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In this paper, we proposed and analyzed a realistic compartmental mathematical model on the spread and control of HIV/
AIDS-pneumonia coepidemic incorporating pneumonia vaccination and treatment for both infections at each infection
stage in a population. The model exhibits six equilibriums: HIV/AIDS only disease-free, pneumonia only disease-free, HIV/
AIDS-pneumonia coepidemic disease-free, HIV/AIDS only endemic, pneumonia only endemic, and HIV/AIDS-pneumonia
coepidemic endemic equilibriums. The HIV/AIDS only submodel has a globally asymptotically stable disease-free
equilibrium if R1 < 1: Using center manifold theory, we have verified that both the pneumonia only submodel and the
HIV/AIDS-pneumonia coepidemic model undergo backward bifurcations whenever R2 < 1 and R3 = max fR1,R2g < 1,
respectively. Thus, for pneumonia infection and HIV/AIDS-pneumonia coinfection, the requirement of the basic
reproduction numbers to be less than one, even though necessary, may not be sufficient to completely eliminate the
disease. Our sensitivity analysis results demonstrate that the pneumonia disease transmission rate β2 and the HIV/AIDS
transmission rate β1 play an important role to change the qualitative dynamics of HIV/AIDS and pneumonia coinfection.
The pneumonia infection transmission rate β2 gives rises to the possibility of backward bifurcation for HIV/AIDS and
pneumonia coinfection if R3 = max fR1,R2g < 1, and hence, the existence of multiple endemic equilibria some of which
are stable and others are unstable. Using standard data from different literatures, our results show that the complete HIV/
AIDS and pneumonia coinfection model reproduction number is R3 = max fR1,R2g =max f1:386, 9:69 g = 9:69 at β1 = 2
and β2 = 0:2 which shows that the disease spreads throughout the community. Finally, our numerical simulations show
that pneumonia vaccination and treatment against disease have the effect of decreasing pneumonia and coepidemic disease
expansion and reducing the progression rate of HIV infection to the AIDS stage.

1. Introduction

HIV/AIDS remains a major global health problem affecting
approximately 70 million people worldwide causing signifi-
cant morbidity and mortality (WHO, 2018) [1]. Over two-
thirds of HIV/AIDS-infected population throughout the
world is living in the sub-Saharan African Region [1–6].
AIDS is a common individual immune system disease
caused by human immunodeficiency virus (HIV), i.e., RNA
retrovirus which has developed into a global pandemic since
the first patient was identified in 1981, making it one of the

most destructive epidemics in history. HIV attacks human
white blood cells and is transmitted through open sex, nee-
dle sharing, infected blood, and at childbirth [3, 6–9].

Pneumonia is one of the leading airborne infectious dis-
eases caused by microorganisms such as bacteria, viruses, or
fungi. It has been the common cause of morbidity and mor-
tality in adults, children under five years of age, and HIV-
mediated immunosuppression worldwide, and it is a treat-
able respiratory lung infectious disease [5, 10–14]. In most
prospective microbiology-based studies, bacteria especially
Streptococcus bacteria are identified in 30-50% of
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pneumonia cases which are a leading cause of pneumonia in
developing countries [13, 15–17]. However, over the past,
our understanding about transmission of pneumonia is basi-
cally based on research from high-income western countries
but the WHO, 2018 report assessed that from 9.5 million
annual death worldwide, pneumonia and other respiratory
infections cause about 2 million child deaths yearly in devel-
oping countries [14, 18].

A coepidemic is the coexistence of two or more infec-
tions on a single individual at the population level [19].
HIV/AIDS-associated opportunistic infectious diseases are
more common or more dangerous because of HIV immuno-
suppression [10].

Mathematical and statistical models of infectious dis-
eases have, historically, provided useful insight into the
transmission dynamics and control of infectious diseases
[14]. Mathematical models have been used to investigate
the dynamics of single infections and coepidemics, and
HIV/AIDS-pneumonia is among the diseases that infect a
large number of individuals worldwide [10, 17, 20, 21].

Babaei et al. [8] developed and analyzed a simple math-
ematical model for the interaction between drug addiction
and the contagion of HIV/AIDS in Iranian prisons. They
analyzed the stability of drug addiction and HIV/AIDS
models separately with no medical treatment and investi-
gated the impact of rehabilitating treatments on the control
of HIV/AIDS spread in prisons, and finally, the reproduc-
tion numbers are compared in cases where there is no cure
or some treatment methods are available. From their analy-
sis, we have shown that their treatment methods for addic-
tion withdrawal have a direct impact on the decrement and
control of HIV/AIDS infection in prisons. Kizito et al. [13]
constructed and discussed a mathematical model of treat-
ment and vaccination impacts on pneumococcal pneumonia
transmission dynamics. They found that, with treatment and
vaccination combined, pneumonia can be eradicated; how-
ever, with treatment intervention alone, pneumonia remains
in the population. Bakare and Nwozo [22] construct and
analyzed a mathematical model for malaria–schistosomiasis
coinfection. They have calculated the basic reproduction
numbers and discussed the stability of equilibrium points
of the model. They have shown the region where their model
state variables become both mathematically and epidemio-
logically well-posed. They showed the model did not
undergo backward bifurcation. Their mathematical model-
ing analysis result shows that intervention strategy sup-
presses the human-mosquito contact rate and human-snail
contact rate to achieve malaria–schistosomiasis coepidemic
free community. Shah et al. [3] formulated and analyzed a
mathematical model for HIV/AIDS-TB coinfection consid-
ering HIV-infected population, and they found that medica-
tion plays a vital role in controlling the spread of the disease.

Limited mathematical modeling research analysis has
been conducted on HIV/AIDS-pneumonia coepidemics,
for prevention and controlling of the disease transmission
with controlling and prevention mechanisms; however, the-
oretical sources such as [10, 15, 20, 21] show the coexistence
of HIV/AIDS-pneumonia. For our new research article, we
reviewed only two published HIV/AIDS-pneumonia coepi-

demic model articles. Nthiiri et al. [5] constructed mathe-
matical modeling on HIV/AIDS-pneumonia coinfection
with maximum protection against single HIV/AIDS, and
pneumonia infections were their basic concern. They did
not consider maximum protection against coinfection. In
their model analysis, we have found that when protection
is maximum, the number of HIV/AIDS and pneumonia
cases is going down. Teklu and Mekonnen [6] constructed
a deterministic mathematical model and analyzed it both
mathematically and numerically. Our model considered
treatment at each infection stage of the coinfection model,
and we found that when the treatment rate increases, the
number of infectious population at each infection stage
decreases. Our model did not consider pneumonia
vaccination.

We are motivated by the above studies especially the
HIV/AIDS-pneumonia coexistence in the community;
therefore, in this study, we considered the three center for
disease control and prevention (CDC) stages of the HIV
infection which are acute HIV infection, chronic HIV infec-
tion, and AIDS stage; we presented and analyzed a mathe-
matical model describing the transmission dynamics of
HIV/AIDS and pneumonia coinfection in a population
where treatment for HIV/AIDS and both vaccination and
treatment for pneumonia are available, respectively, in the
community. Our model will be used to evaluate the effect
of treatment at every infection stage of the HIV/AIDS only
model, pneumonia only model, HIV/AIDS-pneumonia
coinfection model, and effect of vaccination for pneumonia
only model as control strategies for minimizing incidences
of coinfections in the target population. The paper is orga-
nized as follows. The model is formulated in Section 2 and
is analyzed in Section 3. Sensitivity analysis and numerical
simulation were carried out in Section 4. Finally, discussion,
conclusion, and recommendation of the study are carried
out in Sections 5 and 6, respectively.

2. Mathematical Model Formulation

2.1. Assumptions and Descriptions. According to CDC the
three HIV/AIDS infection stages, we divide the human pop-
ulation NðtÞ into twelve distinct classes as susceptible class
to both HIV and pneumonia infections Y1ðtÞ, pneumonia
vaccine class Y2 ðtÞ , pneumonia-infected class Y3ðtÞ, acute
HIV-infected class Y4ðtÞ, chronic HIV-infected class Y5ðtÞ,
AIDS patient class Y6ðtÞ, acute HIV-pneumonia coepidemic
class Y7ðtÞ, chronic HIV-pneumonia coepidemic class Y8ðtÞ,
AIDS-pneumonia coepidemic class Y9ðtÞ, pneumonia treat-
ment class Y10ðtÞ, HIV/AIDS treatment class Y11ðtÞ entered
from the three infection stages Y4ðtÞ, Y5ðtÞ, and Y6ðtÞ, and
HIV/AIDS-pneumonia coepidemic treatment class Y12ðtÞ
entered from Y7ðtÞ, Y8ðtÞ, and Y9ðtÞ cases such that

N tð Þ = Y1 tð Þ + Y2 tð Þ + Y3 tð Þ + Y4 tð Þ + Y5 tð Þ + Y6 tð Þ
+ Y7 tð Þ + Y8 tð Þ + Y9 tð Þ + Y10 tð Þ + Y11 tð Þ + Y12 tð Þ:

ð1Þ

The susceptible class acquires HIV at the standard
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incidence rate given by

λHC tð Þ = β1
N

Y4 tð Þ + ρ1Y5 tð Þ + ρ2Y7 tð Þ + ρ3Y8 tð Þð Þ, ð2Þ

where ρ3 ≥ ρ2 ≥ ρ1 ≥ 1 is the modification rate that increases
infectivity and β1 is the HIV/AIDS contagion rate.

The susceptible class acquires pneumonia at the mass
action incidence rate

λPC tð Þ = β2 Y3 tð Þ + ω1Y7 tð Þ + ω2Y8 tð Þ + ω3Y9 tð Þð Þ, ð3Þ

where ω3 > ω2 > ω1 is the modification rate that increases
infectivity and β2 is the pneumonia contagion rate.

