag-
ing, including identifying critical components, pattern rec-
ognition in cell parts, feature extraction, and better
outcomes for fewer datasets [6]. Transfer learning is a deep
learning method in which the network’s parameters (weights
and biases) are taken from another network trained on a dif-
ferent dataset. The new network may now be trained using
the transferred parameters as initialization (a process known
as fine-tuning), or additional layers on top of the network
can be formed and just those layers trained on the dataset
of interest.

Using pretrained features on data is a common approach
for neural network models [4, 7]. The network can now be
developed using imported attributes as an initial process (a
process known as fine-tuning), or additional layers can be
placed on top of the network, with just the new layers being
learned on the data of importance. Transfer learning has a
number of benefits, including speeding up the data collecting
process and improving generalization. It cuts down on the
time it takes to train a huge dataset. In this study, we have
applied YOLOv5’s different variant algorithm on Brats
2020 annotated dataset to detect brain tumor location.

We used YOLO V5 to create our object detection model.
The Darknet framework is utilized to maintain this model,
and it provides a single network that can be used for both
item categorization and prediction using bounding boxes.
YOLO V5 is architecturally identical to YOLO V4, with
the exception that it is built-in Python. Version 5 of YOLO
is now significantly quicker and lighter. We utilized the
YOLO V5 model, which was trained with the COCO dataset
as a benchmark. Our unique annotated MRI pictures were
used to train this model efficiently. YOLO is a single convo-
lutional neural network, unlike other neural network-based
frameworks for object identification [8, 9]. It has two fully
connected layers for bounding box prediction and 24 convo-
lutional layers for extracting information from pictures. The
Darknet framework is used to build this network [10].

We have used all variations of the YOLOv5 model for
brain tumor detection. The accuracy for YOLOv5s,
YOLOv5n, YOLOv5m, YOLOv5l, and YOLOv5x models is
87%, 85.2%, 89%, 90.2%, and 91.2%, respectively. Lower
training time, higher accuracy, and precision validate that
the YOLOv5 detection model is suitable for brain tumor
detection. As we have seen, there are a variety of approaches
utilized in medical imaging, particularly MRI pictures of
brain tumors. The algorithms for classification, segmenta-
tion, and detection were applied, but each has its own set
of limitations [11, 12].

For this study, we have used a dataset from competition
RSNA-MICCAI brain tumor radiogenic classification com-
petition from Kaggle [13, 14]. The competition includes
the Brats 21 dataset with a sample shown in Figure 1. The
Center for Biomedical Image Computing and Analytics
every year provides challenges for the researcher in terms
of brain tumor analysis. The data evolves every year with

improvements. The challenge has been conducted since
2013. Brats 2014-17 had a similar type of data but was dis-
carded since it had both pre- and postoperative scans. Since
2017, the current edition of the dataset has included glioma
that has been annotated by experts in order to improve the
training of our model. The dataset consists of MRI images
with dimensions of 240×240. The dataset consisted of
images of a brain tumor in 3 types of magnetic resonance
imaging scans: T1 image, T2 image, and FLAIR image.

2. Related Work

For the diagnosis of brain tumors, many deep learning
models have been used, although object detection methods
have only been used in a limited number of studies, e.g., Per-
eira and co-authors employed the 3D Unet model, a new
deep learning model that aids in the classification of tumors
according to their severity. It has considered two areas of
interest, the first of which is the whole brain, and the second
of which is the malignancies zone of interest [1, 15].

Neelum et al. have had a lot of success with their prob-
lem analysis since they employ pretrained models such as
DesNet and Inception-v3. Concatenation of features has
greatly aided the model’s improvement [16]. Mohammad
et al. used a small dataset of 2D images to test several
machine learning algorithms such as decision trees, support
vector machines, convolutional neural networks, and deep
learning models such as VGG 16, ResNet, and Inception.
VGG19 was the most successful model, with an F1 scope
of 97.8 percent on top of the CNN framework. The author
mentioned that there is a trade-off between model perfor-
mance and temporal complexity. The ML approaches are
simpler to use, whereas the DL methods are more efficient.
The author also highlighted the need for a benchmark data-
set. For tumor analysis automation, they used the algorithms
FastAi and YOLOv5. However, YOLOv5 only achieves an
accuracy of 85 percent. To compensate for the short dataset,
they have not used any transfer learning techniques [17].

