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Real-time monitoring of the breast cancer index is becoming increasingly important. It can help create advances in the diagnosis
and treatment of breast cancer. In today’s modern medical processes, simultaneously monitoring changes in observations in terms
of location and scale are convenient for the implementation of control schemes but can be challenging. In this paper, we consider a
new nonparametric control scheme for monitoring location and scale parameters in multivariate processes. The proposed method
is easy to implement, and the performance of the proposed control procedure is discussed. Then, we compare the proposed
scheme with some competing methods. Simulation results show that the proposed scheme can efficiently detect a range of
shifts. The proposed chart can trigger an alert and timely discover the change of the breast cancer index.

1. Introduction

Control schemes play an important role in biosurveillance
studies [1–9]. Control schemes have been frequently used
for fault detection in quality control with products and
health-care monitoring [10–14]. A process should be moni-
tored using statistical means to determine whether a shift
occurs, and action should be taken once the process is con-
sidered out-of-control (OC) [15–18]. Many researchers have
discussed and proposed many useful charts, such as She-
whart charts [19, 20], cumulative sum (CUSUM) charts
[21–30], and exponentially weighted moving average
(EWMA) charts [31–38], to detect whether there is a change
in quality characteristics in a process. These proposed con-
trol schemes can be used for data analysis, including control
and forecasting, which are useful for fault diagnosis in prac-
tice. Most charts require that these observations be univari-
ate and typically assume that these observations follow a
normal distribution. Unfortunately, the assumption of mul-
tivariate normality is unrealistic in most cases and would
lead to a poor performance if underlying assumptions are
invalid.

Nonparametric control charts are important in
manufacturing and service sectors when samples of observa-
tions are nonnormal. Some control schemes are used to
monitor high-dimensional processes when we know little
about the underlying distribution [39–42]. Most control
schemes are designed to monitor location parameters. For
example, Liu and Singh [43] introduced several multivariate
rank tests based on data depth. Liu [44] used the concept of
data depth to propose several new control charts to monitor
multivariate process. Data depth provides an efficient metric
of the process’ performance without using parametric
assumptions. In addition, Zou et al. [45] provided a multi-
variate spatial rank for monitoring high-dimensional pro-
cesses with unknown parameters. For detecting the
location changes in nonparametric multivariate processes,
we also recommend the discussions by [46, 47]. To detect
the changes in the location and scale of observations simul-
taneously, several monitoring methods are proposed in the
literature, including Mukherjee and Chakraborti [48] and
Chowdhury et al. [49]. Recently, Mukherjee and Marozzi
[50] consider the sum of the squares of standardized Wil-
coxon and the Bradley statistics for monitoring high-
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dimensional processes with unknown parameters which is
advantageous in simultaneous monitoring of multiple
aspects.

Recently, some schemes have been proposed to monitor
the changes in location and scale simultaneously using a sin-
gle chart. Performance advantages of these charts have been
clearly established [51]. Lepage [52] discussed a nonpara-
metric two-sample test for location and dispersion. Based
on Lepage [52], Mukherjee and Marozzi [51] introduced
new circular-grid charts for simultaneous monitoring of
process location and process scale based on Lepage-type sta-
tistics. Meanwhile, Mukherjee and Marozzi [53] investigated
a new single distribution-free Phase-II CUSUM procedure
based on the Cucconi statistic for simultaneously monitor-
ing changes in location and scale parameters of a process.
In addition, Mukherjee and Sen [54] discussed a
distribution-free (nonparametric) Shewhart-Lepage scheme
for simultaneous monitoring of location and scale parame-
ters using an adaptive strategy. Li et al. [55] and Shi et al.
[56] provided powerful control schemes aimed at simulta-
neously monitoring the location and the scale parameters
of any continuous process. Moreover, Zafar et al. [57] pro-
posed a new parametric memory-type charting structure
based on progressive mean under max statistic for the joint
monitoring of location and dispersion parameters. Song
et al. [58] introduced distribution-free adaptive Shewhart-
Lepage-type schemes for simultaneous monitoring of loca-
tion and scale parameters using information about symme-
try and tail weights of the process distribution. Huang
et al. [59] proposed a new statistical process monitoring
scheme with a double-sampling plan for simultaneously
monitoring location and scale shifts. Bai and Li [60] consid-
ered monitoring ordinal categorical factors for monitoring
which considers shifts in the location or scale parameters
of latent variables. For multivariate processes, Cheng and
Shiau [61] proposed a distribution-free phase I monitoring
scheme for both location and scale parameters based on
the multisample Lepage statistic.