To construct the complete coepidemic dynamical sys-
tem, we have assumed the following:

(i) A fraction of the population has been vaccinated
before the disease outbreak at the portion of π
and ð1 − πÞ fraction of population entered to the
vulnerable class

Table 1: Descriptions of model parameters.

Parameter Interpretations

d Natural mortality rate

Λ Human recruitment rate

δ1 Development rate from acute HIV to chronic HIV infection

δ2 Development rate from chronic HIV to AIDS stage

ϵ The proportion of the serotype not covered by the vaccine

θ Immunity loss rate

ψ1 Alteration rate indicating acute HIV infection is more vulnerable to pneumonia

ψ2 Alteration rate indicating chronic HIV infection is more vulnerable to pneumonia

ψ3 Alteration rate indicating AIDS patient is more vulnerable to pneumonia

λHC HIV/AIDS standard incidence rate

λPC Pneumonia mass action incidence rate

δ3 Development rate from acute HIV-pneumonia to chronic HIV-pneumonia coepidemics

δ4 Development rate from chronic HIV-pneumonia to AIDS-pneumonia coepidemics

dP Pneumonia death rate

dA AIDS death rate

dAP AIDS-pneumonia death rate

κ Pneumonia infection treatment rate

κ1 Acute HIV infection treatment rate

τ1 Vaccination waning rate

κ2 Chronic HIV infection treatment rate

κ3 AIDS patients treatment rate

σ1 Acute HIV-pneumonia coepidemic treatment rate

σ2 Chronic HIV-pneumonia coepidemic treatment rate

σ3 AIDS-pneumonia coepidemic treatment rate

β1 Transmission rate of HIV

β2 Transmission rate of pneumonia

Table 2: Definitions of variables.

Variables Definitions

Y1 Vulnerable to both HIV and pneumonia class

Y2 Pneumonia-vaccinated class

Y3 Pneumonia-infected class

Y4 Acute HIV-infected class

Y5 Chronic HIV-infected class

Y6 AIDS patients class

Y7 Acute HIV-pneumonia coepidemic class

Y8 Chronic HIV-pneumonia coepidemic class

Y9 AIDS-pneumonia coepidemic class

Y10 HIV/AIDS treatment class

Y11 Pneumonia treatment class

Y12 Coepidemics treatment class
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(ii) The susceptible class is increased from the vacci-
nated class in which those individuals who are vac-
cinated but did not respond to vaccination with the
waning rate of τ and from pneumonia-treated class
in which those individuals who lose their tempo-
rary immunity by the rate θ

(iii) Assume vaccination is not 100% effective, so vacci-
nated individuals also have a chance of being
infected with proportion ϵ of the serotype not cov-
ered by the vaccine where 0 ≤ ϵ < 1

(iv) Individuals in a given compartment are homogeneous

(v) Assume no HIV transmission from Y6ðtÞ and Y9
ðtÞ classes due to their reduced daily activities

(vi) Individuals in each class are subject to natural
mortality rate d

(vii) The human population is variable

(viii) We assumed there is no dual-infection transmis-
sion simultaneously

(ix) Assume HIV has no vertical transmission and
pneumonia is not naturally recovered

(x) No permanent immunity for pneumonia-infected
individuals and become susceptible again after
treatment

2.2. Schematic Diagram of the HIV/AIDS-Pneumonia
Coepidemic Model. In this subsection using parameters in
Table 1, variable definitions in Table 2, and the model

assumptions and descriptions given in (2.1), the schematic
diagram for the transmission of HIV/AIDS-pneumonia coe-
pidemic is given by the diagram.

2.3. The HIV/AIDS-Pneumonia Coepidemic Dynamical
System. From Figure 1, the HIV/AIDS and pneumonia coin-
fection dynamical system is given by

dY1
dt

= 1 − πð ÞΛ + τ1Y2 + θY10 − d + λHC + λPCð ÞY1,

dY2
dt

= πΛ − ϵλPCY2 − d + τ1 + λHCð ÞY2,

dY3
dt

= ϵλPCY2 + λPCY1 − νλHC + d + κ + dPð ÞY3,

dY4
dt

= λHCY1 + λHCY2 − d + κ1 + δ1 + ψ1λPCð ÞY4,

dY5
dt

= δ1Y4 − d + κ2 + δ2 + ψ2λPCð ÞY5,

dY6
dt

= δ2H2 − d + κ3 + dA + ψ3λPCð ÞY6,

dY7
dt

= ψ1λPCY4 + νλHCY3 − d + dP + σ1 + δ3ð ÞY7,

dY8
dt

= ψ2λPCY5 + δ3Y7 − d + dP + σ2 + δ4ð ÞY8,

dY9
dt

= ψ3λPCY6 + δ4Y8 − d + dAP + σ3ð ÞY9,

dY10
dt

= κY3 − d + θð ÞY10,

dY11
dt

= κ1Y4 + κ2Y5 + κ3Y6 − dY11,

dY12
dt

= σ1Y7 + σ2Y8 + σ3Y9 − dY12:

ð4Þ

𝜅1

𝜎1 𝜎2 𝜎3

𝜅

𝜅2

𝜅3
d+dA

d+dP

d+dP

d+dP

d+dAP

dd

d

d

d

d

d

d

Y11

Y6Y5Y4Y1

Y2
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𝛿1 𝛿2

𝛿4𝛿3

Y3
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Figure 1: Flowchart of the HIV/AIDS-pneumonia coinfection model (4) where λHC and λPC are given in (2) and (3), respectively.
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With initial conditions,

Y1 0ð Þ > 0,
Y2 0ð Þ ≥ 0,
Y3 0ð Þ ≥ 0,
Y4 0ð Þ ≥ 0,
Y5 0ð Þ ≥ 0,
Y6 0ð Þ ≥ 0,
Y7 0ð Þ ≥ 0,
Y8 0ð Þ ≥ 0,
Y9 0ð Þ ≥ 0,
Y10 > 0,
Y11 > 0,

Y12 0ð Þ ≥ 0:

ð5Þ

The sum of all the differential equations in (4) is

dN
dt

=Λ − dN − dPY3 + dAY6 + dPY7 + dPY8 + dAPY9ð Þ,
ð6Þ

2.4. Positivity and Boundedness of the Solutions of the Model
(4). The model is mathematically analyzed by proving vari-
ous theorems and algebraic computation dealing with differ-
ent quantitative and qualitative attributes. Since the system
deals with human populations which cannot be negative,
we need to show that all the state variables are always non-
negative well as the solutions of system (4) remain positive
with positive initial conditions (5) in the bounded region

Ω = Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12ð Þ ∈ℝ12
+ ,N ≤

Λ

d

� �
:

ð7Þ

Here, in order for the model (4) to be epidemiologically
well-posed, it is important to show that each state variable
defined in Table 2 with positive initial conditions (5) is non-
negative for all time t > 0 in the bounded region given in (7).

Theorem 1. At the initial conditions (5), the solutions Y1ðtÞ,
Y2ðtÞ, Y3ðtÞ, Y4ðtÞ, Y5ðtÞ, Y6ðtÞ, Y7ðtÞ, Y8ðtÞ, Y9ðtÞ, Y10ðtÞ
, Y11ðtÞ, and Y12ðtÞ of system (4) are nonnegative for all time
t > 0.

Proof. Assume Y1ð0Þ > 0, Y2ð0Þ > 0, Y3ð0Þ > 0, Y4ð0Þ > 0,
Y5ð0Þ > 0, Y6ð0Þ > 0, Y7ð0Þ > 0, Y8ð0Þ > 0,Y9ð0Þ > 0, Y10ð0Þ
> 0, Y11ð0Þ, and Y12ð0Þ > 0; then, for all t > 0, we have to
prove that Y1 ðtÞ > 0, Y2ðtÞ > 0, Y3ðtÞ > 0,Y4ðtÞ > 0, Y5ðtÞ
> 0, Y6ðtÞ > 0, Y7ðtÞ > 0, Y8ðtÞ > 0, Y9ðtÞ > 0, Y10ðtÞ > 0,
Y11ðtÞ > 0, and Y12ðtÞ > 0.

Define: τ = sup ft > 0 : Y1 ðtÞ > 0, Y2ðtÞ > 0, Y3ðtÞ > 0,
Y4ðtÞ > 0, Y5ðtÞ > 0, Y6ðtÞ > 0, Y7ðtÞ > 0, Y8ðtÞ > 0, Y9ðtÞ > 0
, Y10ðtÞ > 0, Y11ðtÞ > 0, andY12ðtÞ > 0g.