For minor health-care institutions [18], detailed research
[19] on brain tumor analysis has been offered. The author
conducted a poll that identified a number of issues with
the methodology. They have also offered some suggestions
for improving medical techniques. For bone identification,
Al-masni et al. employed the YOLO model. As can be seen,
the YOLO approach can produce significantly better results
in medical imaging [20, 21].

Yale et al. [22] used the YOLO network to identify mel-
anoma skin illness. Despite the fact that the test was run on a
smaller dataset, the results were encouraging. The Darknet
framework improves the speed of feature extraction. A better
grasp of how YOLO works is still required. Kang et al. [23]
suggested a hybrid model using deep features and machine
learning classifiers along with the combination of several
deep learning approaches with classifiers such as SVM,
RBF, KNN, and others [24]. The ensemble feature has aided
in the modeling of improved performance. However, the
author claims that the proposed model is unsuitable for
real-time medical diagnosis.
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From 2015 to 2019, Muhammad et al. [17, 25] investigated
several deep learning and transfer learning strategies. The
author has outlined problems that must be overcome before
any techniques to be used in the real world. While imple-
menting models, researchers should pay attention to addi-
tional parameters in addition to accuracy. Some of the issues
raised include the need for end-to-end deep learning models,
improved run time, lower computing costs, and flexibility.
The authors proposed contemporary technologies like edge
computing, fog computing and cloud computing [26–28],
federated learning, the GAN method, and IoT [7] as prob-
lem-solving technologies. As we have seen, there are a variety
of approaches utilized in medical imaging, particularly on
MRI pictures of brain tumors. The algorithms for classifica-
tion, segmentation, and detection were applied, but each has
its own set of limitations [11, 12].

3. Methodology

3.1. Dataset. For this study, we have used a dataset from
competition RSNA-MICCAI brain tumor radiogenic classifica-
tion competition from Kaggle [13, 14]. The competition
includes the Brats 21 dataset with a sample as shown in
Figure 1. The Center for Biomedical Image Computing and
Analytics every year provides challenges for the researchers in
terms of brain tumor analysis [29]. The data evolves every year
with improvements. The challenge has been conducted since
2013. Brats 2014-17 had a similar type of data but was dis-
carded since it had both pre- and postoperative scans. Since
2017, the current edition of the dataset has included glioma
that has been annotated by experts in order to improve the
training of our model. The dataset consists of MRI images with
dimensions of 240×240. The dataset consisted of images of a
brain tumor in 3 types of magnetic resonance imaging scans:

(i) T1 image. In these MRI scans, the fat tissue is
brighter. The subcutaneous fat is brighter which is
present in the bone marrow of the vertebral bodies.
The cerebrospinal fluid is not highlighted as it will
appear black in the scans [30]

(ii) T2 image. This scan is opposite to that of T1 as we
can see cerebrospinal fluid brightly, and the bone
cortex is black in the T1 scan

(iii) FLAIR. It is known as fluid attenuated inversion
recovery. Technically, FLAIR images help in reduc-
ing the vision of fluid content so we can directly
analyze the tumor

The dataset is divided into dcim images based on scan
types and axial positions, such as sagittal, which is the verti-
cal plane perpendicular to the median plane; coronal, which
is perpendicular to both sagittal and coronal planes; and
axial, which is perpendicular to both sagittal and coronal
planes.

Brats 21 dataset also contains the mgmt value which
is an enzyme in a tumor known as methylguanine meth-
lytransferase. The mgmt value is indirectly proportional to
the chemotherapy effect on patients. So, Brats 21 also
provides the data about the mgmt value [31]. For brain
tumor detection, we need images with exact positions
for that we need to define parameters [32]. For YOLOv5
training, we clone the YOLOv5 repository which contains
the YOLOv5 model for training and trained weights from
the cocoa model. The YOLOv5 repository also contains
the hyperparameters setting for the training of the
model [33].

