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Forest biodiversity is an important component of biological diversity that should not be disregarded. The question of how to
evaluate it has sparked scholarly inquiry and discussion. The purpose of this paper is to describe the principles of general
linear regression, the selection of model variables in OLS autoregressive modelling, model coefficient testing, analysis of
variance of autoregressive models, and model evaluation indicators in order to clarify the suitability of GWR models for
solving biomass-related data problems. The GWR 4.0 program was used to create a spatially weighted autoregressive model.
Model testing and an accuracy analysis were performed on the model. Following a comparison and study with the general
linear regression model, it was discovered that the geographically weighted autoregressive model is better suited to defining
spatially correlated data than the general linear regression model.

1. Introduction

Since the industrial revolution, the impact of human activi-
ties on the biosphere has spread from local to global, espe-
cially the concentration of CO2, CH4 and other greenhouse
gases in the atmosphere is increasing year by year, resulting
in a continuous increase in global temperature [1]. The rise
in global temperature will lead to a rise in sea level, an
uneven distribution of precipitation, increased desertifica-
tion and natural disasters, which will seriously affect the
development of national economies [2].

Forest biomass is the carrier of the carbon cycle in forest
ecosystems and an important parameter for assessing the
forest carbon cycle [3]. There are basically three traditional
ways to study forest biomass: firstly, the micrometeorologi-
cal field method, which combines the rules of micrometeo-
rological field with wind direction, wind speed and
temperature; secondly, the carbon dioxide balance method,
which measures the change of carbon dioxide in the ecosys-
tem; and thirdly, the direct harvesting method, which inves-
tigates the existing biomass of the forest, although this

method is more accurate, it is difficult to use because of
the large workload, complicated process and long period;
Accurate determination of forest biomass is important for
both production and theoretical research, and has been
valued by ecologists and foresters worldwide [4]. The use
of forest biomass models to estimate biomass has become a
popular method.

There are three basic types of forest biomass models:
linear models, non-linear models and polynomial models.
These models are based on the basic assumption that the
biomass distribution is random and do not take into account
the spatial non-stationarity of the study variables [5]. It has
been found that the spatial correlation between many sam-
ple data is due to the proximity of geographical locations;
in order to take into account the spatial correlation of data
when studying biomass distribution, In recent years, the
evaluation of forest biodiversity has been studied more from
a systemic perspective, and the factors affecting the evalua-
tion include not only natural factors, but also various factors
such as human, social and economic development [6]. The
methods proposed to prevent the decline of biodiversity
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include not only natural measures, but also socio-economic
and cultural measures. For example, concluded that the
decline of species and biological assets is mainly caused by
the neglect of ecological values other than private interests,
and proposed that ecosystems and biodiversity the scientific
assessment process for ecosystems and biodiversity is policy
change [7]. Studies by [8, 9] also show that habitat loss and
habitat fragmentation are major contributors to environ-
mental degradation and biodiversity loss. In addition, it is
difficult to know the exact number of species, ecosystems
and genes in forest biodiversity, no matter how it is evalu-
ated, and its evaluation is a typical ‘black box’ system [10].
The evaluation of forest biodiversity is a typical “black
box” system, and the “black box” theory should be applied
to evaluate changes in forest biodiversity through the
pressure-state and response caused by human socio-
economic activities [11]. The author takes the biodiversity
of forest nature reserves as the research object, collects rele-
vant information based on the data of the seven national for-
est resources inventories, and establishes a differential
equation between biodiversity changes and economic devel-
opment in forest nature reserves at the national level to find
out the optimal price for forest biodiversity value evaluation,
with a view to providing a basis for biodiversity value com-
pensation and management [12].

The paper’s organization paragraph is as follows: The
related work is presented in Section 2. Section 3 analyzes
the geographically weighted regression of the proposed
work. Section 4, discusses the comparative analysis of
results. Finally, in Section 5, the research work is concluded.

2. Related Work

In a study of the application of geographically weighted
autoregressive models, [13] for the first time used a geogra-
phically weighted regression model to study the distribution
of disease and compared it with the traditional least squares
method, showing that the residuals of the method were
much smaller than those of the ordinary linear regression
model. [14] Established a spatial relationship between
China’s GDP and the variation of each province. The usual
regression analysis assumes that the regression coefficients
are consistent across regions, but in actual geographical
space, the impact of a certain factor on the level of industri-
alization development is not entirely consistent across
regions. This method is a good way to analyses the relation-
ship between the local economy and the overall economy
and the process of change. [In Sendai, Japan, he studied
the spatial variation of the heat island effect in the city and
showed that the same spatial variation in urban temperature
trends could be addressed by a geographically weighted
autoregressive model. [15] Used the geographically weighted
autoregressive principle to model the relationship between
climate and elevation in the UK, and showed that the model
fit was very well matched to reality. [16] used a GWR model
to successfully solve the spatial distribution pattern of vege-
tation. In the same year, [17, 18] applied this method to the
analysis of regional industrialisation and his results showed
that the level of industrialisation varied significantly spatially

due to environmental influences. [8] applied this method to
traffic, studying the relationship between average visual traf-
fic and environmental factors, and thus predicting future
traffic congestion levels in different regions [19].