From the continuity
of-
Y1ðtÞ, Y2ðtÞ, Y3ðtÞ, Y4ðtÞ, Y5ðtÞ, Y6ðtÞ, Y7ðtÞ, Y8ðtÞ, Y9ðtÞ,
Y10ðtÞ, Y11ðtÞ, and Y12ðtÞðtÞ, we deduce that τ > 0. If τ = +
∞, then positivity holds. But, if 0 < τ < +∞, Y1ðτÞ = 0 or
Y2ðτÞ = 0 or Y3ðτÞ = 0 or Y4ðτÞ = 0 or Y5ðτÞ = 0 or Y6ðτÞ
= 0 or Y7ðτÞ = 0 or Y8ðτÞ = 0 or Y9ðτÞ = 0 or Y10ðτÞ = 0 or
Y11ðτÞ = 0 or Y12ð0Þ = 0:

Here, from the first equation of the model (4), we have
dY1/dt = ð1 − πÞΛ + θY10 + τY2 − ðd + λHC + λPCÞY1:

Using the method of integrating factor, we obtained Y1

ðτÞ =M1Y1ð0Þ +M1
Ð τ
0 exp

Ð
ðd+λHcðtÞ+λPcðtÞÞdtðð1 − πÞΛ + θY10

ðtÞ + τY2ðtÞÞdt > 0
whereM1 = exp−ðdτ+

Ð τ

0
ðλHCðwÞ+λPCðwÞdwÞ > 0, Y1ð0Þ > 0, and

from the definition of τ, we see that Y2ðtÞ > 0, Y10ðtÞ > 0,
and also the exponential function is always positive; then,
the solution Y1ðτÞ > 0; hence, Y1ðτÞ ≠ 0. From the second
equation of the model (4), we have dY2/dt = πΛ − ðd + τ1

+ ϵλPc + λHcÞY2 and we have got Y2ðτÞ =M1Y2ð0Þ +M1
Ð τ
0

exp
Ð
ðd+τ1+ϵλPcðtÞ+λHcðtÞÞdtðπΛÞdt > 0, where M1 =

exp−ðdτ+τ1τ+
Ð τ

0
ðλHcðwÞ+ϵλPcðwÞdwÞ > 0, Y2ð0Þ > 0, and also, the

exponential function always is positive; then, the
solutionY2ðτÞ > 0; hence, Y2ðτÞ ≠ 0. Similarly, all the
remaining state variables Y3ðτÞ > 0; hence,Y3ðτÞ ≠ 0 and
Y4ðτÞ > 0; hence, Y4ðτÞ ≠ 0 and Y5ðτÞ > 0; hence, Y5ðτÞ ≠ 0
and Y6ðτÞ > 0; hence, Y6ðτÞ ≠ 0 and Y7ðτÞ > 0; hence, Y7ðτ
Þ ≠ 0 and Y8ðτÞ > 0; hence, Y8ðτÞ ≠ 0 and Y9ðτÞ > 0; hence,
Y9ðτÞ ≠ 0 and Y10ðτÞ > 0; hence, Y10ðτÞ ≠ 0 and Y11ðτÞ > 0;
hence, Y11ðτÞ ≠ 0 and Y12ðτÞ > 0; hence Y12ðτÞ ≠ 0. Thus,
based on the definition of τ, it is not finite which means τ
= +∞, and hence, all the solutions of system (2) are non-
negative.☐

Theorem 2. The region Ω given by (7) is bounded in ℝ12
+ .

Proof. Using equation (6), since all the state variables are
nonnegative by Theorem 1, in the absence of infections, we
have got dN/dt ≤Λ − dN . By applying standard comparison
theorem, we have got

Ð ðdN/ðΛ − dNÞÞ ≤ Ð
dt and integrat-

ing both sides gives −ð1/dÞ ln ðΛ − dNÞ ≤ t + c where c is
some constant, and after some steps of calculations, we have
got 0 ≤N ðtÞ ≤Λ/d which means all possible solutions of
system (4) with positive initial conditions given in (5) enter
in the bounded region (6).☐

3. The Mathematical Model Analysis

Before we analyze the HIV/AIDS-pneumonia coinfection
model (4), we need to gain some background about the
HIV/AIDS-only submodel and pneumonia-only submodel
transmission dynamics.
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3.1. HIV/AIDS Submodel Analysis. We have the HIV/AIDS
submodel of (4)
whenY2 = Y3 = Y7 = Y8 = Y9 = Y10 = Y12 = 0 which is given
by

dY1
dt

=Λ − d + λHð ÞY1,

dY4
dt

= λHY1 − d + κ1 + δ1ð ÞY4,

dY5
dt

= δ1Y4 − d + κ2 + δ2ð ÞY5,

dY6
dt

= δ2Y5 − d + κ3 + dAð ÞY6,

dY11
dt

= κ1Y4 + κ2Y5 + κ3Y6 − dY11,

ð8Þ

where the total population is N1ðtÞ = Y1ðtÞ + Y4ðtÞ +
Y5ðtÞ + Y6ðtÞ + Y11ðtÞ and the HIV/AIDS single infection
force of infection is given by λH = ðβ1/N1ÞðY4 + ρ1Y5Þ with
initial conditions Y1ð0Þ > 0, Y4ð0Þ ≥ 0, Y5ð0Þ ≥ 0, Y6ð0Þ ≥ 0,
andY11ð0Þ ≥ 0.

Here, the detailed HIV/AIDS submodel model analysis is
given in [6].

3.2. Pneumonia Submodel Analysis. From model (4), we
have got the pneumonia submodel at Y4 = Y5 = Y6 = Y7
=Y8=Y9 = Y11 = Y12 = 0, which is given by

dY1
dt

= 1 − πð ÞΛ + τ1Y2 + θY10 − d + λPð ÞY1,

dY2
dt

= πΛ − ϵλPY2 − d + τ1ð ÞY2,

dY3
dt

= ϵλPY2 + λ4Y1 − d + κ + dPð ÞY3,

dY10
dt

= κY3 − d + θð ÞY10:

ð9Þ

With initial conditions, Y1ð0Þ > 0, Y2ð0Þ ≥ 0, Y3ð0Þ ≥ 0,
Y10ð0Þ ≥ 0, total population N2ðtÞ = Y1ðtÞ + Y2ðtÞ + Y3ðtÞ
+ Y10ðtÞ, and pneumonia force of infection λP = β2Y3ðtÞ.

In the regionΩ2 = ðY1, Y2, Y3, Y10Þ ∈ℝ4
+,N2 ≤Λ/d

� �
,

it is easy to show that the set Ω2 is positively invariant and
a global attractor of all positive solutions of submodel (9).
Hence, it is sufficient to consider the dynamics of model
(9) in Ω2 as epidemiologically and mathematically well-
posed.

3.2.1. Disease-Free Equilibrium Point of the Pneumonia
Submodel. The disease-free equilibrium point of the pneu-
monia submodel is obtained by making the right-hand side
of the system (15) as zero and setting the infectious class
and treatment class to zero as Y3 = Y10 = 0 we have got

Y0
1 =Λðd + τ1Þ −Λπd/dðd + τ1Þ and Y0

2 =Λπ/ðd + τ1Þ
such that E0

2 = ðY0
1, Y0

2, Y0
3, Y0

10Þ = ððΛðd + τ1Þ −Λπd/dðd +
τ1ÞÞ, ðΛπ/d + τ1Þ, 0, 0Þ.

3.2.2. The Effective Reproduction Number of the Pneumonia
Submodel. The effective reproduction number measures the
average number of new infections generated by a typically
infectious individual in a community when some strategies
are in place, like vaccination or treatment. We calculate the
effective reproduction number R2 using the van den
Driesch and Warmouth next-generation matrix approach
[23]. The Effective reproduction number is the largest (dom-
inant) eigenvalue (spectral radius) of the matrix FV−1 = ½∂
F iðE0

2Þ/∂xj�½∂νiðE0
2Þ/∂xj�−1 where F i is the rate of appear-

ance of new infection in compartment i, νi is the transfer
of infections from one compartment i to another, and E0

2 is
the disease-free equilibrium point. Then, after a long calcu-
lation, we have got

F =
β2ϵΛπd + β2Λ d + τ1ð Þ − β2Λπd

d d + τ1ð Þ 0

0 0

2
64

3
75,

V =
d + κ + dP 0

−κ d + θ

" #
:

ð10Þ

Then, using Mathematica, we have got

V−1 =

1
d + κ + dP

0

γ

θ + dð Þ d + κ + dPð Þ
1

θ + d

2
6664

3
7775,

FV−1 =
β2ϵΛπd + β2Λ d + τ1ð Þ − β2Λπd

d d + τ1ð Þ d + κ + dPð Þ 0

0 0

2
64

3
75:

ð11Þ

The characteristic equation of the matrix FV−1 is

β2ϵΛπd + β2Λ d + τ1ð Þ − β2Λπd
d d + τ1ð Þ d + κ + dPð Þ − λ 0

0 0 − λ

�������
������� = 0:

ð12Þ

Then, the spectral radius (effective reproduction number
R2) of FV

−1 of the pneumonia submodel (9) is R2 = ðβ2ϵ
Λπd + β2Λðd + τ1Þ − β2ΛπdÞ/ðdðd + τ1Þðd + κ + dPÞÞ. Here,
R2 is the effective reproduction number for pneumonia
infection.

3.2.3. Local and Global Stability of the Disease-Free
Equilibrium Point

Theorem 3. The disease-free equilibrium point (DFE) E0
2 of

the pneumonia submodel (9) is locally asymptotically stable
if R2 < 1, otherwise unstable.

Proof. The local stability of the disease-free equilibrium of
the system (9) can be studied from its Jacobian matrix at
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the disease-free equilibrium point E0
2 = ððΛðd + τ1Þ −ΛπdÞ/

ðdðd + τ1ÞÞ,Λπ/ðd + τ1 Þ, 0, 0Þ and Routh Hurwitz stability
criteria. The Jacobian matrix of a dynamical system (9) at
the disease-free equilibrium point is given by

J E0
2

� �
=

−d τ1
−β2Λ d + τ1ð Þ + β2Λπd

d d + τ1ð Þ θ

0 − d + τ1ð Þ −ϵβ2Λπ

d + τ1
0

0 0 β2ϵΛπd + β2Λ d + τ1ð Þ − β2Λπd
d d + τ1ð Þ − d + κ + dPð Þ 0

0 0 κ − d + θð Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

ð13Þ

Then, the characteristic equation of the above Jacobian
matrix is given by

−d − λ τ1
−β2Λ d + τ1ð Þ + β2Λπd

d d + τ1ð Þ θ

0 − d + τ1ð Þ − λ
−ϵβ2Λπ

d + τ1
0

0 0 M − λ 0
0 0 κ − d + θð Þ − λ

���������������

���������������
= 0,

ð14Þ

where M = ððβ2ϵΛπd + β2Λðd + τ1Þ − β2ΛπdÞ/ðdðd + τ1ÞÞÞ
− ðd + κ + dPÞ.

