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Background. Hypoxia was considered to be a prognostic indicator in a variety of solid tumors. This study aims at identifying the
hypoxia-related genes (HRGs) in breast cancer (BC) and the feasibility of HRGs as a prognostic indicator. Methods. We
downloaded the mRNA expression data of BC patients from TCGA and GEO databases. The LASSO Cox regression analysis
was applied to screen the hub HRGs to establish a prognostic Risk Score. The independence of Risk Score was assessed by
multivariate Cox regression analysis. And the immune checkpoint analysis was also performed. In addition, we also detected
the expression level of hub HRGs in MCF-10A cells, MCE-7 cells, and SK-BR-3 cells by RT-qPCR. Results. Three HRGs were
identified as hub genes with prognostic value in BC, including CA9, PGK1, and SDCI. The Risk Score constructed by these
three genes could efficiently distinguish the prognosis of different BC patients and has been shown to be an independent
prognostic indicator. In the high-risk group, patients had lower overall survival and poorer prognosis. In addition, the
expression levels of five immune checkpoints (PD1, CTLA4, TIGIT, LAG3, and TIM3) in the high-risk group were
significantly higher than those in the low-risk group. Moreover, the expression levels of PGK1 and SDCI1 in BC cells were
significantly increased. Conclusion. In this study, we established an efficiently model based on three optimal HRGs (CA9,
PGKI1, and SDC1) could clearly distinguish the prognosis of different BC patients.

1. Introduction

Breast cancer (BC) is one of most common malignancy in
women, resulting in a severe decline in women’s quality of life
[1]. Among the malignant diseases, BC accounts for 23% of all
cancer deaths, seriously threatening women’s health [2].
Modern treatment for BC is multimodal, including surgery,
radiation, and drug therapy; moreover, it has also been dem-
onstrated that patients with early BC, locally advanced

disease, and locoregional relapse could be cured [3]. Despite
of advances in diagnosis and treatment of BC, approximately
12% of BC patients eventually developed tumor metastatic,
and the 5-year survival rate was only 26% [4]. Therefore, iden-
tification of effective prognostic biomarkers contributes to
developing personalized therapy and extending the scope of
treatment for BC.

Tissue hypoxia was one of the pathological characteristics
of malignant solid tumors, leading to tumor progression and
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refractory treatment [5]. Moreover, hypoxia could directly
(through inhibiting T cell proliferation and producing effec-
tor cytokines) or indirectly (by metabolic competition, upreg-
ulating coinhibitory receptors, or recruiting/transforming
immunosuppressed cell populations) induce immunosup-
pression [6, 7]. In human cancers, tumor hypoxia was consid-
ered to be an indicator of poor prognosis, which could reduce
the efficacy of surgical resection, radiotherapy, and chemo-
therapy [8, 9]. Recently, hypoxia-related genes (HRGs) have
been considered as valuable biomarkers for the prognosis or
curative effect in tumors. For instance, Yang et al. established
a HRG signature with strong prognostic value for patients
with prostate cancer [10]. Dao et al. identified and validated
a reliable hypoxia-related survival score in IDH-mutant gli-
oma stem cells based on five HRGs (LYVE1, FAM162A,
WNT6, OTP, and PLOD), which was significantly related to
the survival of patients with glioma [11]. Cai et al. constructed
and validated a prognostic model for hepatocellular carci-
noma (HCC) composed of three hypoxia genes (ENOI,
UGP2, and TPI1), which was shown to be effective for the
prognosis of HCC patients [12]. Although previous study
indicated that downregulated hypoxia transcriptome in vitro
was closely related to the depressed prognosis in BC [13],
the prognostic values of HRGs in BC was still unclear and
attract us to further study on it.

In the present study, we established a Risk Score for BC
patients’ prognosis based on three optimal HRGs (CA9,
PGK1, and SDC1). Moreover, this predictive model could
predict the prognosis of BC patients and should provide
novel clues for prognostic stratification.

2. Materials and Methods

2.1. Data Collection. The clinical information and mRNA
profile data of 1092 BC patients were obtained from TCGA
database (https://tcga-data.nci.nih.gov/tcga/). We eliminated
10 inappropriate samples, and the remaining 1082 samples
were randomly divided into two groups: training set
(N =541) and testing set (N = 541). The clinical information
of BC patients in the two groups was provided in Table 1. In
addition, we also obtained two mRNA expression profiles
(GSE42568 and GSE48391) and corresponding clinical
information from the GEO database (https://www.ncbi.nlm
.nih.gov/geo/), which were combined as the verification set
to determine the accuracy of the predictive model. These
two GEO datasets included 186 BC patients totally, and all
the data were detected by using the Afymetrix Human
Genome U133 Plus 2.0 Array.