In general, a lot of research has been done in geographi-
cally weighted regression at home and abroad, and a lot of
results have been achieved. However, forest biomass distri-
bution research is limited to classic geostatistical approaches
and remote sensing spectral analysis, which leaves a lot to be
desired. Geographically weighted regression models have
great advantages in solving the spatial distribution of geo-
graphic things, especially the new geographically weighted
regression models, whose powerful function type is getting
more and more attention and application [19]. Therefore,
the geographically weighted regression models used in this
paper simulate the spatial distribution of forest biomass,
and it is important to analyze the advantages and disadvan-
tages of geographically weighted regression models in the
spatial distribution of forest biomass [20–22].

3. Geographically Weighted Regression

In forest manager surveys, the distribution characteristics of
all the data we collect often vary depending on location. Tra-
ditional regression analysis methods ignore the relationship
between parameter estimates and the geographical location
of data collection and fail to represent the spatial sub-
characteristics of the data. To address this problem.

3.1. Geographically Weighted Regression Model Basis. It has
the following basic form:

yi = β0 ui, við Þ + 〠
p

k=1
βk ui, við Þxik + εi i = 1, 2⋯ , n ð1Þ

Where ðui, viÞ is the geographical coordinate of the ith
sampling point, βkðui, viÞ is the kth regression coefficient
on the ith sampling point, εi is the random error term, and
the underlying assumption is that it follows a normal distri-
bution, i.e.

εi ~N 0, σ2
� �

Cov εi, εj
� �

= 0 i ≠ jð Þ ð2Þ

Equation (2) can also be written as:

yi = βi0 + 〠
p

k=1
βikxik + εi i = 1, 2⋯ , n ð3Þ

If β1k = β2k =⋯ = βnk, then the GWmin model is the
same as the general linear regression model, i.e, which will
W better reflect the spatial variation patterns of the study
variables. To simplify the calculation process, Brunsdon
et al. introduced a spatial weight wij into the model so that
the regression parameters at point i would have to make

〠
n

j=1
wij yj − βi0 − 〠

p

k=1
βikxik

 !2

ð4Þ
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The estimated value of the regression parameter is calcu-

lated when the minimum value is taken as bβðui, viÞ, where
wij is the geographical weight, the size of which increases
as the geographical distance between point i and point j
decreases.

The estimated value of the regression parameter bβðui, viÞ
at observation point i is:

bβ ui, við Þ = X ′W ui, við ÞX
� �−1

X ′W ui, við ÞY ð5Þ

Of which:

X =

1 x11 ⋯ x1k

1 x21 ⋯ x2k

⋯ ⋯ ⋯ ⋯

1 xn1 ⋯ xnk

26666664

37777775,W ui, við Þ =Wi

=

wi1 0 ⋯ 0

⋯ wi2 ⋯ 0

⋯ ⋯ ⋯ ⋯

0 0 ⋯ win

26666664

37777775

ð6Þ

β =

β0 u1, v1ð Þ β1 u1, v1ð Þ ⋯ βk u1, v1ð Þ
β0 u2, v2ð Þ β1 u2, v2ð Þ ⋯ βk u2, v2ð Þ

⋯ ⋯ ⋯ ⋯

β0 un, vnð Þ β1 un, vnð Þ ⋯ βk un, vnð Þ

2666664

3777775, Y =

y1

y2

⋯

yn

2666664

3777775
ð7Þ

n is the number of sample sites, β
_
is the estimated value

of the regression coefficient slice, and k is the number of
independent variables. wijðj = 1, 2,⋯, nÞ is the weight given
to sample point j when fitting the model at observation i.

Xi is the vector consisting of the ith observed indepen-
dent variable factor, and according to Equation (7), the fitted
value ŷi is obtained as

ŷi = Xi
bβ ui, við Þ = Xi X ′W ui, við ÞX

� �−1
X ′W ui, við ÞY ð8Þ

The matrix shape of the fitted values can be expressed as
follows:

Ŷ =

X1 X ′W u1, v1ð ÞX
� �−1

X ′W u1, v1ð Þ

X2 X ′W u2, v2ð ÞX
� �−1

X ′W u2, v2ð Þ
⋯

Xn X ′W un, vnð ÞX
� �−1

X ′W un, vnð Þ

2666666664

3777777775
Y = SY ð9Þ

Where

S =

X1 X ′W u1, v1ð ÞX
� �−1

X ′W u1, v1ð Þ

X2 XW u2, v2ð ÞXð Þ−1XW u2, v2ð Þ
⋯

Xn X ′W un, vnð ÞX
� �−1

X ′W un, vnð Þ

266666664

377777775
ð10Þ

is the spatial hat matrix of the geographically weighted back
coincidence fit.

