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Alveolar type II (AT II) is a key structure of the distal lung epithelium and essential to maintain normal lung homeostasis.
Dedifferentiation of AT II cells is significantly correlated with lung tumor progression. However, the potential molecular
mechanism and clinical significance of AT II-associated genes for lung cancer has not yet been fully elucidated. In this study,
we comprehensively analyzed the gene expression, prognosis value, genetic alteration, and immune cell infiltration of eight AT
II-associated genes (AQP4, SFTPB, SFTPC, SFTPD, CLDN18, FOXA2, NKX2-1, and PGC) in Nonsmall Cell Lung Cancer
(NSCLC). The results have shown that the expression of eight genes were remarkably reduced in cancer tissues and observably
relating to clinical cancer stages. Survival analysis of the eight genes revealed that low-expression of CLDN18, FOXA2, NKX2-
1, PGC, SFTPB, SFTPC, and SFTPD were significantly related to a reduced progression-free survival (FP), and low CLDN18,
FOXA2, and SFTPD mRNA expression led to a short postprogression survival (PPS). Meanwhile, the alteration of 8 AT II-
associated genes covered 273 out of 1053 NSCLC samples (26%). Additionally, the expression level of eight genes were
significantly correlated with the infiltration of diverse immune cells, including six types of CD4+T cells, macrophages,
neutrophils, B cells, CD8+ T cells, and dendritic cells. In summary, this study provided clues of the values of eight AT II-
associated genes as clinical biomarkers and therapeutic targets in NSCLC and might provide some new inspirations to assist
the design of new immunotherapies.
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1. Introduction

Lung cancer is one of the most commonly diagnosed cancers
and the leading cause of cancer-related death in the world
[1–3]. Nonsmall cell lung cancer (NSCLC) is one of the most
majorly types of lung cancer (approximately 85%), mainly
including lung adenocarcinoma (LUAD) and lung squa-
mous cell carcinoma (LUSC) [2, 4–7]. Studies have demon-
strated that the average five-year survival rate of NSCLC
patients is 15% [1, 8]. This poor survival rate is attributable
to many factors, such as delays in the diagnosis of lung can-
cer and limited therapies currently available [9, 10]. Over the
past decade, with the improvement of treatment technolo-
gies and the emergence of the era of precision radiotherapy,
the diagnosis, and treatment of lung cancer have been
improved to a certain extent [9, 11–16]. Despite advances
in treatment, the overall prognosis for NSCLC has not yet
improved significantly.

The alveolar cells are mainly composed of alveolar type I
(AT I) cells and alveolar type II (AT II) cells [17, 18]. There
into, AT II is a key structure of the distal lung epithelium
and has a secretory function that is essential to maintaining
normal lung homeostasis [19]. In recent years, there is cur-
rently substantial evidence showing that AT II and AT II-

associated genes are significantly related to the occurrence
and development of multiple diseases [20]. One of the path-
ological features of the idiopathic pulmonary fibrosis (IPF)
lung is the senescence of AT II [21, 22]. AT II is also
involved in the occurrence and development of Chronic
obstructive pulmonary disease (COPD) through the upregu-
lated expression of many anti- or proinflammatory genes,
including genes encoding oxygenase 2 (HO-2) and inducible
nitric oxidase (iNOS) [20]. Importantly, several studies have
also shown that AT II plays a crucial role in the oncogenesis
of lung cancer [8, 23]. Single-cell RNA sequencing of lung
cancer tissues revealed that some AT II-associated genes
expressed differently in the lung cancer cells, including aqua-
porin 4 (AQP4), surfactant pulmonary associated protein B
(SFTPB), surfactant pulmonary associated protein C
(SFTPC), surfactant pulmonary associated protein D
(SFTPD), claudin 18 (CLDN18), forkhead box A2 (FOXA2),
NKX homeobox-1 gene (NKX2-1), and pepsinogen C (PGC)
[24]. However, the potential values of these AT II cell-related
genes in NSCLC have not been fully clarified.