After some steps, we have got λ1 = −d < 0
or λ2 = −ðd + τ1Þ < 0 or λ3 = ðd + κ + dPÞ½R2 − 1� < 0
ifR2 < 1 or λ4 = −ðd + θÞ < 0. Therefore, since all the eigen-
values of the characteristics polynomial of the system (9) are
negative if R2 < 1, the disease-free equilibrium point of the
pneumonia submodel is locally asymptotically stable.☐

3.2.4. Existence of EEP for the Pneumonia Submodel. Let an
arbitrary endemic equilibrium point of pneumonia-only
dynamical system (9) be denoted by E∗

2 = ðY∗
1 , Y∗

2 , Y∗
3 , Y∗

10Þ.
Moreover, let λ∗P = β2Y

∗
3 be the associated pneumonia mass

action incidence rate (“force of infection”) at an equilibrium
point. To find conditions for the existence of an arbitrary
equilibrium point(s) for which pneumonia infection is
endemic in the population, the equations of model (9) are
solved in terms of the force of infection rate λ∗P = β2Y

∗
3 at

an endemic equilibrium point. Setting the right-hand sides
of the equations of model (9) to zero and we have got Y∗

2
= πΛ/ðϵλ∗P + d + τ1Þ, Y∗

10 = κY∗
3 /ðd + θÞ and substitute Y∗

2
and Y∗

10 in to Y∗
1 , we obtain Y∗

1 = ðð1 − πÞΛ + τ1Y
∗
2 + θT∗

PÞ
/ðd + λ∗PÞ = ðð1 − πÞΛ/ðd + λ∗PÞd + λ∗PÞ + ðπΛτ1/ðϵλ∗P + d +
τ1Þðd + λ∗PÞÞ + ðθγY∗

3 /ðd + θÞðd + λ∗PÞÞ and substitute Y∗
2 and

Y∗
1 inY∗

3 , we obtain

Y∗
3 =

πΛϵλ∗P d + κ + dPð Þ d + θð Þ d + λ∗Pð Þ
d + κ + dPð Þ ϵλ∗P + d + τ1ð Þ d + κ + dPð Þ d + θð Þ d + λ∗Pð Þ − θκλ∗P½ �
+ 1 − πð ÞΛλ∗P d + κ + dPð Þ d + θð Þ d + λ∗Pð Þ

d + κ + dPð Þ d + λ∗Pð Þ d + κ + dPð Þ d + θð Þ d + λP
∗ð Þ − θκλ∗P½ �

+ πΛτ1λ
∗
P d + κ + dPð Þ d + θð Þ d + λ∗Pð Þ

d + κ + dPð Þ ϵλ∗P + d + τ1ð Þ d + λ∗Pð Þ d + γ + dPð Þ d + θð Þ d + λ∗Pð Þ − θκλ∗P½ � :

ð15Þ

Finally, substituteY∗
3 in to pneumonia submodel (9)

force of infection λ∗P = β2Y
∗
3 as

λ∗P = β2Y
∗
3 =

β2πΛϵλ
∗
P d + θð Þ d + λ∗Pð Þ

ϵλ∗P + d + τ1ð Þ d + κ + dPð Þ d + θð Þ d + λ∗Pð Þ − θκλ∗P½ �
+ β2 1 − πð ÞΛλ∗P d + θð Þ

d + κ + dPð Þ d + θð Þ d + λ∗Pð Þ − θκλ∗P½ �
+ β2πΛτ1λ

∗
P d + θð Þ

ϵλ∗P + κ + τ1ð Þ d + κ + dPð Þ d + θð Þ d + λ∗Pð Þ − θκλ∗P½ � ,

ð16Þ

and lettingm1 = d + κ + dP,m2 = d + τ1, and m3 = d + θ, we
have got a2λ

∗
P
2+a1λ

∗
P+a0 = 0 where a2 =m1m3ϵ − θκϵ > 0,

a1 =m1m3dϵ +m1m2m3 −m2θκ − β2Λm3ϵ, and a0 =m1m2
m3μ½1 −R2� > 0 if R2 < 1.

Here, the nonzero equilibrium(s) of the model (9) sat-
isfies f ðλ∗PÞ = a2λ

∗
P
2 + a1λ

∗
P + a0 = 0 so that the quadratic

equation can be analyzed for the possibility of multiple equi-
libriums. It is worth noting that the coefficient a2 is always
positive and a0 is positive (negative) if RP is less than
(greater than) unity, respectively. Hence, we have established
the following result.

Theorem 4. The pneumonia submodel (9) has the following:

(i) Exactly one unique endemic equilibrium if a0 < 0
(i.e.,R2>1)

(ii) Exactly one unique endemic equilibrium if a1<0, and
a0 = 0 or a1

2 − 4a2a0 = 0

(iii) Exactly two endemic equilibriums if a0 > 0 (i.e., R2
< 1), a1 < 0, and a1

2 − 4a2a0 > 0

(iv) No endemic equilibrium otherwise

Here, item (iii) shows the happening of the backward
bifurcation in pneumonia submodel (9), i.e., the locally
asymptotically stable disease-free equilibrium point coexists
with a locally asymptotically stable endemic equilibrium point
ifR2 < 1; examples of the existence of backward bifurcation
phenomenon in mathematical epidemiological models, and
the causes, can be seen in [2, 9, 22, 24–26]. The epidemiolog-
ical consequence is that the classical epidemiological require-
ment of having the reproduction number R2 to be less than
one, even though necessary, is not sufficient for the effective
control of the disease. The existence of the backward bifurca-
tion phenomenon in submodel (9) is now explored.

3.2.5. Bifurcation Analysis. It is instructive to explore the
possibility of backward bifurcation in model (9).

Theorem 5. Model (9) exhibits backward bifurcation at R2
= 1 whenever the inequality D1 >D2 holds.

Here, we apply the center manifold theory in [27]; how-
ever, to apply this theory, the following simplification and
change of variables are made.
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LetY1 = x1,Y2 = x2, Y3 = x3, and Y10 = x4 such
thatN2 = x1 + x2 + x3 + x4. Furthermore, by using vector
notationX = ðx1, x2, x3, x4ÞT , pneumonia submodel (9) can
be written in the form dX/dt = FðXÞ with

F = ð f1, f2, f3, f4ÞT , as follows:

dx1
dt

= f1 = 1 − πð ÞΛ + τ1x2 + θx4 − d + λPð Þx1,
dx2
dt

= f2 = πΛ − ϵλP + d + τ1ð Þx2,
dx3
dt

= f3 = ϵλPx2 + λPx1 − d + κ + dPð Þx3,
dx4
dt

= f4 = κx3 − d + θð Þx4,

ð17Þ

with λP = β2x3, then the method entails evaluating the Jaco-
bian of system (17) at the DFE point E0

2, denoted by JðE0
2Þ,

and this gives us

J E0
2

� �
=

−d τ1
−β2Λ d + τ1ð Þ + β2Λπd

d d + τ1ð Þ θ

0 − d + τ1ð Þ −ϵβ2Λπ

μ + τ1
0

0 0 β2ϵΛπd + β2Λ d + τ1ð Þ − β2Λπμ

d d + τ1ð Þ − d + κ + dPð Þ 0

0 0 κ − d + θð Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

ð18Þ

Consider, next, the case whenRP = 1. Suppose, further,
that β2 = β∗ is chosen as a bifurcation parameter.

Solving for β2 from R2 = 1 as R2 = β2ϵΛπd + β2Λðd
+ τ1Þ − β2Λπd/dðd + τ1Þðd + κ + dPÞ = 1 and we have
got-
β2 = β∗ = dðd + τ1Þðd + κ + dPÞ/ϵΛπd +Λðd + τ1Þ −Λπd
and

Jβ∗ =

−d τ1
−β∗Λ d + τ1ð Þ + β∗Λπd

d d + τ1ð Þ θ

0 − d + τ1ð Þ −ϵβ∗Λπ

d + τ1
0

0 0 β∗ϵΛπd + β∗Λ d + τ1ð Þ − β∗Λπd
d d + τ1ð Þ − d + κ + dPð Þ 0

0 0 γ − μ + θð Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

ð19Þ

After some steps of the calculation, we have got the
eigenvalues of Jβ∗ as λ1 = −d or λ2 = −ðd + τ1Þ or λ3 = 0 or
λ4 = −ðd + θÞ.

It follows that the Jacobian JðE0
2Þ of (17) at the DFE, with

β2 = β∗, denoted by Jβ∗ , has a simple zero eigenvalue with all
the remaining eigenvalues having a negative real part.
Hence, the center manifold theory [27] can be used to ana-
lyze the dynamics of model (9). In particular, Theorem 2
of Castillo-Chavez and Song [28] will be used to show that
model (9) undergoes backward bifurcation atR2 = 1

Eigenvectors of Jβ∗ : for the caseR2 = 1, it can be shown
that the Jacobian of (29) at β2 = β∗ (denoted by Jβ∗) has a
right eigenvectors associated with the zero eigenvalue given
by u = ðu1, u2, u3, u4ÞT with values

Similarly, the left eigenvector associated with the zero
eigenvalues at β2 = β∗ given by v = ðv1, v2, v3, v4ÞT
are v1 = v2 = v4 = 0,v3 = v3 > 0.

After long calculations, the bifurcation coefficients a and b
are obtained as a =D1 −D2 where D1=β

∗Λπdðd + τ1Þðd + θ

Þ + θκdðd + τ1Þ2/d2ðd + τ1Þ2, and D2 = ðϵβ∗Λπdτ1ðd + θÞ +
β∗Λðd + τ1Þ2ðd + θÞ/d2ðd + τ1Þ2Þ + ϵðϵβ∗Λπ/ðd + τ1Þ2Þ.

Thus, the bifurcation coefficient a is positive ifD1 >D2.
Furthermore, b = v3u2u3ðΛðd + τ1Þ −Λπd/dðd + τ1ÞÞ > 0.