3.2. YOLOv5. The YOLOv5 model requires image input.
This image needs to be preprocessed before training the
model. The images taken by the model are of dimension
512. The deep learning model requires more images to
train and hence has bigger dataset, and we have taken
800 images dataset. Image scaling is done on the images
for better magnification of the image and detection of
the tumor. The data is labeled using the makesense.ai
website, which saves the labels as well as the bounding
box enclosing the tumor, as well as the annotation coor-
dinates. The labels and images are divided into test and
train with the coordinates of the four vertices of the rect-
angular box.

The YOLOv5 model has certain advantages in its model

(i) The model’s benefits include precise object recogni-
tion and tumor location, as well as high speed and
detection accuracy

(ii) The model is capable of detecting tiny tumor objects
in photos that are noisy, hazy, or cloudy

Flair
...IMAGE ID = 00376 ⁎⁎MGMT = 0⁎⁎ ... (SHOWING SLICE/SCAN 83)

t1 t1ce t2 seg

Figure 1: Brats21 dataset.
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The YOLOv5 is divided into three parts: backbone;
neck; and prediction. The backbone of the YOLOv5 archi-
tecture is the Bottleneck Cross Stage Partial Darknet
(BCSPD). The input images are fed to the backbone. For
convolutional operations, the FOCUS module splits the
input picture into four little ones and then concatenates
them together. The 640×640×3 pixel picture is reduced
into four smaller 320×320×3 pixel images, which are then
concatenated into a 320×320×12 pixel feature map. Once
32 convolutional kernels are used, the result is a
320×320×32 feature map [34–36]. The model’s CoBL
module is a basic convolutional module that embodies
the Conv2D+batch normalization (BN)+Leaky relu acti-
vation function. It eliminates the duplication of gradient
information in CNN’s optimization process and incorpo-
rates gradient changes into the feature map, decreasing
input parameters and model size [37]. Two CoBL modules
make up the BCSP: one residual unit and two 11 Conv2D
kernels. The two CoBL modules and an adder are con-
tained in a residual unit, and the adder adds the features
of the previous CoBL module output and the features of
two CoBL modules and then sends the local features to
one 11 Conv2D layers. By modifying the width (w) and
depth (d) of the BCSP module, the four models with var-
ied input parameters, YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x, may be obtained. In addition, the SPP
module in the backbone interfaces with the BCSP module.
The SPP module expands the network’s receptive field and
adds features of various scales. Second, YOLOv5 adds path
aggregation network (PANet) in the neck area to improve
information flow. The PANet is built on a feature pyramid
network (FPN) topology, which transmits strong semantic
characteristics from top to bottom. FPN layers also express
significant positional characteristics from the bottom to
the top. PANet also increases the transmission of low-
level characteristics and the use of precise localization sig-
nals in the bottom layers. As a result, this improves the
target object’s position accuracy [38].

The prediction layer is also called the detection or
YOLO layer, generating three different feature maps to
attain multiscale prediction. However, the model can clas-
sify and detect small, medium, and large objects in the
prediction layer.

The following is a synopsis of the YOLOv5 prediction
process:

(i) Phase 1. The backbone is fed with the photos at a
resolution of 640 by 640 pixels at first. The FOCUS
module slices the photos after that. The feature map
is sent to the second concatenation layer after per-
forming numerous convolutional operations and
two BCSP1 operations. The feature map, on the
other hand, is sent to the second concatenation
layer after being run once by BCSP1, twice by
BCSP2, twice by convolutions, and twice by upsam-
pling. Both of them are combined in the second
concatenation layer. The 80×80 sized feature map
with scale 1 is created after the BCSP2 layers and
11 convolution operations are applied

(ii) Phase 2. The 80×80 dimension feature map from
phase 1 is filtered by one 33 percent convolutional
kernel in the second step and sent to the third
fusion layer. In addition, one 11 convolutional ker-
nel executes the extracted features before the second
upsampling and delivers it to the third concatena-
tion layer. The final concatenation layer then joins
the two together. The 40×40 scaled feature map as
scale 2 is achieved after completing the BCSP2 layer
and one 1×1 convolution operation