2.2. Screening of HRGs. In this study, a total of 26 HRGs
were taken into consideration. These genes were derived
from previous studies, and most of them have been proven
to play a key role in the prognosis of a variety of cancers,
including esophageal cancer, laryngeal cancer, and HCC
[14-16]. The information of the 26 HRGs was provided in
Table SI.

2.3. Consensus Clustering Analysis. Based on the mRNA
expression values of the 26 HRGs, the samples were
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clustered by the “ConsensusClusterPlus” package of the R
software [17].

2.4. The Establishment of Risk Score Model. Based on the
expression values of 26 HRG, BC samples were analyzed
by univariate Cox regression, and the genes were screened
which significantly associated with the prognosis of BC
(P <0.05). The candidate genes associated with prognosis
were further screen via LASSO Cox regression analysis,
and finally hub genes were obtained [18]. The Risk Score
was constructed based on hub HRGs as follows:

Risk Score = ZCoefi*X,-. (1)

i=1

In this formula, Coef; (risk coefficient of each HRG) was
calculated by LASSO Cox regression analysis, and X; repre-
sented the expression level of each HRG. The optimal cutoft
value of the Risk Score was determined by the survival pack-
age and survminer package of R software using the bilateral
log-rank test. Then, all BC samples were divided into the
following two groups based on the optimal cutoff value:
the high-risk group and low-risk group.

2.5. Survival Analysis. The Kaplan-Meier method was used
to evaluate the overall survival (OS) probability of all groups
by the survival and survminer packages of R software, and
the subsequent significance was determined via log-rank
test. The survival ROC package of R software was used to
plot the time-dependent receiver operator characteristic
(ROC) curve [19].

2.6. Proportion of Infiltrating Immune Cells. The CIBER-
SORT was a widely used method to assess the composition
of immune cells in tumor microenvironment [20]. In our
study, the CIBERSORT algorithm was used to evaluate the
infiltration level of 22 immune cells in each BC sample.

2.7. Nomogram Analysis. A nomogram model was con-
structed by the RMS package of R language to predict the
survival probability of BC patients for one-, three-, and
five-year based four independent prognostic factors (Risk
Score, age, radiation therapy, and TNM Stage). The calibra-
tion curve of nomogram was plotted to determine the
relationship between the actual probability and predicted
probability.

2.8. Cell Culture. The human mammary epithelial cells
(MCF-10A) and BC cell lines (MCF-7 and SK-BR-3) were
provided by ATCC (American Type Culture Collection,
Manassas, VA, USA). MCF-10A cells were cultured in
MEpiCM Medium (ScienCell) supplemented with 10% FBS
(Gibco), 1% MEpiCGS (ScienCell), and 1% penicillin/strep-
tomycin (PS, ScienCell) at 37°C in 5% CO,. MCF-7 cells
were cultured in DMEM (Gibco) supplemented with 10%
FBS (Gibco), 0.01 mg/mL human recombinant insulin
(HRI, Solarbio), and 1% PS (HyClone) at 37°C in 5% CO,.
SK-BR-3 cells were cultured in RPMI 1640 (Gibco) supple-
mented with 10% FBS (Gibco) and 1% PS (HyClone) at
37°C (no CO,).
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TaBLE 1: The clinical information of samples in the two groups (training set and testing set) from TCGA database.
Patients samples
- Total Training cohort Testing cohort )
Characteristics Groups (N =1082) (N = 541) (N = 541) X*  Pvalue
Number Number Number
Female 1070 533 537
Sex 1.3483 0.5096
Male 12 8 4
Age at Median 58 58 58 0 1
diagnosis Range 26-90 26-89 26-90
I 182 90 92
1I 615 304 311
Pathological 111 243 123 120
1.8478 0.9974
TNM stage 1A% 20 12 8
X 11 7 4
Unknown 11 5 6
. Alive 928 470 458
Vital status 1.0902 0.5798
Dead 154 71 83
diot NO 424 222 202
Radiation YES 547 269 278 2.1816 0.7024
therapy
Unknown 111 50 61
Ductal and lobular neoplasms 1039 518 521
Cystic, mucinous and serous neoplasms 16 5 11
Complex epithelial neoplasms 14 10 4
Disease type Adenomas and adenocarcinomas 3 0 8.3634 0.7561
Epithelial neoplasms, NOS 3 2
Squamous cell neoplasms 1 1
Other 1 2
Asian 58 28 30
American Indian or Alaska native 1 0 1
Race Black or African American 181 91 90 2.1873 0.9747
White 757 384 373
Unknown 85 38 47
2.9. Real-Time Quantitative PCR (RT-qPCR). Total RNAs of ~ among all groups, with P <0.05 was considered statisti-