Hence, from in Castillo-Chavez and Song [28], model (9)
exhibits a backward bifurcation at R2 = 1 wheneverD1 >D2.

3.3. Analysis of the Full HIV/AIDS-Pneumonia Coinfection.
Having analyzed the dynamics of the two submodels, that
is, HIV/AIDS submodel (8) and the pneumonia submodel
(9), the complete HIV/AIDS-pneumonia coinfection model
(4) is now considered (the analysis is done in the positively
invariant regionΩ given in (7)).

3.3.1. Disease-Free Equilibrium Point of the HIV/AIDS-
Pneumonia Coinfection. The disease-free equilibrium point
of model (4) is obtained by setting all the infectious classes
and treatment classes to zero such that Y3 = Y4 = Y5 = Y6

u1 =
−ϵβ∗Λπdτ1 d + θð Þ − β∗Λ d + τ1ð Þ2 d + θð Þ + β∗Λπd d + τ1ð Þ d + θð Þ + θκd d + τ1ð Þ2

d2 d + τ1ð Þ2
" #

u3,

u2 = −
ϵβ∗Λπ

d + τ1ð Þ2 u3,

u3 = u3 > 0,

u4 =
κ

d + θ
u3:

ð20Þ
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= Y7 = Y8 = Y9 = Y10 = Y11 = Y12 = 0 and hence E0
3== ðΛðd

+ τ1Þ −Λπd/dðd + τ1Þ,Λπ/ðd + τ1 Þ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0Þ:

3.3.2. Effective Reproduction Number of the HIV/AIDS-
Pneumonia Coinfection. The basic reproduction number,
denoted by R0, is the expected number of secondary cases
produced, in a completely susceptible population, by a typi-
cal infective individual [6, 23, 28]. For simple classical
models if R0 < 1, then it means that on average, an infected
individual infects less than one susceptible over the course of
its infectious period and the disease cannot grow. If however,
R0 > 1, then an infected individual infects more than one
susceptible over the course of its infectious period and the
disease will persist. For more complicated models with sev-
eral infected compartments, this simple heuristic definition
of R0 is insufficient [23]. Due to its importance, researchers
have sought to find ways of determiningR0. Two important

concepts in modeling outbreaks of infectious diseases are the
basic reproduction number, universally denoted by R0 and
the generation time (the average time from symptom onset
in a primary case to symptom onset in a secondary case),
which jointly determine the likelihood and speed of epi-
demic outbreaks [29].

Here, we calculated the HIV/AIDS-pneumonia coinfec-
tion effective reproduction numberR3 of model (4) using
the van den Driesch and Warmouth next-generation matrix
approach [23]. The effective reproduction number is the
largest (dominant) eigenvalue (spectral radius) of the matrix
FV−1 = ½∂F iðE0

3Þ/∂xj�½∂νiðE0
3Þ/∂xj�−1 whereF i is the rate of

appearance of new infection in compartment i , νi is the
transfer of infections from one compartment i to another,
and E0

3 is the disease-free equilibrium point E0
3 = ðΛðd + τ1Þ

−Λπd/dðd + τ1Þ,Λπ/d + τ1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0Þ:
After long detailed calculations, the transition matrix F

is given by

F =

A 0 0 0 0 0 0 0 0 0
0 β1 β1ρ1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

2
666666666666666666666664

3
777777777777777777777775

, ð21Þ

and the transmission matrix V is given by

V =

D1 0 0 0 0 0 0 0 0 0
0 D2 0 0 0 0 0 0 0 0
0 −δ1 D3 0 0 0 0 0 0 0
0 0 −δ2 D4 0 0 0 0 0 0
0 0 0 0 D5 0 0 0 0 0
0 0 0 0 −δ3 D6 0 0 0 0
0 0 0 0 0 −δ4 D7 0 0 0
−κ 0 0 0 0 0 0 θ 0 0
0 −κ1 −κ2 −κ3 0 0 0 0 d 0
0 0 0 0 −σ1 −σ2 −σ3 0 0 d

2
666666666666666666666664

3
777777777777777777777775

,

ð22Þ

whereD1 = d + κ + dP,D2 = d + κ1 + δ1,D3 = d + κ2 + δ2
,D4 = d + κ3 + dA,D5 = d + dP + σ1 + δ3
,D6 = d + dP + σ2 + δ4, andD7 = d + dAP + ε3:

Table 3: Parameter values used for the full HIV/AIDS-pneumonia
coepidemic model simulation.

Parameter Value Source

Λ 0:0413 ∗N0 Estimated

d 0.02 Estimated

δ1 0.498 [7]

δ2 0.08 [7]

δ3 0.2885 [6]

δ4 0.3105 [6]

ψ1 1.1 Assumed

ψ2 1.2 Assumed

ψ3 1.4 Assumed

ν 1 Assumed

dP 0.1 [16]

θ 0.1 [18]

dA 0.333 [6]

π 0.2 [18]

τ1 0.0025 [18]

ϵ 0.002 [18]

dAP 0.42 Assumed

κ 0.2 [18]

κ1 0.2 [7]

κ2 0:15 [7]

κ3 0:13 Assumed

σ1 0:498 [7]

σ2 0:08 [7]

σ3 0:230 Assumed

β1 Variable [6]

β2 Variable [6]

ρ1, ρ2, ρ3, ω1, ω2, ω3 1.2,1,1,1,1,1 Assumed
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Then, by using Mathematica, we have got

The characteristic equation of the matrix FV−1 is given
by

Table 5: Sensitivity indices ofR3 =R2.

Sensitivity index Values

SI Λð Þ +1

SI β2ð Þ +1

SI dð Þ -0.4421

SI κð Þ -0.6559

SI dPð Þ -0.3852

SI πð Þ -0.3852

SI ϵð Þ -0.3852

SI τ1ð Þ -0.3852

Table 4: Sensitivity indices ofR3 =R1.

Sensitivity index Values

SI β1ð Þ +1

SI ρ1ð Þ +0.6134

SI δ1ð Þ - 0.0639

SI dð Þ -0.3150

SI κ1ð Þ -0.1371

SI κ2ð Þ -0.0264

SI δ2ð Þ -0.0141

FV−1 =

πϵΛβ2/d + τ1ð Þ + β2 −πΛd +Λ d + τ1½ �/d d + τ1½ �½ �
D1

0 0 0 0 0 0 0 0 0

0 β1
D2

+ δ1β1ρ1
D2D3

β1ρ1
D3

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

2
6666666666666666666666666664

3
7777777777777777777777777775

: ð23Þ

A1 − λð Þ 0 0 0 0 0 0 0 0 0

0 B − λð Þ β1ρ1
D3

0 0 0 0 0 0 0

0 0 0 − λð Þ 0 0 0 0 0 0 0
0 0 0 0 − λð Þ 0 0 0 0 0 0
0 0 0 0 0 − λð Þ 0 0 0 0 0
0 0 0 0 0 0 − λð Þ 0 0 0 0
0 0 0 0 0 0 0 − λð Þ 0 0 0
0 0 0 0 0 0 0 0 − λð Þ 0 0
0 0 0 0 0 0 0 0 0 − λð Þ 0
0 0 0 0 0 0 0 0 0 0 − λð Þ

�������������������������������

�������������������������������

= 0, ð24Þ
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where A1 = ðπϵΛβ2/ðd + τ1ÞÞ + β2½ð−πΛd +Λ½d + τ1�/d½
d + τ1�Þ�/D1, B = ðβ1/D2Þ + ðδ1β1ρ1/D2D3Þ; then, the eigen-
values of FV−1 are λ1 = β2ϵπdΛ + β2Λ½d + τ1� − β2πΛd/D1
ðd + τ1Þ or λ2 = ðβ1/D2Þ + δ1β1ρ1/D2D3 or λ3 = λ4 = λ5 = λ6
= λ7 = λ8 = λ9 = λ10 = 0.

Thus, the effective reproduction number of the HIV/
AIDS-pneumonia coinfection dynamical system (4) is the
dominant eigenvalue of the matrix FV−1 which is given by

R3 = max fλ1, λ 2g =max fβ2ϵπdΛ + β2Λ½d + τ1� − β2
πΛd/D1ðd + τ1Þ, ðβ1/D2Þ + ðδ1β1ρ1/D2D3Þg. Here, R2 = β2
ϵπdΛ + β2Λ½d + τ1� − β2πΛd/ðd + κ + dPÞðd + τ1Þ is the
effective reproduction number for pneumonia-only infected
individual and R1 = ðβ1/ðd + κ1 + δ1ÞÞ + ðβ1ρ1δ1/ðd + κ1 +
δ1Þðd + κ2 + κ2ÞÞ is the basic reproduction for HIV/AIDS-
only infected individual.

Here, R1 represent the basic reproduction number for
HIV/AIDS submodel, R2 and R3 are the effective repro-
duction numbers for the pneumonia submodel and HIV/
AIDS-pneumonia coinfection model, respectively. The fol-
lowing three outcomes are possible: (i) for R1 < 1, the
HIV/AIDS submodel disease-free steady state E1 is globally
stable in the region Ω1, and HIV is not spreading in the
community; (ii) for R2 < 1, then E2 is not globally stable
in the region Ω2, and pneumonia may spread through the
community; (iii) for R3 < 1, the steady state E3 is not glob-
ally stable in the region Ω, and HIV/AIDS-pneumonia coin-
fection may spread through the community.

Note that none of the parameters corresponding to coin-
fection treatment (i.e., σ1 orσ2 orσ3) are present in the
expression forR3, indicating no impact of treating coin-
fected population onR3.

3.3.3. Locally Asymptotically Stability of the Disease-Free
Equilibrium (DFE)

Theorem 6. The disease-free equilibrium of model (4) above
is locally asymptotically stable if R3 < 1, otherwise unstable.