Although these literatures contain many control
schemes for monitoring location and scale parameters
simultaneously, much less focus has been placed on control
strategies that simultaneously monitor location and scale
parameters in multivariate processes. In this study, we pro-
pose a useful and easy-to-implement control scheme for
simultaneously monitoring location and scale parameters,
which is based on nonparametric location and scale hypoth-
esis testing. Reference samples are denoted as phase I data
streams, and test samples are denoted as phase II data
streams. One problem is that the size of phase II increases
with the number of data streams. Considering this issue,
we performed hypothesis testing repeatedly with each new
data stream. Thus, the amount of phase II data became a
constant for each acquisition time.

The remainder of this paper is organized as follows: In
Section 2, we review nonparametric hypothesis testing in
detail. In Section 3, we propose a new scheme based on a
hypothesis testing statistic for monitoring location and scale
parameters. Then, we discuss the proposed method’s perfor-
mance and validity. In Section 4, we perform a simulation-

based comparison to compare the proposed chart with other
existing charts. In Section 5, breast cancer data are investi-
gated to describe the performance of the proposed chart.
Lastly, we briefly draw conclusions in Section 6.

2. Review of Nonparametric Hypothesis Testing

Hypothesis testing is a form of statistical inference that uses
data from a sample to draw conclusions about a population
parameter or a population probability distribution, consider-
ing reference sample fX1,t , X2,t ,⋯,Xm,tg of size m and test
sample fY1,t , Y2,t ,⋯,Yn,tg of size n. Thus, null hypothesis
H0 : μ1 = μ2, σ21 = σ22 versus alternative hypothesis H1 : μ1
≠ μ2 or σ

2
1 ≠ σ22, where μ1 is the location parameter of refer-

ence sample; μ2 is the location parameter of test sample; σ21
and σ22 are the scale parameters of the reference and test
samples, respectively. We can use a reasonable statistical
decision procedure to reject the null hypothesis H0. In real
situations, it is difficult for us to identify the exact distribu-
tion of data streams. Therefore, nonparametric hypothesis
testing is also introduced, which does not consider the distri-
bution of the original data. For hypothesis testing about the
location parameter, Mood [62] proposed the median test,
which is based on the rank of each datum. Considering the
interaction between the reference and test samples, Wil-
coxon [63] and Mann and Whitney [64] introduced the
Mann-Whitney-Wilcoxon statistic. In addition, rank-based
nonparametric hypothesis testing of scale parameter is used
in the literature [65–67].

2.1. Methods for Location Detection. In general, people often
check whether there is a change for a given location param-
eter in a process. We often use the t-statistic under the
assumption that the distribution is normal. However, there
is a risk in using the t-statistic with unknown population
distributions. Thus, some distribution-free statistics have
been developed. Brown-Mood median testing is a useful
nonparametric method. However, the bilateral test does
not yield satisfactory results when m ≠ n. To use more infor-
mation about the relative size of the reference sample and
test sample, the Wilcoxon rank-sum test was developed.
We assume that a reference sample of size m and test sample
of size n are given, and we let N =m + n. Considering the
pooled sample fX1,t , X2,t ,⋯,Xm,t , Y1,t , Y2,t ,⋯,Yn,tg at time t,
Mann andWhitney [64] developed the Mann-Whitney statis-
tic as follows:

W1,t = 〠
n

j=1
〠
m

i=1
I Xi,t < Y j,t
� �

: ð1Þ

Therefore, the Wilcoxon rank-sum statistic is

W2,t =W1,t +
n n + 1ð Þ

2
, ð2Þ

whereW2,t =∑n
i=1Ri,t , and Ri,t is the rank of Yi,t in the pooled

sample fX1,t , X2,t ,⋯,Xm,t , Y1,t , Y2,t ,⋯,Yn,tg. EðW2,t jH0Þ = nð
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N + 1Þ/2. It can be seen that [68]

E W1,t H0jð Þ = mn
2

,

Var W1,t H0jð Þ = mn N + 1ð Þ
12

:

ð3Þ

Under the null hypothesis, we also calculate the approxi-
mate normal statistic when the sample N is sufficiently large.