cells were extracted by TRNzol Universal (TIANGEN
BIOTECH (BEIJIN) CO., LTD. China). Nanodrop 2000
(Thermo, USA) was used to detect the quantification and
concentration of total RNAs. Next, the total RNAs were
reversely transcribed into cDNAs with RevertAid First
Strand ¢cDNA Synthesis Kit (Thermo, USA) and then used
to perform RT-qPCR with TB Green® Premix Ex Taq™ II
(Takara, Japan). RT-qPCR thermocycling protocol was as
follows: initial denaturation at 95°C for 30s, denaturation
at 95°C for 10's, annealing at 60°C for 30, and amplification
for 40 cycles. GAPDH was used as the housekeeping gene.
The primer sequences were shown in Table 2. The 2744¢T
method was applied to calculate the expression level of genes
and normalized to GAPDH.

2.10. Statistical Analysis. We used R software v3.5.2. for
statistical analysis. The Mann-Whitney tests were used
to analyze the infiltration differences of immune cells

cally significant.

3. Results

3.1. The Expression of HRGs Was Correlated with the OS of
BC Patients. To better display the process building the
hypoxia-related prognostic signature of BC, the flow chart
of this work was shown in Figure 1. Firstly, K-mean cluster-
ing analysis was performed on BC samples according to the
expression levels of 26 HRGs, and all BC patients were
divided into 3 clusters (k =3) (Figure 2(a)). The results of
consensus clustering (Figure 2(b)) and the heat map of
expression values (Figure 2(c)) exerted a better clustering
effect, suggesting that the three clusters could be efficiently
separated. Meanwhile, principle component analysis (PCA)
suggested that there were significant differences among the
three clusters (Figure 2(d)). Moreover, the Kaplan-Meier
curves demonstrated that there were significant differences
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TABLE 2: Primer sequences for RT-PCR.
Genes Forward primer (5'-3") Reverse primer (5'-3") Product length (bp)
GAPDH GAAGGTGAAGGTCGGAGTC GAAGATGGTGATGGGATTTC 227
PGKI1 GTGGGGGTATTTGAATGGGAAGC GCACAGCAAGTGGCAGTGTCTCC 124
SDC1 TTTGAAACCTCGGGGGAGAATAC GAAACCCACCAGGCACACAGC 183
BC patient data from BC patient data from :
GEO database TCGA database | VBT S |

v
Kaplan-meier survival curves |<——| Cluster analysis |——>| Clinical characteristic difference |

A

| Univariate Cox regression analysis |

| LASSO Cox regression analysis |

Immune status of subgroups
defined by risk score

| Immune cell infiltration difference |

| Key immune checkpoints difference |

FiGure 1: The flow chart of this work.

in OS among three clusters (Figure 2(e)). These results indi-
cated that all the BC patients with different prognosis could
be efficiently separated through the expression levels of these
26 HRGs, suggesting the potential predictive values of HRGs
in BC prognosis.

3.2. The Predictive Model Could Effectively Predict the OS of
BC Patients. We next used Univariate Cox regression analy-
sis to calculate the hazard ratio (HR) of 26 HRGs, and the
results showed that CA9, PGK1, and SDC1 (HR>1.0, P<
0.05), were significantly associated with the OS of BC
patients (Figure 3(a)), indicating that these three genes were
risk genes, and their high expression was associated with
poor prognosis. Further, LASSO Cox regression analysis also
showed that these three genes were significantly associated
with the prognosis of BC patients (Figures 3(b) and 3(c)).
Next, these three genes were used to construct a Risk
Score model for prognosis of BC patients. First, we calcu-
lated the expression levels of these three genes in the TCGA
dataset, the GSE42568 cohort, and the GSE48391 cohort;
then, we standardized and normalized the expression values.
Normalization was Coef; weighting of gene expression
values using LASSO Cox regression analysis. Subsequently,
the formula of Risk Score was obtained as follows: Risk
Score =0.0962" express value of CA9+0.1993, * express
value of PGK1 + 0.2067, and * express value of SDC1. We
calculated the Risk Score of each sample and then divided
all samples from TCGA database and GEO database into
two groups based on the optimal cut-off point (0.1137):