3.2. Selection of Spatial Enumeration Functions. The spatial
weights are used to represent the degree of relationship
prior to the regression point’s neighboring point j. Equation
Equation (9) provides the definition of spatial weights,
which is used to calculate the GWR model’s regression
parameters. The following four spatial weight functions
are commonly used, respectively.

3.2.1. Distance Threshold Method. Distance threshold
method is actually given a distance D, such as is less than
the distance D is considered to be the weight of 1, otherwise
the weight is considered to be 0, that is, the points beyond
the distance is considered irrelevant to the current point,
the distance outside the point does not participate in the
model fitting calculation. The formula is expressed as follows:

wij =
1 dij ≤D

0 dij >D

(
ð11Þ

3.2.2. The Inverse Distance Method. The inverse distance
method was proposed by the scholar Tobler and the formula
is expressed as follows:

wij = 1/dαij ð12Þ

Where is a constant that is determined by the situation.
The formula above shows that the closer the point is to the
center, the more weight it receives. Tobler proposed it mostly
based on the first law of geography. The inverse distance
method is much better than the distance threshold, but the
only drawback is that if the regression points overlap with
the sample data points dαij = 0, then the weights appear to
be infinite at this point. If this point is removed, the accuracy
of the parameter estimation is reduced, so this method is also
not applicable to GWR models.

wij = exp − dij/b
� �2� �

ð13Þ

Where b is the bandwidth. From the formula, the larger
the bandwidth, the slower the decay of the weights, and vice
versa. If b =0, then wij = 1, which means that the weight at
regression point i is 1 and the weights at other observation
points tend to be 0, the fit becomes a local fit. If b is infinite,
then the weights at all observation points converge to 1, and
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the fit is in fact a global fit. If the bandwidth is fixed, the
wij = 1 weights reach a maximum when dij = 0; wij decreases
as the distance between the sample point and the regression
point increases.

3.2.3. Truncated Function Method (Bi-Square). Gaussian
function will be the sample data involved in the calculation,
while the truncated function only calculates the distance less
than the bandwidth of the sample data, truncated function is
to improve the efficiency of the calculation of Gaussian func-
tion of the improved type, the form of the following:

wij =
1 − dij/b
� �2h i2�

dij ≤ b

0 dij > b

8><>: ð14Þ

3.3. Geographically Weighted Regression Model
Implementation Method. In this paper, the geo-weighted
regression model was calculated using GWR4.0, a Gaussian
kernel function was used for the fitting process, and C V
was used as the evaluation index to select the best band-
width. The dependent variable of the model was the forest
biomass of each sample plot, the environmental factor Eleva-
tion and the average diameter at breast height (AVER DBH)
of the stand were used as independent variables. The GWR
model was expressed as follows: the biomass yi per hectare
of sample plot number i was expressed as the sum of the
product of the jth independent variable xijðj = 0, 1, 2Þ and
the corresponding coefficient ðβij, j = 0, 1, 2Þ, and ε was the
model residual.

yi = βi0 + βi1xi1 + βi2xi2 ð15Þ

Where yi is the biomass per hectare in plot i, xi1 is the eleva-
tion of plot i, xi2 is the mean diameter at breast height in plot
i and ε is the model residual.

A weighting function is used in the GWR model to
quantify the effect of each site biomass on the forest biomass
of the sample site. The weight function chosen in this paper
is a Gaussian function with a bandwidth of 1083m and the
weight function is shown below:

wij = e−
dij
1083

� �2
ð16Þ

4. Comparative Analysis of Results

The five evaluation indicators for the two models are given
in Table 1. From the table, it can be seen that the AIC value
of the GWR model is 18.325 smaller than the ALC value of
the OLS model. In addition, the AICc and CV of the local
model are much smaller than those of the traditional linear
regression model, which further indicates that the local
model has improved the accuracy of biomass estimation,
and that the R2 and R2-squared values have increased
further compared to those of the OLS model. Because the
geographically weighted regression model handles spatial
unsteadiness in its modelling, these measures suggest that

the GwR model’s model accuracy, predictive power, and pre-
cision are substantially higher than those of the OLS model.