2.2. Methods for Scale Detecting. A location parameter typi-
cally describes the position of a distribution, and a scale
parameter is also an important characteristic that describes
a distribution. When the distribution of observations is
unknown, some distribution-free methods are typically used.
Given a two-phase independent sample fX1,t , X2,t ,⋯,Xm,tg
~ Fðμ1, σ21Þ and fY1,t , Y2,t ,⋯,Yn,tg ~ Fðμ2, σ22Þ. We assume
that the location parameters of the two samples are equal ð
μ1 = μ2Þ. Based on the Mann-Whitney statistic, Siegel and
Tukey [65] proposed the Siegel-Tukey statistic. The imple-
mentation design of this statistic consists of the following
steps: (1) mix the two samples fX1,t , X2,t ,⋯,Xm,t , Y1,t , Y2,t ,
⋯,Yn,tg in ascending order, Qð1Þ,t ,Qð2Þ,t ,⋯,Qðm+nÞ,t ; (2)

assign the rank Ri,t′ of Qð1Þ,t ,Qð2Þ,t ,⋯,Qðm+nÞ,t as shown in

Table 1; and (3) calculate the St =∑n
i=1ðRi,t′ − nðn + 1Þ/2Þ; Ri,t′

represents the rank of Yi,t .
Mood [62] also provided a useful test statistic for scale

parameters. As before, we consider two sequences of fX1,t ,
X2,t ,⋯,Xm,tg ~ Gðμ1, σ21Þ and fY1,t , Y2,t ,⋯,Yn,tg ~Gðμ2, σ22Þ,
where μ1 = μ2. The Mood statistic can be described as fol-
lows:

MDt = 〠
n

i=1
Ri,t − E Ri,tð Þð Þ2, ð4Þ

where Ri,t is the rank of Yi,t , i = 1, 2,⋯, n, in sample fX1,t ,
X2,t ,⋯,Xm,t , Y1,t , Y2,t ,⋯,Yn,tg of size Nð=m + nÞ. For m, n
⟶ +∞ and m/N⟶ constant C. Additionally [68],

E MDt H0jð Þ = n N2 − 1
� �

12
,

Var MDt H0jð Þ = mn N + 1ð Þ N2 − 4
� �

180
:

ð5Þ

Filgner and Killeen [69] also introduced a test statistic
for scale parameters that is based on the absolute rank.
The statistic is defined as

Ft = 〠
n

i=1
Ri,t: ð6Þ

Ri,t is the rank of VR
i,t in pooled sample fVR

1,t , VR
2,t ,⋯,

VR
m,t , VT

1,t , VT
2,t ,⋯,VT

n,tg, where VR
i,t = jXi,t −Mj, VT

i,t = jYi,t −
Mj. M represents the median of the sample fX1,t , X2,t ,⋯,
Xm,t , Y1,t , Y2,t ,⋯,Yn,tg. Ft has the distribution of Wilcoxon’s

rank-sum statistic under the null hypothesis. Therefore,

E Ft H0jð Þ = mn
2

,

Var Ft H0jð Þ = mn N + 1ð Þ
12

:

ð7Þ

3. Proposed Monitoring Strategy

We assume that there are m-independent observations from
an unknown multivariate continuous distribution with
dimensionality p. We assume that independent observations,
Xi, follow the model below:

Xi ~
Gp μ0, Σ0ð Þ, if i = 1, 2,⋯, τ,

Gp μ1, Σ1ð Þ, if i = τ + 1, τ + 2,⋯,

(
ð8Þ

where μ0 and μ1 are the in-control (IC) location vector and
the OC location vector, respectively; Σ0 and Σ1 represent the
IC covariance matrix and the OC covariance matrix, respec-
tively, where ðμ0, Σ0Þ ≠ ðμ1, Σ1Þ; τ represents an unknown
change point; and Gpð·Þ is an unknown continuous distribu-
tion function. In phase I, we assume that the IC sample of
size m is given at time t, R = fX1,t,X2,t,⋯,Xi,t,⋯,Xm,tg
where Xi,t = fX1,i,t , X2,i,t ,⋯, Xp,i,tg′, i = 1, 2,⋯,m. In phase
II, T = fY1,t, Y2,t,⋯,Yn,tg of size n is obtained. After the
phase I sample R is analyzed, the phase II sample T is
monitored.

Inspired by Mukherjee and Marozzi [50] for multivariate
processes, we consider the p-dimension statistic of the
Euclidean distance of new observations and the mean vector
of phase I data, Xi,t, i = 1, 2,⋯,m. That is, DR

i,t = kXi,t − �Xk
and DT

i,t = kYi,t − �Xk, where �X = ð1/mÞ∑m
i=1Xi,t. Now, a uni-

variate phase II sequence is obtained, fDR
1,t ,DR

2,t ,⋯,DR
m,t ,

DT
1,t ,DT

2,t ,⋯,DT
n,tg. Then, a Shewhart-type chart for monitor-

ing location changes that is based on the Wilcoxon rank-
sum statistic (i.e., S-W chart) can be constructed. The statis-
tic of the S-W chart is ZW,t = ðW1,t −mn/2Þ/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mnðN + 1Þ/12p
with upper control limit (UCL)

UCL = E ZW,t H0jð Þ + L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ZW,t H0jð Þ

q
, ð9Þ

and lower control limit (LCL)

LCL = E ZW,t H0jð Þ − L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ZW,t H0jð Þ

q
, ð10Þ

where L is an unknown constant. The Shewhart-type chart
can be constructed based on three other types of hypothesis
statistics for the scale parameter. The S-ST chart (i.e., the
Shewhart-type chart based on the Siegel-Tukey statistic) is
calculated using ZST ,t = ðSt − EðStjH0ÞÞ/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðStjH0Þ

p
with

UCL = EðZST,t jH0Þ + L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZST,tjH0Þ

p
and LCL = EðZST,t j

H0Þ − L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZST,tjH0Þ

p
. The S-MD chart (i.e., the

Shewhart-type chart based on the mood statistic) is given
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as follows: ZMD,t = ðMDt − EðMDt jH0ÞÞ/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðMDt jH0Þ

p
with UCL = EðZMD,tjH0Þ + L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZMD,tjH0Þ

p
and LCL = E

ðZMD,tjH0Þ − L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZMD,tjH0Þ

p
. The S-FK chart (i.e., the

Shewhart-type chart based on the Filgner-Killeen statistic)
is given by ZFK,t = ðFt − EðFtjH0ÞÞ/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðFtjH0Þ

p
with

UCL = EðZF,t jH0Þ + L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZF,tjH0Þ

p
, and LCL = EðZF,t jH0

Þ − L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZF,t jH0Þ

p
.

We then use the average run length (ARL) to evaluate
the performance of these methods. ARL is the number of
points that, on average, will be plotted on a control chart
before an OC condition occurs. If the process is IC, ARL0
= 1/α; otherwise, ARL1 = 1/ð1 − βÞ when the process is
OC. In addition, α is the probability of a type I error occur-
ring, and β is the probability of a type II error occurring.
Therefore, we typically fix IC ARL, which is denoted as AR
L0, and compare the OC ARL, which is denoted as ARL1.
A small ARL1 is considered better. Figure 1 shows the OC
ARL of the S-ST, S-MD, and S-FK charts. We let m = 50, n
= f5,10,20g, and p = 4 under the multivariate Gaussian dis-
tribution with expectations μ0 and the variance matrix, Σ0.
For a fair comparison, we set ARL0 = 500 for all control
schemes. Figure 1 shows the OC ARL of the three
Shewhart-type schemes when detecting scale parameters.