low-risk group and high-risk group. The Risk Score distribu-
tion of all samples was shown in Figures 4(a)-4(c). As
shown in Figures 4(d)-4(f), the expression values of the
three genes were significantly different between two groups.
Moreover, the results of survival analysis demonstrated that
BC samples from high-risk group had a lower OS than that
from low-risk group (Figures 4(g)-4(i)). In addition, the
results of time-dependent ROC curves indicated that the
area under curve (AUC) values of 1-, 3-, 5-year survival of
samples from the training set were 0.785, 0.689, and 0.67,
respectively; the AUC values of 1-, 3-, 5-year survival of
samples from the testing set were 0.595, 0.671, and 0.631,
respectively; the AUC values of 1-, 3-, 5-year survival of
samples from verification set were 0.628, 0.603, and 0.637,
respectively (Figures 4(j)-4(l)), suggesting that the Risk
Score could efficiently predict the prognosis of BC patients.
In general, the Risk Score constructed by three hypoxia
genes could distinguish the prognosis of different BC
patients.

We also validated the expression of these three genes in
BC and paracancer samples, and the results showed that
the expression levels of the genes were higher in tumor
samples (Figures S1(a-c)). Among which, the upregulated
levels of PGK1 and SDC1 were more significant. Hence,
we selected PGK1 and SDCI1 with the most significant
differences for RT-qPCR verification.

3.3. Immune Status of Subgroups Defined by Risk Score.
Hypoxia in solid tumor tissue may be involved in the
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FIGURE 2: The consensus clustering analysis of BC samples based on the mRNA expression values of 26 HRGs. (a) The elbow chart to
determine the optimal number of clustering. The horizontal axis: the numbers of clustering (k) and the vertical axis: the sum of squared
error. The point where the decline tending to be flat was the optimal number of clustering (k = 3). (b) The consistency matrix of samples
and different colors represented different clusters. (c) The heat maps of expression values of HRGs in three clusters. The horizontal axis
represented genes; the vertical axis represented samples; red indicated high expression; blue indicated low expression. (d) PCA analysis.
The dots with different colors and shapes represented different groups of samples and the closer two dots, the more similar the
expression of HRGs in the samples. (e) The Kaplan Meier survival curve of three clusters. P value was calculated by log-rank test.

formation of immunosuppressive microenvironment, result-
ing in the difficulty of immunotherapy [6, 7]. We next
employed CIBERSORT and LM22 eigenmatrix to assess the
immune microenvironment composition of the two sub-
groups defined by Risk Score. The results of immune cell infil-
tration in all BC samples from TCGA database were shown in
Figure 5(a); we also found that there was a weaker correlation
in the proportion of infiltration of 22 immune cells
(Figure 5(b)), suggesting that the infiltration of different
immune cells was more heterogeneous in BC patients. More-
over, there were significant differences in the proportions of
ten infiltrating immune cell types, including three types of
macrophages (M0, M1, and M2), Monocytes, B cells naive,
Dendritic cells activated, Mast cells resting, T cells CD4 mem-
ory resting, T cells CD8, and T cells follicular helper between
two subgroups (Figure 5(c)). In the high-risk group, the sam-
ples had lower proportions of infiltrating B cells naive, Mono-
cytes, Mast cells resting, Macrophages M2, T cells CD4
memory resting, T cells CD8, and higher proportions of infil-
trating Dendritic cells activated, Macrophages M0, Macro-
phages M1, T cells follicular helper, which might account for

the prognostic difference in BC patients from these two
subgroups.

Recently, the immune checkpoints have emerged as
potential biomarkers for cancer immunotherapy [21]. Here,
we found that Risk Score was closely correlated with the
expression levels of five immune checkpoints, TIGIT,
TIM3, PD1, LAG3, and CTLA4 (Figure 5(d)). In addition,
compared with the low-risk group, these five immune
checkpoints were significantly highly expressed in high-risk
group (P <0.05) (Figure 5(e)). It has been known that
the immune checkpoints contributed to maintaining an
immunosuppressive microenvironment for tumor cells to
escape immune surveillance [22]. These results suggested
that the poor prognosis of BC patients with high Risk
Score might be associated with the immunosuppressive
microenvironments.