The estimated values, standard errors, p-values, β-1× SD
and β+1× SD of the least squares model coefficients are
shown in Table 2. For the general linear regression model,
the model coefficients showed significant correlation at the
a =0.05 level of significance.

In terms of model coefficients, mean diameter at breast
height was the most important factor. Another important
factor is elevation. The data show that forest biomass is
higher at higher elevations and lower at lower elevations.
Lower elevations are flatter and more heavily damaged by
humans, but higher elevations have steeper slopes and are
less prone to tree removal, resulting in larger forest biomass.
The GWwR model is a local regression model in which a set
of local regression parameters is calculated for each regres-
sion point, and the variation between the regression param-
eters can explain the spatial non-stationarity of the
predictors very well. The spatial non-stationarity of the
study factors can be well explained by the variation between
regression parameters. The results of the geographically
weighted regressions for the Liangshui National Nature
Reserve include: maximum, minimum, median, 25% quan-
tile (Q1) and 75% quantile (Q3). As shown in Table 3.

National studies have found that the median GWR
model coefficient is similar to the OLS model coefficient;
between Q1 (25% quantile) and Q3 (75% quantile) 50% of
the GwR model coefficients are included. If the data meet
the basic assumption of a normal distribution, with 68% of
the OS model coefficients included within ±1 standard devi-
ation of the model coefficients, it is generally accepted that if
there is no non-stationarity in the spatial distribution of the
data, then the geo-weighted regression model coefficients Q1
and Q3 should be included within ±1 standard deviation of
the least squares model coefficients. If Q1 or Q3 do not fall
within the range [β-1× SDB+1xSD], then there is non-
stationarity in the spatial distribution of the study variables.
1 For example, the range of Q1 to Q3 for the coefficients of
the AVER DBH values in the geo-weighted regression is 5.04
to 7.7 [22–25].

This demonstrates the spatial non-stationarity of the
relationship between the mean diameter at breast height and
the elevation coefficients. With the development of GIS tech-
nology, the spatial variation of the coefficients of the geo-
weighted regression model can be visualised using GIS tech-
nology to produce maps. Figures 1 and 2 use maps to depict
the spatial distribution patterns of these regression coeffi-
cients. The mean diameter at breast height of the sample plots
is generally positive throughout the study area, whereas eleva-
tion varies from negative to positive in different areas.

The scatter plots of the residuals of the GWR model and
the OLS model are shown in Figures 3 and 4, respectively.

Table 1: Two model fit statistics.

Model AIC AICc R2 R2
adj CV

OLS 1324.741 1223.147 0.554 0.521 2164.010

GWR 1305.421 1254.291 0.745 0.654 1954.623
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This indicates that the GWR model is more accurate and
solves the heteroskedasticity problem to a certain extent.

Local residuals spatial correlation analysis Global Mor-
an’sI can only reflect the spatial correlation of the study var-
iables as a whole. The local Moran’sI statistic was introduced

Table 2: Linear back old model coefficients, standard errors and p-values.

Variable Estimate StandardError T value Pr> t β-1× SD β+1× SD
Intercept -54.021 23.412 -2.010 0.0214 -75.241 -31.247

Elevation 0.157 0.0640 2.630 0.008 0.099 0.214

AVER_DBH 6.321 0.5620 11.24 <0.001 5.741 6.852

Table 3: Estimated values of the 3GTO model parameters.

Variable Mean Standard Min Lwr quartile Median Upr quartile Max

Intercept -32.14 76.54 -214.75 -74.40 -74.23 1.15 189.61

Elevation 0.09 0.23 -0.35 -0.480 0.07 0.25 0.60

AVER_DBH 6.50 1.47 0.23 5.240 7.01 7.80 10.54
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Figure 1: Spatial distribution of regression coefficients.
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in this research to further investigate the spatial correlation
of model residuals in different regions. In order to make
comparative analysis easier, a bandwidth of 1083m was
selected and the local Moran’sI statistic of the residuals
was calculated using the EXCEL plug-in ROOTCASE, and
finally the Moran’sI was plotted using the bubble chart tool
in EXCEL. The results are shown in Figure 5.

5. Conclusions

The fundamentals of general linear auto regression, model
variable selection in OLS regression modelling, model coeffi-
cient tests, regression model analysis of variance, and model
evaluation indicators are all covered in this work. The
weighting function selection procedure in the geographically
weighted regression model is presented, as well as the pros
and disadvantages of each weighting function, and the
Gaussian function is finally chosen as the weighting function
in this study. The selection methods and criteria of different
bandwidths are presented, and after comparison, the model
finally decides to choose 1083m as the bandwidth to achieve
forest value protection.

Data Availability

The datasets used during the current study are available
from the corresponding author on reasonable request.
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