Figure 1 shows that the S-MD chart’s performance is better
than the other charts when detecting a range of scale shifts.

When calculating the Mahalanobis distance, the sample
population must exceed the sample dimension; otherwise,
the inverse matrix of the population sample covariance matrix
obtained does not exist. Thus, theMahalanobis distance some-
times fails to meet practical requirements. It is also not appro-
priate to simply use the Euclidean distance to reduce the
dimensionality of high-dimensional data, because this process
would equate the differences between different data attributes
(i.e., the dimensions of each index or variable). The standard-
ized Euclidean distance is an improvement strategy that can
overcome the shortcoming of the simple Euclidean distance.
Since the distribution of each dimension component of the
data is different, the first to “standardize” each component to
the associated mean and variance are equal.

Mukherjee and Marozzi [50] consider the sum of the
squares of standardized Wilcoxon and Bradley statistics for
monitoring high-dimensional processes with unknown
parameters. Inspired by Mukherjee and Marozzi [50], we
combine the idea of control schemes and hypothesis testing
to propose an effective control scheme that simultaneously
monitors expectation and variance. Based on this analysis,
we propose an alternative control scheme, whose statistic is

Table 1: Rank of Qð1Þ,t ,Qð2Þ,t ,⋯,Qðm+nÞ,t .

Data Q 1ð Þ,t Q 2ð Þ,t Q 3ð Þ,t Q 4ð Þ,t ⋯ Q m+n−3ð Þ,t Q m+n−2ð Þ,t Q m+n−1ð Þ,t Q m+nð Þ,t
Rank 1 4 5 8 ⋯ 7 6 3 2

1 2 3 4

100

200

300

400

A
RL

Shift

n = 5

Shift Shift

1 2 3 4

100

200

300

400

A
RL

n = 10

1 2 3 4

100

200

300

400

A
RL

n = 20

Shewhart-MD
Shewhart-ST
Shewhart-FK

Figure 1: Comparison of the three Shewhart-type schemes when detecting changes in scale.
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as follows:

Zt = ZW,t + ZMD,t , ð11Þ

with

UCL = E Zt H0jð Þ + L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Zt H0jð Þ

p
,

LCL = E Zt H0jð Þ − L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Zt H0jð Þ

p
:

ð12Þ

The term asymptotic distribution is used in the sense of
convergence in law when m⟶∞ and n⟶∞ with the
ratio m/N constant [52]. Under H0, the statistics ZW,t and
ZMD,t are uncorrelated for all m and n. Since, for all m and
n,

E W2,tMDt H0jð Þ = E 〠
n

i=1
Ri,t −

N + 1
2

� �2
〠
n

j=1
Rj,t H0j

" #
,

E 〠
n

j=1
Rj,t H0j

 !
=
n N + 1ð Þ

2
,

E 〠
n

i=1
〠
n

j=1
Ri,tRj,t H0j

 !
=
n2 N + 1ð Þ 3N + 2ð Þ

12
,

E 〠
n

i=1
〠
n

j=1
R2
i,tRj,t H0j

 !
=
n2N N + 1ð Þ2

6
:

ð13Þ

Thus, we have

E W2,tMDt H0jð Þ = n2 N − 1ð Þ N + 1ð Þ2
24

: ð14Þ

Equality (14) is the product of EðW2,tjH0Þ and EðMDtj
H0Þ. Therefore,

E W1,tMDt H0jð Þ = E W1,t H0jð ÞE MDt H0jð Þ: ð15Þ

It is obvious that

E ZW,tZMD,t H0jð Þ = E ZW,t H0jð ÞE ZMD,t H0jð Þ: ð16Þ

Under H0, ZW,t = ðW1,t − EðW1,tjH0ÞÞ/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðW1,tjH0Þ

p
⟶Nð0, 1Þ and ZMD,t = ðMDt − EðMDtjH0ÞÞ/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðMDtjH0Þ

p
⟶Nð0, 1Þ with m⟶∞, n⟶∞, and

the ratio m/N constant.