3.4. Risk Score Was Shown to Be an Independent Prognostic
Factor. To determine whether Risk Score was an indepen-
dent prognostic factor, we included Risk Score, gender, age,
TNM Stage, and radiation therapy in a multivariate Cox
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F1GuRrk 3: The construction of the prognostic model for BC. (a) The forest plot of Univariate Cox regression analysis with 26 HRGs which
were significantly related to the prognosis of BC. HR: hazard ratio; 95% CI: the 95% confidence interval. (b) The tuning parameter lambda
was determined by LASSO regression analysis. The optimal lambda value was obtained after taking the log below the dotted line, and the
number of variables was corresponding to the top of the optimal lambda. (c) The coefficient spectrum of LASSO Cox regression model.

regression analysis. We found that the Risk Score was signif-
icantly associated with the OS of BC patients, and the
samples with high Risk Score had a higher risk of death

(Figure 6(a), HR =2.708, 95% CI: 1.5061-4.869, P < 0.001)
compared with those with low Risk Score. Notably, the OS
of the samples in the high-risk group was significantly lower
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FiGUrk 4: The prognostic model could efficiently predict the survival of BC patients. (a—c) The Risk Score distribution of samples from
TCGA database and GEO cohort. One point represented a sample; the red points were the samples with high Risk Score; the green
points were the samples with low Risk Score, and the intersection point was the optimal Risk Score. (a) Training set from TCGA
database, (b) Testing set from TCGA database, and (c) GSE42568 and GSE48391 cohorts. (d-f) The heat map of mRNA expression
values of three HRGs in samples from TCGA database and GEO cohort. The horizontal axis represented genes; the vertical axis
represented samples; red indicated high expression; blue indicated low expression. The categories of samples were marked with different
colors on the top of the heat map. (d) Training set from TCGA database, (e) Testing set from TCGA database, and (f) GSE42568 and
GSE48391 cohorts. (g-i) The Kaplan Meier survival curve of samples from TCGA database and GEO cohort. (g) Training set from
TCGA database, (h) Testing set from TCGA database, and (i) GSE42568 and GSE48391 cohorts. (j-1) The time-dependent ROC curve of
samples from TCGA database and GEO cohort. The horizontal axis was False Positive; the vertical axis was True Positive; the accuracy
of prediction was evaluated by AUC value (the area under the ROC curve). (j) Training set from TCGA database, (k) Testing set from

TCGA database, and (1) GSE42568 and GSE48391 cohorts.

than that in the low-risk group (Figures 6(b)-6(f)); survival
analysis for male BC patients was not performed since there
were only 12 male patients, indicating that the prediction of
BC prognosis by Risk Score was not affected by these factors,
and Risk Score could be used as an independent prognostic
signature to predict the prognosis of BC patients.

3.5. The Nomogram Prediction Model. Finally, the nomo-
gram model was established based on the four independent
prognostic factors including Risk Score, radiation therapy,
age, and TNM Stage (Figure 7(a)). The results showed that
the corrected curves for 1- (Figure 7(b)), 3- (Figure 7(c)),
and 5-year (Figure 7(d)) were closer to the ideal curves (a
straight line with a slope of 1 passing through the origin of
the coordinate axis), indicating that the prediction was in
powerful agreement with the actual results. Meanwhile, the
AUC values of nomogram for 1-, 3-, and 5-year were
0.728, 0.651, and 0.673, respectively (Figure 7(e)). These
results suggested that the nomogram model could reliably
predict the long-term survival probability of BC patients.

3.6. Validation of Prognosis-Related Genes by RT-qPCR.
Previous studies have shown that the high level of intracellu-

lar PGK1 was related to tumorigenesis, progression, and
chemoradiotherapy resistance [23]. And the high level of
PGK1 was indicative of undesirable overall survival for
various cancers [24]. In addition, the high level of SDC1
was also considered to be related to more aggressive tumors
and a worse prognosis of prostate cancer [25]. In this study,
we found that compared with MCF-10A cells, the expression
level of PGK1 was significantly increased both in MCF-7
cells and SK-BR-3 cells (Figure 8), and the expression level
of SDCI was significantly increased in SK-BR-3 cells, while
only slightly increased in MCF-7 cells (Figure 8). Such data
were consistent with the bioinformatics analysis, indicating
that the Risk Score constructed based on HRGs was reliable
to evaluate the prognosis of BC patients.