(iii) Phase 3. In the third phase, the convolutional kernel
processes the 40×40 sized feature map from phase 2
and sends it to the fourth concatenation layer. Fur-
thermore, one 11 convolutional kernel executes the
feature map before the first upsampling and sends
it to the fourth concatenation layer. Both of them
are concatenated at the fourth concatenation layer.
The 20×20 sized feature map as scale 3 is then cre-
ated using the BCSP2 layer and the 11 convolution
procedure

(iv) Phase 4. Finally, the feature maps of various sizes in
scales 1 to 3 (i.e., 80×80, 40×40, and 20×20) are
enhanced for recognizing tumor objects of various
sizes using regression bounding boxes (BB). As a
result, each feature map is predicted to have three
regression bounding boxes at each position, result-
ing in three (80×80, 40×40, 20×20) =25200 regres-
sion bounding boxes. Finally, as a final tumor
detection outcome, the model’s anticipated output
with BB is displayed

The MSCOCO dataset has 80 preset object classes, and
the YOLOv5 model was trained on it. The anticipated out-
put tensor (POT) dimensions are 3 ð5 + 80Þ = 255 where
“3” signifies each grid cell prediction’s three bounding boxes
(BB), “5” specifies each prediction box’s coordinates (xo, yo,
w, and h) and confidence score (CS), and “80” denotes the
predetermined item class (CL). As a result, we will need to
tweak the YOLOv5 model’s classifier. As a result of Equation
(2), the projected output tensor (POT) dimension in our sit-
uation is 3 ð5 + 2Þ = 21 [39].

For training our model, we have used the Google Colab
environment. Once the dataset is preprocessed, we feed the
training data to the pretrained model along with its hyper-
parameters provided by the YOLOv5 researchers for better
results. In this research, we have used all the YOLOv5 vari-
ations which are available to get an in-depth analysis of the
YOLOv5 model.

4. Evaluation Metrics

True positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN) are four important outcomes used
to assess the efficacy of the proposed brain tumor classifica-
tion and detection system. The performance of the proposed
system is calculated using the following metrics: Accuracy
determines the ability to correctly discriminate between dif-
ferent types of brain tumors [40]. The proportion of true
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positive and true negative occurrences in all studied cases is
computed using the formula below to establish a test’s
accuracy.

A true positive (TP) is when the model predicts the pos-
itive class properly. A true negative (TN), on the other hand,
is a result in which the model properly predicts the negative

Dataset (Transfer
learning)

Yolov5

BACKBONE
(CSPDARKNET)

Fine tuning with parameters

Model training and validation

Fine tuned Yolov5 model
(With modified features)

Tumor detected
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Brain tumour dataset

Test

Figure 2: Fine-tuned YOLOv5 model.
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Figure 3: YOLOv5 model.

5Computational and Mathematical Methods in Medicine



class. A false positive (FP) occurs when the model forecasts
the positive class inaccurately. A false negative (FN) is an
outcome in which the model forecasts the negative class
inaccurately. Equation (1) has formula for accuracy, Equa-
tion (2) shows for precision, and Equation (3) represents
recall. F1 formula as shown in Equation (4) is derived from
precision and recall:

Accuracy =
TP + TN

TP + TN + FP + FN
, ð1Þ

Precision =
TP

TP + FP
, ð2Þ

Recall =
TP

TP + FN
, ð3Þ

F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

=
2 ∗ TP

2 ∗ TP + FP + FN
: ð4Þ

5. Proposed Model

We will be using the state-of-the-art model YOLOv5, as pre-
viously stated. COCO (Microsoft Common Objects in Con-
text) dataset provided the pretrained weights. This
parameter is used for fine tweaking. The BRat 2020 dataset
is used to train the model. Patients’ 3D scans are used to
input the model. We use the test picture to obtain informa-
tion about the tumor once the model has been trained. Using
pretrained parameters on a dataset is a common approach in
deep learning models [15]. The new network can now be
trained using the transferred parameters as initialization (a
process known as fine-tuning as shown in Figure 2), or addi-
tional layers can be built on top of the network, with only the
new layers being trained on the dataset of interest. Transfer
learning has a number of advantages, including speeding up