4. Performance Evaluation

In this section, we compare the performances of these charts
with different reference sample sizes m and test sample sizes
n when shifts occur. We assume that the tth future observa-
tion, Xt, is collected over time using the following multivar-
iate model:

Xt ~
Np μ0, Σ0ð Þ, for t = 1, 2,⋯, τ,

Np μ1, Σ1ð Þ, for t = τ + 1, τ + 2,⋯,

(
ð17Þ

where μ0 = ð0, 0, 0, 0Þ, μ1 = ð0, 0, δ, δÞ, and Σ0 represents the
4 × 4 identity matrix. We let τ = 50 and dimensionality p = 4.
Table 2 shows the OC ARL of these charts. Table 3 presents
the OC ARL of these charts when there is a correlation
between variables:

Xt ~
Np μ0, Σ2ð Þ, for t = 1, 2,⋯, τ,

Np μ1, Σ3ð Þ, for t = τ + 1, τ + 2,⋯,

(
ð18Þ

Table 2: OC ARL values of these charts for various m and n when zero-state ARL0 = 500 with the IC distribution Nðμ0, Σ0Þ.

m Shifts S-W S-MD Proposed S-W S-MD Proposed S-W S-MD Proposed

50

n = 5 n = 10 n = 20
δ = 0:5, σ = 2 85.5 161.2 69.1 63.7 169.6 48 48.6 251 42.8

δ = 0:5, σ = 4 25.1 58.1 16.6 15.1 62.3 11.8 10.8 129.7 9.9

δ = 1, σ = 2 26.3 71.7 25.3 16 67.8 15.8 16.9 180.4 16.5

δ = 1, σ = 4 9.8 28.9 9.6 6.5 36.1 6.4 5.5 90 5.3

100

n = 5 n = 20 n = 50
δ = 0:5, σ = 2 69.1 12.6 57.6 22.9 110.7 21.2 17.7 180.7 16.2

δ = 0:5, σ = 4 16.9 34.4 12.2 5.6 27.8 4.6 4.8 72.1 4.1

δ = 1, σ = 2 20.7 42.8 18.5 7.3 40.5 6.9 8 114.8 7.3

δ = 1, σ = 4 7.9 14.6 7.5 3.1 11.7 3 2.5 47.4 2.5

200

n = 5 n = 20 n = 50
δ = 0:5, σ = 2 58.3 96.7 49.8 16.7 62.7 14.2 7.8 10.6 7.3

δ = 0:5, σ = 4 14.9 23.3 9.8 4.1 15 3.3 2.5 10.6 2.5

δ = 1, σ = 2 19 28.3 18.7 4.4 15 4.1 3.5 20.3 3.3

δ = 1, σ = 4 6.7 10.5 6.1 2.3 4.3 2.3 2 4.6 2

5Computational and Mathematical Methods in Medicine



where

Σ2 =

1 0:2 0:2 0:2

0:2 1 0:2 0:2

0:2 0:2 1 0:2

0:2 0:2 0:2 1

0
BBBBB@

1
CCCCCA,

Σ3 =

1 + σ 0:2 0:2 0:2

0:2 1 0:2 0:2

0:2 0:2 1 0:2

0:2 0:2 0:2 1

0
BBBBB@

1
CCCCCA:

ð19Þ

The Weibull type of distributional changes for detecting
general distributional changes is shown in Table 4, where
Weibullðθ1, θ2Þ represents the Weibull distribution with
the shape parameter θ1 and the scale parameter θ2. The IC
distribution is Weibullð1, 1Þ, and the OC distribution is
Weibullð1, 1 + δÞ. We also consider the three types of gen-
eral changes (multivariate t with 3 df , multivariate exponen-
tial, and multivariate gamma distributions) in Table 5.
Tables 2–5 show that the proposed method performs well
for detecting a range of shifts.