Therefore, in this study, we performed a comprehensive
analysis, including analysis of gene expression, prognosis
value, genetic alteration, and immune cell infiltration of
these eight AT II-associated genes in two subtypes of
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Figure 1: Expression of AT II-associated genes in different cancer types (Oncomine). The graphic demonstrates the numbers of datasets
with statistically significant alterations in the mRNA expression of the target gene: upregulated (red) and downregulated (blue). The
following criteria were used: p value of 0.05, fold change of 2, and gene rank of 10%. As shown in the green frame, expression levels of
AQP4, SFTPB, SFTPC, SFTPD, CLDN18, FOXA2, NKX2-1, and PGC were significantly reduced in lung cancer.
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Figure 2: The expressions of the AT II-associated genes in LUAD and normal tissues and LUSC and normal tissues (GEPIA). The results
indicated that AQP4, CLDN18, PGC, SFTPB, SFTPC, and SFTPD were lower in LUAD tissues than in normal tissue, and AQP4, CLDN18,
FOXA2, NKX2-1, PGC, SFTPB, SFTPC, and SFTPD were lower in the LUSC tissues than the normal tissues. ∗p < 0:01.
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NSCLC (LUAD and LUSC). It aims to provide clinicians
with additional information to assess and adjust the diagnos-
tic methods and treatment options of NSCLC patients.

2. Materials and Methods

2.1. Oncomine. Oncomine database is a publicly accessible
online cancer microarray database. (http://www.oncomine
.org/), which provides a genome-wide expression analysis
for a wide variety of tumor types [25]. In this study, it was
utilized to analyze the transcription levels of AT II-
associated genes in NSCLC tissues and their corresponding
adjacent normal control samples. The pvalue < 0:05 (Stu-
dent’s t-test), fold change of 2, and gene rank in the top
10% were set as the significance.

2.2. Gene Expression Profiling Interactive Analysis (GEPIA).
GEPIA (http://gepia.cancer-pku.cn/index.html) is a newly
developed interactive web server for analyzing the RNA
sequencing expression data of 9736 tumors and 8587 normal

samples from the TCGA and Genotype-Tissue Expression
dataset [26]. GEPIA offers customizable functions such as
tumor/normal differential expression analysis, patient sur-
vival analysis, similar gene detection, correlation analysis,
and dimensionality reduction analysis. The Student’s t-test
was used to generate a p value (p value < 0:01). In this study,
we performed the pathological type and stage analysis of
eight AT II-associated genes using the “LUAD” and “LUSC”
datasets (one-way ANOVA).

2.3. Kaplan-Meier Plotter. Kaplan-Meier Plotter (https://
kmplot.com/analysis/) is a useful prognostic biomarker
assessment tool that can assess the effect of 54 k genes on
survival in 21 cancer types [27]. In this study, LUAD and
LUSC patients were split into high and low-expression
groups based on median values of AT II-associated genes
expression and analyze their prognostic value in LUAD
and LUSC regarding OS (overall survival), FP (first progres-
sion), and PPS (postprogression survival). The hazard ratio
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Figure 3: Correlation between expression of AT II-associated genes and tumor stage in NSCLC (GEPIA). The expressions of AQP4,
CLDN18, FOXA2, NKX2-1, PGC, SFTPB, SFTPC, and SFTPD were distinctly related to patients’ individual cancer stages (one-way
ANOVA).

Table 1: The relationship between the expression level of AT II-associated genes and NSCLC prognosis.