4. Discussion

BC has become the most common leading cause of tumor-
related mortality among women in the world [26]. Increas-
ing prognostic signatures have been evidenced to show great
significance in various tumors [27]. Hence, the identification
of efficient prognostic signatures will contribute to the
diagnosis and treatment of BC. Recently, HRGs in BC have
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FIGUREe 5: Immune status of BC samples in two subgroups. (a) The relative proportion of immune infiltration in all BC samples. (b) The
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color, the greater the correlation. (c) The violin plot of immune cells with significantly different proportions of infiltration in the high-
and low-risk groups. The horizontal axis: high- or low-risk group and the vertical axis: the relative proportion of infiltrating immune
cells. P value was determined by Wilcoxon test. (d) The correlative circos diagram between Risk Score and the expressions of five
prominent immune checkpoints. (e) The violin plot of immune checkpoints with significantly different expressions between high- and

low-risk groups.

attracted more attention due to their crucial function closely
associated with the development or diagnosis of BC, and
even might be the potential therapeutic targets. Duechler
et al. revealed that the heterogeneous immune microenvi-
ronment in BC was significantly affected by HRGs, and
suggested that targeting HRGs might not only sensitize
breast tumor for radiation and chemotherapies but also
interfere with cancer immunosuppression [28]. Guerrab
et al. found that the quantification of HRG expression might
be considered as a potential approach for the prediction of
clinical outcome in BC [29]. These reports all confirmed
the important roles of HRGs in BC. However, the research
about the prognostic values of HRGs in BC is lacking. In
the present study, we were the first to explore the prognostic
values of HRGs in BC and identified three HRGs, including
CA9, PGK1, and SDC1, which were closely associated with
the prognosis of BC patients, suggesting their potential
prognostic values.

The expression of cell-surface carbonic anhydrases IX
(CA9) was significantly upregulated in hypoxia for all BC
cell lines including MCF7, ZR-75.1, and MDA-mb231 cells
and has been demonstrated to be novel therapeutic targets
for BC [30, 31]. The mitochondrial translocation of phos-
phoglycerate kinase 1 (PGK1) was induced by hypoxia
[32], and Fu et al. determined that PGK1 was a potential sur-
vival biomarker and invasion promoter through modulating

the HIF-la-mediated process of epithelial-mesenchymal
transition (EMT) in BC [33]. Although the role of SDC1 in
BC remains unclear, its crucial function in other human
cancer has been studied in detail. Syndecan-1 (SDC1), also
known as CD138, can induce an immature and stem cell-
like transcriptional program in myeloma cells [34]. In
addition, SDC1 has been the gold-standard surface marker
to detect multiple myeloma (MM) cells for decades [35].
These studies suggested that the three HRGs play essential
functions in various human cancers including BC. Here, a
predictive model for prognosis in BC was established based
on the three HRGs. Moreover, three datasets composed of
training set, testing set, and verification set were all applied
to determine the accuracy of this model, which revealed that
the prognostic model could efficiently predict the prognosis
of BC patients. On the other hand, considering the essential
role of hypoxia in various tumors, the pathogenic or thera-
peutic target potential of CA9, PGK1, and SDCI1 in BC
should be investigated in our future work.

In the last decades, BC is not generally viewed as a highly
immunogenic cancer, but recent studies have described a rich
tumor immune microenvironment in BC [36]. Soysal et al.
revealed that various components of BC microenvironment,
such as suppressive immune cells and altered extracellular
matrix, function together to prevent effective antitumor
immunity and promote the progression and metastasis of
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BC [37]. In this study, we analyzed the immune infiltration
differences of 22 immune cells in BC samples from high-
risk group and low-risk group and found that there were
significant differences in the proportions of ten types of infil-
trating immune cells in BC patients from high- and low-risk

groups. Our analysis was in agreement with previous studies
that a rich tumor immunoreaction occurred during the
progression of BC, which might account for the prognostic
difference in BC patients. Accordingly, our hypoxia-related
signature might be helpful to choose appropriate
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immunotherapy for BC patients, which deserved further
exploration in near future.

Although our results suggested that SDC1 might be
related to the prognosis in BC, its specific function or mech-
anism in BC progression should be explored; meanwhile,
more samples are needed to be collected to verify the accu-
racy of our prognostic model.

5. Conclusion

In summary, our study established a predictive model based
on three HRGs (CA9, PGK1, and SDC1) and demonstrated
that this model could reliably predict the prognosis of
patients with BC. Our prognostic signature provides an
additional alternative for BC prognosis prediction, which
will indirectly benefit for better clinical decision and treat-
ment strategies of BC patients.
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