Proof. The Jacobian matrix JðE0
3Þ of model (4) at E0

3 is given
by
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Figure 2: Local stability of endemic equilibrium point of the
coepidemic model (4) whenever R1 = 1:386 at β1 = 2 and R2 =
9:69 at β2 = 0:2.

J E0
3

� �
=

−d τ1 −β2Y
0
1 −

β1
N0 Y

0
1 −

β1
N0 ρ1Y

0
1 0 0 0 θ 0 0 0

0 −d − τ1 −β2ϵY
0
2 −

β1
N0 Y

0
2 −

β1
N0 ρ1Y

0
2 0 0 0 0 0 0 0

0 0 Z1 0 0 0 0 0 0 0 0 0

0 0 0 Z2
β1
N0 ρ1Y

0
1 0 0 0 0 0 0 0

0 0 0 δ1 Z3 0 0 0 0 0 0 0
0 0 0 0 δ2 Z4 0 0 0 0 0 0
0 0 0 0 0 0 Z5 0 0 0 0 0
0 0 0 0 0 0 δ3 Z6 0 0 0 0
0 0 0 0 0 0 0 δ4 Z7 0 0 0
0 0 κ 0 0 0 0 0 0 Z8 0 0
0 0 0 κ1 κ2 κ3 0 0 0 0 −d 0
0 0 0 0 0 0 σ1 σ2 σ3 0 0 −d

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

, ð25Þ
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whereZ1 = β2ϵY
0
2 + β2Y

0
1 − ðd + κ + dPÞ

,Z2 = ðβ1/N0ÞY0
1 − ðd + κ1 + δ1Þ, Z3 = −ðd + κ2 + δ2Þ, Z4 =

−ðd + κ3 + dAÞ,Z5 = −ðd + dP + σ1 + δ3Þ

,Z6 = −ðd + dP + σ2 + δ4Þ,Z7 = −ðd + dAP + σ3Þ,
andZ8 = −ðd + θÞ.

Then, the characteristic equation of the Jacobian matrix
J ðE0

3Þ is given by

After detailed calculations, we have got that
λ1 = λ2 = λ3 = −d < 0 or λ4 = ðd + κ + dPÞ½R2 − 1� < 0 if

R2 < 1 or λ5 = −ðd + τ1Þ < 0 or λ6 = −ðd + κ3 + dAÞ < 0 or
λ7 = −ðd + dP + σ1 + δ3Þ < 0 or λ8 = −ðd + dP + σ2 + δ4Þ < 0
or λ9 = −ðd + dAP + σ3Þ < 0 or λ10 = −ðd + θÞ < 0 or a2
λ2 + a1λ + a0 = 0 for a2 = 1
, a1 = ðd + κ2 + δ2Þ + ðd + κ1 + δ1Þ½1 − ðY0

1/N0ÞRY4
� > 0 if

RY4
< 1

and a0 = ðd + κ2 + δ2Þðd + κ1 + δ1Þ½1 − ðY0
1/N0ÞRY5

Þ > 0 if
RY5

< 1.
Then, by applying Routh-Hurwitz stability criteria since

a2 = 1 > 0, a1 > 0, and a0 > 0, all the eigenvalues of the Jaco-
bian matrix are negative if R1 < 1 andR2 < 1,
i.e.,R3 = max fR1,R2g < 1. Thus, the disease-free equilib-
rium point (DFE) of HIV/AIDS-pneumonia coinfection
model (4) is locally asymptotically stable if

R3 = max R1,R2f g < 1: ð27Þ

☐

3.3.4. Existence of Endemic Equilibrium Point (EEP) for the
Full Model. The endemic equilibrium point (EEP) of full
model (4) is denoted by E∗

3 = ðY∗
1 , Y∗

2 , Y∗
3 , Y∗

4 , Y∗
5 , Y∗

6 , Y∗
7 ,

Y∗
8 , Y∗

9 , Y∗
10, Y∗

11, Y∗
12Þ which occurs when the disease persists

in the community. From the analysis of HIV/AIDS-only

submodel (8) and the pneumonia-only submodel from (9),
we have shown that there is no endemic equilibrium point
if R1 < 1 and there is/are an endemic equilibrium point(s)
if R2 < 1 implies that there is/are endemic equilibrium
point(s) if R3 < 1 for the coinfection model and hence there
is a bifurcation point for the full model. The endemic equi-
librium of system (4) is obtained as

Y∗
1 =

1 − πð ÞΛ + τ1Y
∗
2 + θY∗

10
d + λ∗HC + λ∗PC

, Y∗
2 =

πΛ

ϵλ∗PC + d + τ1 + λ∗HCð Þ ,

Y∗
3 =

ϵλ∗PCY
∗
2 + λ∗PCY

∗
1

νλ∗HC + d + κ + dP
,

Y∗
4 =

λ∗HCY
∗
1

d + κ1 + δ1 + ψ1λ
∗
PC

, Y∗
5 =

δ1H
∗
1

d + κ2 + κ2 + ψ2λ
∗
PC

,

Y∗
6 =

δ2Y
∗
5

d + κ3 + dA + δ3λ
∗
PC

,

Y∗
7 =

ψ1λ
∗
PCY

∗
4 + νλ∗HCY

∗
3

d + dP + σ1 + δ3
, Y∗

8 =
δ2λ

∗
PCY

∗
5 + δ3Y

∗
7

d + dP + σ2 + δ4
,

Y∗
9 =

ψ3λ
∗
PCY

∗
6 + δ4Y

∗
8

d + dAP + κ3
,

−d − λ τ1 −β2Y
0
1 −

β1
N0 Y

0
1 −

β1
N0 ρ1Y

0
1 0 0 0 0 θ 0 0

0 −d − τ1 − λ −β2ϵY
0
2 −

β1
N0 Y

0
2 −

β1
N0 ρ1Y

0
2 0 0 0 0 0 0 0

0 0 Z1 − λ 0 0 0 0 0 0 0 0 0

0 0 0 Z2 − λ
β1
N0 ρ1Y

0
1 0 0 0 0 0 0 0

0 0 0 δ1 Z3 − λ 0 0 0 0 0 0 0
0 0 0 0 δ2 Z4 − λ 0 0 0 0 0 0
0 0 0 0 0 0 Z5 − λ 0 0 0 0 0
0 0 0 0 0 0 δ3 Z6 − λ 0 0 0 0
0 0 0 0 0 0 0 δ4 Z7 − λ 0 0 0
0 0 κ 0 0 0 0 0 0 Z8 − λ 0 0
0 0 0 κ1 κ2 κ3 0 0 0 0 −d − λ 0
0 0 0 0 0 0 σ1 σ2 σ3 0 0 −d − λ

����������������������������������������

����������������������������������������

= 0:

ð26Þ
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Y∗
10 =

κY∗
3

d + θ
, Y∗

11 =
κ1Y

∗
4 + κ2Y

∗
5 + κ3Y

∗
6

d
, andY∗

12 =
κ1Y

∗
7 + κ2Y

∗
8 + κ3Y

∗
9

d
:

ð28Þ

Summary of endemic equilibrium points: the explicit
computation of the endemic equilibrium of coinfection
model (4) given in (28) in terms of model parameters is dif-
ficult analytically; however, model (4) endemic equilibriums
correspond to the following:

(1) E∗
4 = ðY∗

1 , 0, Y∗
4 , Y∗

5 , Y∗
6 , 0, 0, 0, 0, 0, Y∗

11, 0Þ,ifR1 > 1
is the pneumonia free (HIV) endemic equilibrium
point. The analysis of the equilibrium E∗

1 is similar
to the endemic equilibrium E∗

1 in model (7)

(2) E∗
5 = ðY∗

1 , Y∗
2 , Y∗

3 , 0, 0, 0, 0, 0, 0, Y∗
10, 0, 0Þ, if R2 > 1 is

the HIV/AIDS free (pneumonia) endemic equilibrium
point. The analysis of the equilibrium E∗

5 is similar to
the endemic equilibrium E∗

2 in equation (9)

(3) E∗
6 = ðY∗

1 , Y∗
2 , Y∗

3 , Y∗
4 , Y∗

5 , Y∗
6 , Y∗

7 , Y∗
8 , Y∗

9 , Y∗
10, Y∗

11,
Y∗
12Þ is the HIV/AIDS-pneumonia coinfection

endemic equilibrium point. It exists when each com-
ponent of E∗

6 in equation (28) is positive and sum-
marizes the existence of the endemic equilibrium
points in the following theorem

3.3.5. Bifurcation Analysis. The threshold quantity R3 =
max fR1,R2g is the effective reproduction number of the
system (4) where R1 and R2 are defined as above.

Theorem 7. Model (4) exhibits the phenomenon of backward
bifurcation at R3 = 1 whenever the inequality G1 >G2 holds.

The phenomenon of backward bifurcation can be proved
with the concept of the center manifold theory [10, 27] on
coepidemic model (4). To apply this theory, the following
simplification and change of variables are made.

Let Y1 = x1, Y2 = x2, Y3 = x3,Y4 = x4,Y5 = x5, Y6 = x6
,Y7 = x7,Y8 = x8,Y9 = x9,Y10 = x10,Y11 = x11,and Y12 = x12
so that N = x1 + x2 + x3 + x4+x5,+x6+x7,+x8+x9+x10+x11
+x12.