AT II-associated genes
Kaplan-Meier plotter (log rank p) GEPIA (log rank p)

OS FP PPS DFS

AQP4 2.40E-04 5.60E-02 4.00E-01 7.40E-01

CLDN18 1.90E-05 9.10E-04 3.20E-02 6.90E-01

FOXA2 1.60E-12 6.70E-05 2.10E-02 8.10E-01

NKX2-1 4.90E-10 3.10E-02 1.20E-01 1.30E-01

PGC 1.00E-08 2.40E-04 5.90E-01 2.20E-01

SFTP-B 6.30E-10 4.80E-02 3.80E-01 4.20E-01

SFTPC 1.40E-03 4.00E-02 1.10E-01 2.90E-01

SFTPD 1.60E-10 6.20E-05 2.10E-02 4.00E-01

Note: OS: overall survival; FP: progression-free survival; PPS: postprogression survival; DFS: disease-free survival.
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with 95% confidence intervals and log rank p value was cal-
culated (p value < 0:05).

2.4. cBioPortal. cBioPortal (http://www.cbioportal.org/) is a
comprehensive web resource that could visualize and ana-
lyze multidimensional cancer genomics data [28, 29]. In this
study, we analyze the AT II-associated genes’ multiple alter-
ations for LUAD (TCGA, Pan-Cancer Atlas) and LUSC
(TCGA, Pan-Cancer Atlas), which contained mutations,
structural variants, and copy-number alterations.

2.5. STRING. STRING (https://string-db.org/) is a database
of known and predicted protein–protein interactions (PPI)
[30]. In this study, we conducted associations among the
PPI network of AT II-associated genes to explore the role
of AT II-related genes’ coexpressed genes with STRING.

2.6. GeneMANIA. GeneMANIA (http://www.genemania
.org) is a useful website that can find information on pro-
tein–protein, protein–DNA, and genetic interactions, path-
ways, reactions, gene and protein expression data, protein
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Figure 4: Prognostic value of AT II-associated genes (AQP4, CLDN18, FOXA2, and NKX2-1) in LUAD and LUSC (Kaplan-Meier plotter).
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domains, and phenotypic screening profiles [31]. In this
study, we used it to measure the attribute above for AT II-
associated genes.

2.7. Timer. Timer web server (https://cistrome.shinyapps.io/
timer/) is a comprehensive resource for systematic analysis
of the infiltration of different immune cells and their clinical
impact across diverse cancer types [32]. In this study, we use

the “Gene module” and “Survival module” to explore the
correlation of eight AT II-associated gene levels and the
immune cell infiltration.

3. Results

3.1. Differential Expression of AT II-associated genes in
Patients With NSCLC. Firstly, we explored the expression
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levels of 8 AT II-associated genes in lung cancer and normal
lung tissues using the ONCOMINE database. As the results
shown in Figure 1, the expression levels of AQP4, CLDN18,
FOXA2, NKX2-1, PGC, SFTPB, SFTPC, and SFTPD were all
remarkably reduced in lung cancer vs. normal tissues in
multiple datasets. Furthermore, we compared the expres-
sions of the eight AT II-associated genes in LUAD (483
LUAD and 347 normal tissues) and LUSC (486 LUSC and
338 normal tissues) by GEPIA. The results in Figure 2 indi-
cated that the expression of AQP4, CLDN18, PGC, SFTPB,
SFTPC, and SFTPD decreased in LUAD tissues and AQP4,
CLDN18, FOXA2, NKX2-1, PGC, SFTPB, SFTPC, and
SFTPD decreased in in the LUSC tissues. We also contrasted
the relative expression levels of eight AT II-related genes in
LUAD and LUSC tissues and determined that among all
the factors we evaluated, SFTPB was the highest expression
in both LUAD and LUSC (Figure S1). Taken together, our
results showed that the expressions of AQP4, CLDN18,
FOXA2, NKX2-1, PGC, SFTPB, SFTPC, and SFTPD were
significant decrease in in NSCLC.