the data collection process and improving generalization. In
Figure 3, we can see we have input the preprocessed dataset
along with pretrained weights and hyperparameter. The data
is evaluated according to the model with various operations
performed in the head, neck, and prediction phase of the
YOLOv5 model. It cuts down on the time it takes to train
a huge dataset.

Before we train the model with the YOLO model, we
need to do some preprocessing. The tumor must be desig-
nated with a box region. This may be accomplished by utiliz-
ing a tool that produces a bounding box around the image’s
item of interest. We can utilize the NVIDIA transfer
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Figure 4: Accuracy curves for YOLOv5s, YOLOv5m, and YOLOv5l.

Table 1: YOLOv5 implementation analysis.

Model Weight mAP

Faster R-CNN [42] 200 mb 77.60

YOLOv4-tiny 33.2 mb 88.98

YOLOv5s 17 mb 87

YOLOv5n 12 mb 85.2

YOLOv5m 41 mb 89

YOLOv5l 90 mb 90.2

YOLOv5x 168 mb 91.2

Table 2: YOLOv5 comparison analysis.

Model Weight Precision
Times required

(minutes)
Recall mAP

YOLOv5s 17 mb 82.9 82.9 83 87

YOLOv5n 12 mb 81.5 81.5 82 85.2

YOLOv5m 41 mb 85.2 85.2 87.4 89

YOLOv5l 90 mb 88.2 88.2 86.2 90.2

YOLOv5x 168mb 89.1 190.1 9 91.2

6 Computational and Mathematical Methods in Medicine



learning toolbox for transfer learning, and we can feed the
COCO dataset because it supports the YOLO architecture.
This fine-tunes our model and compensates for missing or
unlabeled data. Following that, we can use our model to
train our Brats dataset. Google Colab, which provides
100GB of storage, 12GB of RAM, and GPU support, was
used for development. The creators of YOLOv5 have made
their training results accessible on the COCO dataset, which
we may download and utilize for our own model. We need a
labeled dataset for training to apply the YOLOv5 method to
our model, which is available in the Brats dataset.

We will freeze several layers and put our own layer on
top of the YOLO model for better results on the Brats data-
set since we need to train it for better results on the Brats
dataset. We will utilize the YOLOv5n model since we require
a model that takes up less space. On the COCO dataset [13,
41], the YOLOv5 model gives us a mean average accuracy
score of 72.4 and a speed of 3136ms, as stated in the official
repository. The key benefit of this model is that it is smaller
and easier to produce than the prior YOLO model, and it is
88 percent smaller. At 140 frames per second, this model can
process pictures. COCO (Microsoft Common Objects in
Context) dataset provided the pretrained weights. This
parameter is used for fine tweaking. The Brats 2020 dataset
was used to train the model. We will use the YOLOv5 nano
model in this case since it has a smaller architecture than the
other models, and our major concern is model size. In com-
parison to the other models, the YOLO model has a signifi-
cantly smaller 1.9M params. To be able to do brain scans,
our model requires a specific setup. We do different treat-
ments on the data, ranging from scaling to masking, because
the scanned data of Brats is complicated.

Because the image data is saved in different formats with
various types of scans such as FLAIR, T1, and T2, it is criti-
cal to handle the dataset according to our model’s familiar-
ity. Patients’ scans are input into the model. We utilize the
dice score, jaccard score, and map value to evaluate the out-
puts of our model, but our primary focus is on the model’s

speed in order to improve its usefulness. The dataset has
already been partitioned for training and testing purposes.
There are around 360 patient scans for training and 122
patient scans for testing in our dataset. We may test the net-
work using the YOLOv5 models’ yml file for our specific
setup. The classification has been set to three because we
only have three classes. Our parameters in the backbone or
head of our model must also be supplied to multiple convo-
lution layers. The test picture dataset is fed to the models
once the model has been trained. When compared to seg-
mentation models, the predicted output of the proposed
model must be close to a dice score of 0.85. In comparison
to the previous models, this model uses less storage and pro-
cesses the Brats dataset faster.