Further, by using vector notation X =
ðx1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12ÞT , complete
model (4) can be written in the form dX/dt = FðXÞ with F
= ð f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12ÞT , as follows:

dx1
dt

= f1 = 1 − πð ÞΛ + τ1x2 + θx10 − d + λHC + λPCð Þx1,

dx2
dt

= f2 = πΛ − ϵλPCx2 − d + τ1 + λHCð Þx2,

dx3
dt

= f3 = ϵλPCx2 + λPCx1 − νλHC + d + κ + dPð Þx3,

dx4
dt

= f4 = λHCx1 − d + κ1 + δ1 + ψλPCð Þx4,

dx5
dt

= f5 = δ1x4 − d + κ2 + κ2 + ψ2λPCð Þx5,

dx6
dt

= f6 = δ2x5 − d + κ3 + dA + ψ3λPCð Þx6,

dx7
dt

= f7 = ψ1λPCx4 + νλHCx3 − d + dP + σ1 + δ3ð Þx7,

dx8
dt

= f8 = ψ2λPCx5 + δ3x7 − d + dP + σ2 + δ4ð Þx8,

dx9
dt

= f9 = ψ3λPCx6 + δ4x8 − d + dAP + κ3ð Þx9,

dx10
dt

= f10 = κx3 − d + θð Þx10,

dx11
dt

= f11 = κ1x4 + κ2x5 + κ3x6 − dx11,

dx12
dt

= f12 = κ1x7 + κ2x8 + κ3x9 − dx12, ð29Þ

with λHC = β1/N½x4 + ρ1x5 + ρ2x7 + ρ2x8�
where ρ3 ≥ ρ2 ≥ ρ1 ≥ 1
and λPC = β2½x3 + ω1x7 + ω2x8 + ω3x9�
whereω3 ≥ ω2 ≥ ω1 ≥ 1; then, the method entails evaluating
the Jacobian of system (29) at the DFE E0

3, denoted by JðE0
3

Þ, and this gives us

J E0
3

� �
=

−d τ1 F1 F2 F3 0 F4 F5 F6 θ 0 0
0 F7 F8 F9 F10 0 F11 F12 F13 0 0 0
0 0 F14 0 0 0 F15 F16 F17 0 0 0
0 0 0 F18 F19 0 F20 F21 0 0 0 0
0 0 0 δ1 F22 0 0 0 0 0 0 0
0 0 0 0 δ2 F23 0 0 0 0 0 0
0 0 0 0 0 0 F24 0 0 0 0 0
0 0 0 0 0 0 δ3 F25 0 0 0 0
0 0 0 0 0 0 0 d4 F26 0 0 0
0 0 κ 0 0 0 0 0 0 F27 0 0
0 0 0 κ1 κ2 κ3 0 0 0 0 −d 0
0 0 0 0 0 0 κ1 κ2 κ3 0 0 −d

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

ð30Þ

where F1 = −β2Y
0
1, F2 = −β1ðY0

1/ðY0
1 + Y0

2ÞÞ
, F3 = −β1ρ1ðY0

1/ðY0
1 + Y0

2ÞÞ, F4 = −β1ρ2ðY0
1/ðY0

1 + Y0
2ÞÞ − β2

ω1Y
0
1, F5 = −β1ρ3ðY0

1/ðY0
1 + Y0

2ÞÞ − β2ω2Y
0
1

, F6 = −β2ω3Y
0
1, F7 = −ðd + τ1Þ, F8 = −ϵβ2Y

0
2

, F9 = −β1ðY0
2/ðY0

1 + Y0
2ÞÞ, F10 = −β1ρ1ðY0

2/ðY0
1 + Y0

2ÞÞ,
F11 = −ϵβ2ω1V

0
P − β1ρ2ðY0

P/ðY0
1 + Y0

PÞÞ, F12 = −ϵβ2ω2
V0

P − β1ρ3ðY0
2/ðY0

1 + Y0
2ÞÞ, F13 = −ϵβ2ω3Y

0
2

, F14 = ϵβ2Y
0
2 + β2Y

0
1 − ðd + κ + dPÞ

, F15 = ϵβ2ω1Y
0
2 + β2ω1Y

0
1, F16 = ϵβ2ω2Y

0
2 + β2ω2Y

0
1

, F17 = ϵβ2ω3Y
0
2 + β2ω3Y

0
1, F18 = β1ðY0

1/ðY0
1 + Y0

2ÞÞ − ðd + κ1
+ δ1Þ, F19 = β1ρ1ðY0

1/ðY0
1 + Y0

2ÞÞ, F20 = β1ρ2ðY0
1/ðY0

1 + Y0
2ÞÞ

, F21 = β1ρ3ðY0
1/ðY0

1 + Y0
2ÞÞ, F22 = −ðd + κ2 + δ2Þ

, F23 = −ðd + κ3 + dAÞ, F24 = −ðd + dP + σ1 + δ3Þ
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, F25 = −ðd + dP + σ2 + δ4Þ, F26 = −ðd + dAP + σ3Þ, and F27
= −ðd + θÞ.

Without loss of generality, consider the case when R2
>R1, and R3 = 1, so that R2 = 1. Furthermore, let β2 =
β∗ is chosen as a bifurcation parameter. Solving for β2 from
R2 = 1 as R2 = β2ϵΛπd + β2Λðd + τ1Þ − β2Λπd/dðd + τ1Þð
d + κ + dPÞ = 1, we have got the value β∗ = β2 = dðd + τ1Þðd
+ κ + dPÞ/ϵΛπd +Λðd + τ1Þ −Λπd.

After solving the Jacobian JðE0
3Þ of the system (29) at the

DFE, with β2 = β∗, we obtained the eigenvalues as λ1 = −d
< 0 or λ2 = −ðd + τ1Þ < 0 or λ3 = 0 or λ4 = −d < 0
or λ5 = −d < 0 or λ6 = −ðd + θÞ < 0 or λ7 = −ðd + dAP + κ3Þ
< 0 or λ8 = −ðd + κ3 + dAÞ < 0 or λ9 = −ðd + dP + σ1 + δ3Þ <
0 or λ10 = −ðd + dP + σ1 + δ4Þ < 0 or

a2λ
2 + a1λ + a0 = 0, ð31Þ

where a2 = 1 > 0, a1 = ðd + κ1 + δ1Þ½1 − ðY0
1/ðY0

1 + Y0
4ÞÞRY4

�
+ ðd + κ2 + δ2Þ > 0 if RY4

< 1, and a0 = a0 = ðd + κ1 + δ1Þðd
+ κ2 + δ2Þ½1 − ðY0

1/ðY0
1 + Y0

2ÞÞR1� > 0 if R1 < 1.
Equation (31) has/have no positive root/s whenever R1

< 1, and hence, both eigenvalues are negative. It follows that
the Jacobian JðE0

3Þ of (29) at the DFE, withβ2 = β∗, denoted
by Jβ∗ , has a simple zero eigenvalue (with all other eigen-
values having negative real part). Hence, the center manifold
theory [27] can be used to analyze the dynamics of model
(4). In particular, the Castillo-Chavez and Song theorem
[28] will be used to show that model (4) undergoes back-
ward bifurcation at RP = 1.

Eigenvectors of Jβ∗ : for the case when RP = 1, the right
eigenvectors of the Jacobian of (29) at β2 = β∗ (denoted by
Jβ∗ ) associated with the zero eigenvalue given by u =
ðu1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12ÞT
are u1 = ðð−τ1F8F27 + F1F7F27 − θγF7Þ/dF7F27Þu3
, u2 = −ðF8/F7Þu3, u3 = u3 > 0, u10 = ð−κ/F27Þu3 , and u4 = u5
= u6 = u7 = u8 = u9 = u11 = u12 = 0.

The left eigenvectors associated with the zero eigenvalue
atβ2 = β∗

2 satisfying v:w = 1 given by v = ðv1, v2, v3, v4, v5, v6
, v7, v8, v9, v10, v11, v12Þ are v1 = v2 = v4 = v5 = v6 = v10 = v11
= v12=0, v3 = v3 > 0, v7 = ðð−δ3δ4F17 + δ3F16F26 − F15F25
F26Þ/F24F25F26Þv3, v8 = ðδ4F17 − F16F26Þ/F25F26v3, and v9
= −ðF17/F26Þv3.

After going through detailed computations and simplifi-
cation, we have the following bifurcation coefficients a and b
as

a = 2v3u1u3
∂2 f3 0, 0ð Þ
∂x1∂x3

+ 2v3u2u3
∂2 f3 0, 0ð Þ
∂x2∂x3

= 2β∗
2v3u3 u1 + ϵu2½ �:

ð32Þ

⟹a = 2β∗
2v3u3

2½G1 −G2� where G1=θκ/dðd + θÞ and
G2 = ϵβ∗τ1V

0
P + β∗ðd + τ1ÞY0

1 + ϵβ∗dY0
2/dðd + τ1Þ. Thus,

the bifurcation coefficient a is positive wheneverG1 > G2.
Furthermore, b = v3u3ð∂2 f2ð0, 0Þ/∂x3∂β2Þ = v3u3ðϵY0

2 + Y0
1Þ

> 0.

Hence, it follows from in Castillo-Chavez and Song [28]
that model (4) exhibits a backward bifurcation at R3 =R2
= 1 wheneverG1 >G2.

Theorem 8.

(i) Model (4) will undergo backward bifurcation
if a =G1 >G2 > 0

(ii) Model (4) will undergo forward bifurcation if a =G1
> G2 < 0

4. Sensitivity and Numerical Analysis

4.1. Sensitivity Analysis. Definition. The normalized forward
sensitivity index of a variableR3 that depends differentiably
on a parameter p is defined as SIðpÞ = ð∂R3/∂pÞ ∗ ðp/R3Þ
[18].

Sensitivity indices allow us to examine the relative
importance of different parameters in pneumonia and
HIV/AIDS spread and prevalence. The most sensitive
parameter has the magnitude of the sensitivity index larger
than that of all other parameters. We can calculate the sen-
sitivity index in terms of R1 and R2
sinceR3 = max fR1,R2g. Sensitivity analysis results and
the numerical simulation are given in this section with
parameters values given in Table 3 where N0 is the total
number of the initial population of complete model (4).

Using the values of parameters in Table 3, the sensitivity
indices are calculated in Tables 4 and 5.