3.2. Correlation Between AT II-associated genes and Tumor
Stages of NSCLC Patients. Lung cancer is divided into four
stages according to the disease progression. As the condition
develops, the patient’s physiology and physical condition
will also constantly change. Therefore, we assessed the corre-
lation between the expression of AT II-associated genes and
the patients’ pathological cancer stages of LUAD and LUSC
patients by using GEPIA. We found that the expression of all
eight AT II-associated genes are significant correlated with
pathological stage of NSCLC (Figure 3). AQP4
(p = 1:81e − 06), CLDN18 (p = 4:64e − 06), FOXA2
(p = 1:28e − 04), NKX2-1(p = 7:56e − 04), PGC
(p = 3:08e − 07),SFTPB (p = 3:33e − 07), SFTPC
(p = 1:4e − 08), and SFTPD (p = 1:54e − 07) show that the
AT II-associated genes were inclined to high expression in
NSCLC patients with advanced cancer stages (Figure 3).
These data suggested that the 8 AT II-associated might play
a significant role in the tumorigenesis and progression of
NSCLC.

3.3. Prognostic Features of AT II-associated genes in
Patients with Lung Cancer. To analyze the prognostic
values of AT II-associated genes in NSCLC patients, we
assessed the correlation between these genes and overall
survival (OS), progression-free survival (FP), and postpro-
gression survival (PPS) using Kaplan-Meier plotter
(Table 1). The results shown in Figure 4 and Figure S2
are the low-expression of genes including AQP4
(HR = 0:74, p = 2:40e − 04), CLDN18 (HR = 0:76, p = 1:9e
− 05), FOXA2 (HR = 0:63, p = 1:6e − 12), NKX2-1
(HR = 0:67, p = 4:9e − 10), PGC (HR = 0:69, p = 1e − 08),
SFTPB (HR = 0:67, p = 6:3e − 10), SFTPC (HR = 0:81, p =
1:40e − 03), and SFTPD (HR = 0:66, p = 1:6e − 10) were
significantly associated with low OS. And the low-
expression of CLDN18 (HR = 0:72, p = 9:10e − 04),
FOXA2 (HR = 0:68, p = 6:7e − 05), NKX2-1 (HR = 0:81, p
= 3:10e − 02), PGC (HR = 0:7, p = 2:40e − 04), SFTPB
(HR = 0:82, p = 4:80e − 02), SFTPC (HR = 0:82, p = 4:00e

− 02), and SFTPD (HR = 0:68, p = 6:2e − 05) were
significantly related to a reduced FP. Low-expression of
CLDN18 (HR = 0:98, p = 3:20e − 02), FOXA2 (HR = 0:74,
p = 2:10e − 02), and SFTPD (HR = 0:96, p = 2:10e − 02)
apparently led to a short PPS. Moreover, no significant
difference was found between the AT II-associated genes
and disease-free survival (DFS) in NSCLC patients
(Table 1).

3.4. Genetic Alteration and PPI Analyses of AT II-associated
genes. Epigenetic alteration plays a vital role in early malig-
nancies, so a comprehensive analysis of the molecular char-
acteristics of AT II-associated genes was further performed
in the LUAD and LUSC samples, respectively. We used the
cBioPortal online tool to analyze the AT II-associated genes
alterations in LUAD (TCGA, Pan-Cancer Atlas) and LUSC
(TCGA, Pan-Cancer Atlas). The results demonstrated that
the alterations of 8 AT II-associated genes covered 273 sam-
ples out of 1053 patients with NSCLC (26%) (Figure 5(a)).
Moreover, the mutation rates of AQP4, CLDN18, FOXA2,
NKX2-1, PGC, SFTPB, SFTPC, and SFTPD were 3, 5, 2.4,
9, 2.8, 1.8, 5, and 1.1% of the investigated lung cancer sam-
ples, respectively (Figure 5(a)).