6. Experimental Results and Discussions

We have trained our model for different YOLOv5 variations.
The YOLOv5 version includes YOLOv5s, YOLOv5n, and
YOLOv5m. As we have trained from 0-50 epochs, this needs
to be implemented according to lesser epoch data to check if
our model is able to adapt according to lesser time require-
ment. Figure 4 shows the accuracy curves for YOLOv5s,
YOLOv5m, and YOLOv5l, using the final picture dataset.
The accuracy rate is initially quite low in all models, as
shown in Figure 4, but it increases when the epochs are
increased. Furthermore, the precision rate of the YOLOv5s
model is from 75 to 85 percent, while the rates of the
YOLOv5m and YOLOv5l models range from 78 to 89 per-
cent and 83 to 95 percent, respectively. As a consequence,
the YOLOv5l model outperforms the other two models in
terms of benign and malignant tumor classification and pre-
diction. Recall, on the other hand, refers to a model’s capac-
ity to recognize all relevant tumor classifications. It is also
worth noting that as the number of epochs grows, so does
the recall rate. Furthermore, the YOLOv5s model has a recall
rate ranging from 80 percent to 90 percent, while the
YOLOv5m model has a rate ranging from 85 to 95 percent,
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Figure 5: Brain tumor detection using proposed model.

7Computational and Mathematical Methods in Medicine



and the YOLOv5l model has a rate ranging from 88 to 98
percent. As a result, the YOLOv5l model outperforms the
other two models in terms of target tumor categorization
and prediction. In addition, for all models, the mean average
precision (mAP) is calculated. The mAP of the YOLOv5l
model is higher than that of the YOLOv5m and YOLOv5s
models, as can be shown in Table 1.

6.1. Performance. The impact of input dimensions on overall
performance is shown in Table 1. The YOLOv5x variant
generated the greatest mAP of 91.2% from the estimated
findings from the test dataset. YOLOv5l came in second with
90.2%. Surprisingly, the YOLOv5n model did not improve
on the YOLOv5s model. YOLOv5x had the greatest mAP,
the accuracy of 89.1%, and RE of 90.4% in terms of total per-
formance. With 85.2%, YOLOv5n had the lower mAP.
However, as precision and complexity improve, the time
required rises. The YOLOv5s model, which takes roughly
40 minutes to train for 50 epochs, requires the least amount
of time. We examine different detection algorithms used for
brain tumor analysis in Table 2. Faster R-CNN, as shown in
Table 2, has worse accuracy than the other models, despite
having greater weight and training time. YOLOv4 has a good
accuracy score; however, it gives somewhat more weight to
smaller models than YOLOv5. YOLOv5m produces the
most consistent output with the best weight-to-accuracy
ratio. After training our model, we are able to detect a tumor
on any input image as shown in Figure 5.

7. Conclusion

In the proposed study, we have applied YOLOv5’s different
variant algorithm on Brats 2020 annotated dataset to detect
brain tumor location. We were able to achieve 82-92 percent
accuracy for the YOLO variant in which the YOLOv5l
model provides us with the best accuracy than YOLOv5n
and YOLOv5s. It was observed that the object detection
model on brain tumor analysis gives slightly lesser accuracy
than the classification and segmentation model. But we have
also observed a substantial decrease in the training time and
size of the model. We have also observed that while using the
object detection model, there is a trade-off between the accu-
racy of our model with a combination of training time and
model complexity. We have observed that in the YOLO
model, the increase in complexity largely affects the training
time, but there is an increase of about 5-6 percent in
accuracy.

8. Future Scope

In the future, the accuracy of YOLOv5 smaller version
models can be increased with further experimentation, and
some additional research can be performed to decrease the
trade-off between the accuracy and complexity of the model.
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