In this paper, with parameter values in Table 3, we have
got R1 = 1:386 at β1 = 2 implies HIV/AIDS spreads in the
community and also we have got the indices as shown in
Table 4. Here, sensitivity analysis shows that the human
recruitment rate Λ and HIV/AIDS spreading rate β1 have
the highest impact on the basic reproduction number of
HIV/AIDS (R1).
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Figure 3: Effect of pneumonia vaccination on R2.
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Similarly, with parameter values in Table 3, we have got
R2 = 9:69 at β2 = 0:2 imply that pneumonia spreads
throughout the community and also we have got the indices
as shown in Table 4. Here, sensitivity analysis shows that the
foremost sensitive positive parameters are the human
recruitment rate Λ and the pneumonia spreading rate β2.
The foremost sensitive negative parameter is treatment rate
of pneumonia ðκÞ which is inversely related to the effective
reproduction number R2, i.e., a smaller amount of increase
in this parameter value will lead to a greater amount of
reduction in the effective reproduction number while a
smaller amount of decrement will cause a big increment in
the basic reproduction number. Epidemiologically, the most

sensitive parameters to R1 and R2 which can be controlled
through interventions and preventions are found to beβ1
and β2, respectively.

4.2. Numerical Analysis. In this section, numerical simula-
tion is performed for complete HIV/AIDS-pneumonia coe-
pidemic model (4). With ode45, we have checked the effect
of some parameters in the spreading as well as for the con-
trol of pneumonia only, HIV/AIDS only, and coepidemic
of HIV/AIDS and pneumonia. The parameter values put
forward in Table 3 are used for numerical simulation. In
the numerical simulation part, we investigated the stability
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Figure 4: Effect of pneumonia transmission on R2.
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Figure 5: Effect of treatment on pneumonia-infected population.
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β1 = 0:5.
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of the endemic equilibrium point of complete model (4),
parameter effects on the reproduction numbers, and the
impact of treatment mainly on dually infected individuals
in the community.

4.2.1. Local Stability of Endemic Equilibrium Point of
Complete Model (4). Figure 2 shows that in the long run
(after 50 years), the solutions of dynamical system (4) will
be converging to its endemic equilibrium point, i.e., the
endemic equilibrium point is locally asymptotically stable
whenever

R3 = max R1,R2f g =max 1:386, 9:69f g = 9:69 > 1: ð33Þ

4.2.2. Effect of Parameters on the Threshold Parameter R2.
In this subsection, as we see in Figure 3, we have investigated
the effect of pneumonia vaccination portion π on the pneu-
monia effective reproduction number R2. The figure
reflects that when the value ofπ increases, the pneumonia
effective reproduction number is going down, and whenever
the value of π > 0:64 imply R2 < 1: Therefore, public policy-
makers must concentrate on maximizing the values of pneu-
monia vaccination portion π to prevent and control
pneumonia spreading.

In this subsection, as we see in Figure 4, we have investi-
gated the effect of pneumonia spreading rate β2 on the pneu-
monia effective reproduction number R2 by keeping the
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Figure 7: Effect of treatment on chronic HIV-infected population at β1 = 0:5.
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Figure 8: Effect of treatment on AIDS patients at β1 = 0:5.
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other rates as in Table 3. Figure 4 reflects that when the value
ofβ2 increases, the pneumonia effective reproduction num-
ber R2 increases, and whenever the value of β2 < 0:022
implies R2 < 1: Therefore, public policymakers must con-
centrate on minimizing the values of pneumonia spreading
rate β2 to minimize pneumonia effective reproduction
numberR2.

4.2.3. Effect of Pneumonia Treatment Rate on Infectious
Population. In this subsection, as we see in Figure 5, we have
investigated the effect of κ in decreasing the number of

pneumonia-only infectious populations. The figure reflects
that when the values of κ increase, the number of
pneumonia-only infectious population is going down.
Therefore, public policymakers must concentrate on maxi-
mizing the values of treatment rate κ to pneumonia disease.

4.2.4. Effect of Treatment Rates on HIV/AIDS Infectious
Population. In this subsection, as we see in Figures 6–8,
respectively, we have investigated the effects of κ1, κ2, and
κ3 in decreasing the number of acute HIV only, chronic
HIV only, and AIDS-infected population, respectively. The
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Figure 9: Effect of β1 on acute HIV-pneumonia coepidemic population.
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Figure 10: Effect of treatment on acute HIV and pneumonia coepidemic.
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figures reflect that when the values of κ1, κ2, and κ3 increase,
the number of acute HIV only, chronic HIV only, and
AIDS-infected population is going down, respectively.
Therefore, public policymakers must concentrate on maxi-
mizing the values of treatment rate of individuals to HIV/
AIDS infection.

4.2.5. Effect of HIV/AIDS Transmission Rate on Coinfectious
Population. In this section, we see in Figure 9 the effect of the

spreading rate of HIV/AIDS β1 on the acute HIV-
pneumonia coepidemic populationY7. The figure reflects
that as the value of the transmission rate (β1) of HIV/AIDS
is increased, the coepidemic population increases, which
means the expansion of coepidemic of HIV/AIDS-pneumo-
nia will increase. To control coepidemic of HIV/AIDS-pneu-
monia, decreasing the spreading rate of HIV/AIDS is
important. Therefore, stakeholders must concentrate on
decreasing the spreading rate of HIV/AIDS by using the
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Figure 11: Effect of treatment on chronic HIV and pneumonia.
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Figure 12: Effect of treatment on AIDS and pneumonia coepidemic.
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treatment and appropriate method of prevention mecha-
nism to bring down the expansion of coepidemic in the
community.

4.2.6. Effect of Treatment Rates on HIV/AIDS-Pneumonia
Coepidemic Population. In this subsection, as we see in
Figures 10–12, we have investigated the effects of treatment
rates σ1,σ2, and σ3 in decreasing the number of acute HIV
and pneumonia, chronic HIV and pneumonia, and AIDS
and pneumonia coinfectious population, respectively. The
figures reflect that when the values of σ1,σ2, and σ3 increase,
the number of acute HIV-pneumonia, chronic HIV-pneu-
monia, and AIDS-pneumonia coepidemic population is
going down, respectively. Therefore, public policymakers
must concentrate on maximizing the values of treatment
rates of HIV/AIDS-pneumonia coepidemic population.

5. Discussion

In Section 1, we reviewed and introduced the epidemiology
of HIV/AIDS, pneumonia, and HIV/AIDS-pneumonia coe-
pidemic. In Section 2, we construct the compartmental
HIV/AIDS-pneumonia coepidemic dynamical system using
an ordinary differential equation and we partitioned it into
twelve distinct compartments. In Section 3, we analyzed
the model qualitatively. To study the qualitative behavior
of complete model (4), first, we split the complete model into
two, which are HIV/AIDS-only and pneumonia-only
models. The qualitative behaviors, i.e., the positivity of
future solutions of the models, boundedness of the dynami-
cal system, disease-free equilibrium points, basic reproduc-
tion numbers, endemic equilibriums, stability analysis of
disease-free equilibrium points, stability analysis of endemic
equilibrium points, bifurcations analysis of pneumonia-only
model and the complete HIV/AIDS-pneumonia coepidemic
model, and sensitivity analysis of reproduction numbers of
HIV/AIDS-only and pneumonia-only model, are analyzed
in their respective order, and numerically, we experimented
on the stability of endemic equilibrium point of the HIV/
AIDS-pneumonia coepidemic model, effect of basic parame-
ters in the expansion or control of pneumonia only, HIV/
AIDS only, and HIV/AIDS-pneumonia coepidemic infec-
tions and parameter effects on the infected population. From
the result, we conclude that increasing both the pneumonia
treatment rate and pneumonia vaccination portion rate has
a great contribution to bringing down pneumonia infection
as well as the coepidemic in the community. Similarly,
increasing the HIV/AIDS treatment rates also has a contri-
bution to minimizing the expansion of HIV/AIDS infection.
The coepidemic treatment rates also influence minimizing
coepidemic population if its value is increased. The other
result obtained in this section is that decreasing the trans-
mission rates has a great influence of controlling coepidemic
in the population.

6. Conclusion

A realistic compartmental mathematical model on the
spread and control of HIV/AIDS-pneumonia coepidemic

incorporating pneumonia vaccination and treatment for
both infections are available at each stage of the infection
in a population constructed and analyzed. We have shown
the positivity and boundedness of the complete HIV/
AIDS-pneumonia coepidemic model. Using center manifold
theory, we have shown that the pneumonia-only infection
and the complete HIV/AIDS-pneumonia coepidemic
models undergo the phenomenon of backward bifurcation
whenever their corresponding effective reproduction num-
bers are less than one. The complete model has a disease-
free equilibrium that is locally asymptotically stable when-
ever the maximum of the reproduction numbers of the two
submodels described above is less than one. Numerical sim-
ulation shows that the complete HIV/AIDS-pneumonia coe-
pidemic model endemic equilibrium point is locally
asymptotically stable when its effective reproduction num-
ber is greater than one. These results have important public
health implications, as they govern the elimination and/or
persistence of the two diseases in a community. By analyzing
the various associated reproduction numbers, we have
shown that the impact of some parameters changes on the
associated reproduction numbers to give future recommen-
dations for the stakeholders in the community. From the
numerical result, we have got the complete model reproduc-
tion number is R3 = max fR1,R2g =max f1:386, 9:69 g =
9:69 at β1 = 2 and β2 = 0:2: From our numerical result, we
recommend that public policymakers must concentrate on
maximizing the values of pneumonia vaccination portion
and treatment rate of individuals to pneumonia disease.
Finally, some of the main epidemiological findings of this
study include pneumonia vaccination and treatment against
disease has the effect of decreasing the pneumonia and coe-
pidemic disease expansion and prevalence and reducing the
progression rate of HIV infection to the AIDS stage and the
HIV/AIDS prevalence.

6.1. Limitation of the Study. Due to conflict in our country
Ethiopia, it is difficult to incorporate experimental data in
the study.
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