Moreover, a PPI network analysis of AT II-related genes
was conducted with STRING. The results in Figure 5(b)
illustrated that the DMBT1 gene which is a candidate tumor
suppressor gene discovered in recent years was closely con-
nected with AT II-associated genes (Figure 5(b)). Besides,
some genes that play an important role in immune response
regulation, blood cell proliferation, defense mechanisms, and
acute phase response genes are also significantly connected
with AT II-associated genes, including Microfibril-
associated glycoprotein 4 (MFAP4), Pulmonary surfactant-
associated protein A1(SFTPA1) (Figure 5(b)). The Gene-
MANIA results also revealed the functions of the differen-
tially expressed AT II-associated genes, which including
Leucine-rich repeat kinase 2 (LRRK2), lysosomal-
associated membrane protein 3 (LAMP3), Cathepsin E
(CTSE0), ATP-binding cassette transporter A3 (ABCA3),
forkhead box F1 (FOXF1), and Napsin A (NAPSA), and
these genes were mainly related to lung development, late
endosome, aspartic-type peptidase activity. (Figure 5(c)).

3.5. Immune Cell Infiltration of AT II-associated genes in
Patients With NSCLC. Immune cell level is associated with
the proliferation and progression of the cancer cell. In this
study, to investigate the relationship between AT II-
associated genes and cancer-related inflammation and the
infiltration of immune cells, we use the TIMER to reveal a
comprehensive analysis of the correlation between eight AT
II-associated genes and immune cell infiltration (Figure S3
and S4). ALL AT II-associated genes (including AQP4,
FOXA2, NKX2-1, PGC, SFTPB, SFTPD, CLDN18, and
SFTPC) were positively associated with the infiltration of six
immune cell types (CD8+ T cells, B cells, CD4+ T cells,
macrophages, neutrophils, and dendritic cells; all p < 0:05)
in LUSC and positively associated with the infiltration of B
cells in LUAD (p < 0:05). SFTPC and CLDN18 were positive
connection with the infiltration of B cells and six immune
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cell types (CD8+ T cells, B cells, CD4+ T cells, macrophages,
neutrophils, and dendritic cells) both in LUAD and LUSC
cancers.

4. Discussion

The occurrence of lung cancer is a multistep process. For
example, LUAD has always been thought to progress from
atypical adenomatous hyperplasia (AAH) to adenocarci-
noma in situ (AIS) [33]. Before the development of LUSC,
we can observe preinvasive lesions in the airways [34]. Dis-
tinct molecular events and other malignant phenotypes
make normal lung cells gain or lose certain functions leading
to deregulation of key genetic signals involved in cell prolif-
eration, differentiation, apoptosis, migration, and invasion
[35–37]. Studies have shown that AT II cells can dedifferen-
tiate into a cell stem-like state, which can continuously dif-
ferentiate, proliferate, repair, and cause damage. Therefore,
AT II is suspected to be the cell of origin in oncogene-
driven lung cancers and can help maintain tumor progres-
sion [24] .

In recent years, 8 AT II-associated genes have been con-
firmed to play key roles in tumor growth and development.
For example, FOXA2 has been proved that it plays crucial
roles in lung morphogenesis, surfactant protein production,
goblet cell differentiation, and mucin expression [38].
Besides, Liu et al. experimentally found that the histone
demethylase PHF8 can drive neuroendocrine prostate can-
cer (NEPC) development by epigenetically upregulation of
FOXA2 [39]. Thyroid transcription factor 1 (TTF-1 or
NKX2-1) has been known as an important development reg-
ulator of driving the brain, lungs, and thyroid maturation
and morphogenesis [40]. Studies have demonstrated that
NKX2-1 gene mutations related to compensated congenital
hypothyroidism and unexplained respiratory distress due
to lung hypoplasia in neonates [41]. NKX2-1 amplification
and overexpression also have been proved to have contrib-
uted to lung cancer cell proliferation rates and survival
results [42]. Interestingly, some researchers found an oppo-
site phenomenon that NKX2-1 can constrain lung adenocar-
cinoma in part by repressing the embryonically restricted
chromatin regulator Hmga2 [43]. Thus, the oncogenic and
inhibitory function of NKX2-1 in the same tumor type con-
firms its role as a bifunctional lineage factor. Aquaporins
(AQPs) are water channel proteins that can be capable of
selectively transporting water and other small solutes across
cells [44, 45]. In the lung, AQPs were supposed to facilitate
fluid transportation in alveolar space, airway humidification,
pleural fluid absorption, and submucosal gland secretion.
AQP4 is one of members of the aquaporin family which
was first discovered in 1994 [45, 46]. The change of AQP4
expression is associated with many central nervous system
(CNS) diseases including epilepsy, edema, stroke, and glio-
blastoma [47]. Besides, in breast cancer, thyroid carcinoma
(undifferentiated), and stomach cancer, the expression of
AQP4 is low [48–51]. On the contrary, studies found that
AQP4 is highly expressed in lung cancer and is involved in
the invasion of lung cancer cells [52, 53]. Surfactant proteins
(SP) are involved in surfactant function and innate immu-

nity in the human lung. In cystic fibrosis (CF), the genetic
contribution of the surfactant protein genes, SFTPB, SFTPC,
and SFTPD are contained [54]. Finally, CLDN18 is required
for intercellular connectivity and has been reported to be
involved in cell migration and metastasis, making it an
oncogene in various cancer types, including pancreatic,
esophageal, ovarian, and lung cancer [55].

In this study, we first systematically analyzed the expres-
sion of eight AT II-associated genes (AQP4, SFTPB, SFTPC,
SFTPD, CLDN18, FOXA2, NKX2-1, and PGC) in lung can-
cer. The expression levels of the eight genes in lung cancer
were lower. Additionally, we also verified that the expression
of AT II-associated genes was observably related to clinical
cancer stages in NSCLC patients. These results indicate that
all these eight AT II-associated genes might take a significant
part in the tumorigenesis and progression of NSCLC.
Besides, all these eight AT II-associated genes were found
to be notably related to OS in lung cancer patients, and
low-expression was associated with short OS in lung cancer
patients. Seven genes except AQP4 were significantly posi-
tive associated with FP. And low-expression of CLDN18,
FOXA2, and SFTPD apparently led to a short PPS. All these
results indicate that AT II-associated genes might be a pro-
tectable factor for survivals of NSCLC patients and thus
might be potential prognostic biomarkers. In addition, our
study showed that the expression level of AT II-associated
genes was significantly correlated with the infiltration of
six immune cell types. This result also suggests that AT II-
associated genes may also reflect the immune status besides
the disease prognosis.

5. Conclusion

In conclusion, this study provided clues of the values of AT
II-associated genes (AQP4, SFTPB, SFTPC, SFTPD,
CLDN18, FOXA2, NKX2-1, and PGC) as clinical biomark-
ers and therapeutic targets in NSCLC. We believe that these
eight AT II-associated genes were expected to become new
prognostic biomarkers in NSCLC and provide some new
inspirations to assist in the design of new immunotherapies.
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Supplementary 1. Figure S1. The relative expression level of
AT II-associated genes in LUAD and LUSC (GEPIA). The
darker the color of the bar, the higher the relative expression.
The result evaluated that SFTPB was the highest expression
in both LUAD and LUSC.

Supplementary 2. Figure S2. Prognostic value of AT II-
associated genes (SFTPB, SFTPC, SFTPD, and PGC) in
LUAD and LUSC (Kaplan-Meier plotter).

Supplementary 3. Figure S3. Correlations between AT II-
associated genes and immune cell infiltration (TIMER). Cor-
relations between the abundance of immune cells and the
expression of AQP4, CLDN18, FOXA2, NKX2-1, PGC,
SFTPB, SFTPC, and SFTPD in LUAD.

Supplementary 4. Figure S4. Correlations between AT II-
associated genes and immune cell infiltration (TIMER). Cor-
relations between the abundance of immune cells and the
expression of AQP4, CLDN18, FOXA2, NKX2-1, PGC,
SFTPB, SFTPC, and SFTPD in LUSC.
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