5. Illustration

5.1. Data Source. To describe the proposed method, we ana-
lyze a real clinical case. Samples arrive periodically as Dr.

Table 4: OC ARL values of these charts for various m and n when zero-state ARL0 = 500 with the IC distribution Weibullð1, 1Þ.
m δ S-W S-MD Proposed S-W S-MD Proposed S-W S-MD Proposed

50

n = 5 n = 10 n = 20
2 5.5 10.3 4 3.7 6.3 2.8 2.6 5.2 2.3

4 2.3 2.5 2 2.1 2.1 2 2 2.1 2

6 2.1 2.1 2 2 2 2 2 2 2

100

n = 5 n = 20 n = 50
2 5 7.2 3.8 2.3 2.8 2.1 2 2.4 2

4 2.2 2.2 2 2 2 2 2 2 2

6 2 2 2 2 2 2 2 2 2

200

n = 5 n = 20 n = 50
2 4.6 5.8 3.4 2.2 2.3 2.2 2 2 2

4 2.2 2.1 2 2 2 2 2 2 2

6 2 2 2 2 2 2 2 2 2

Table 3: OC ARL values of these charts for various m and n when zero-state ARL0 = 500 with the IC distribution Nðμ0, Σ2Þ.

m Shifts S-W S-MD Proposed S-W S-MD Proposed S-W S-MD Proposed

50

n = 5 n = 10 n = 20
δ = 0:5, σ = 2 96 182.6 70.7 63.5 189.9 53.3 53 274 49.9

δ = 0:5, σ = 4 24.7 68.4 19.3 15.9 72.7 12.6 11.2 147 10.9

δ = 1, σ = 2 31.5 85.7 30.2 19.3 101.5 18.8 19 193.3 18.8

δ = 1, σ = 4 11.2 30.8 11 7.1 40.6 6.8 6.1 103.1 6.1

100

n = 5 n = 20 n = 50
δ = 0:5, σ = 2 73 140.9 67.7 23.9 33.2 22.8 22.5 92.2 22.3

δ = 0:5, σ = 4 18.4 39.5 14 5.6 33.2 5.1 3.9 92.2 3.7

δ = 1, σ = 2 27.8 47 24.1 5.9 13.8 5.8 8.2 143.2 8.2

δ = 1, σ = 4 17.7 16.5 22.1 4.8 14.4 4.8 4.5 56.6 4.2

200

n = 5 n = 20 n = 50
δ = 0:5, σ = 2 65.9 120.3 57.9 16.2 79 16.2 8.8 77.8 8.4

δ = 0:5, σ = 4 15.5 27.8 11.3 4 12.2 3.4 2.5 13.4 2.5

δ = 1, σ = 2 18.9 34.8 17.6 4.7 16.6 4.3 2.9 23.8 2.7

δ = 1, σ = 4 7.5 12.6 7.5 2.4 4.7 2.4 2 5.5 2
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Wolberg reports in his clinical cases. The database therefore
reflects this chronological grouping of the data. For each of
the 599 clinical cases, several clinical features were observed
or measured. Quantitative attributes including clump
thickness, uniformity of cell size, uniformity of cell shape,
marginal adhesion, single epithelial cell size, bare nuclei,
bland chromatin, normal nucleoli, and mitoses. The data-
sets are publicly available in the “Breast Cancer Wisconsin
(Original) Data Set” of the UCI Machine Learning Repos-

itory and can be downloaded from the website http://
archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin
+%28Original%29. Breast cancer screening is an important
strategy to allow for early detection and ensure a greater
probability of having a good outcome in treatment. More
details about these datasets can be related to [70–73]. In
this work, we aim to monitor the Breast Cancer Wiscon-
sin Data Set and identify whether there is a shift in a
process.

Table 5: OC ARL values of these charts for various n when m = 100 and zero-state ARL0 = 500 under other types of distribution.

τ Type S-W S-MD Proposed S-W S-MD Proposed S-W S-MD Proposed

50

n = 5 n = 20 n = 50
1 43.1 126.1 37.5 10.2 103.2 9.4 4.5 252.1 6.9

2 13.3 64.4 8.1 4.7 5.5 2.8 3.6 10.7 2.4

3 11.8 59 7.7 4.7 5.5 2.8 3.5 10.3 2.4

100

n = 5 n = 20 n = 50
1 43 129.6 41.1 10.1 104.8 9.42 4.4 238.9 6.7

2 12.7 65.4 7.7 4.8 5.8 2.7 3.4 10.5 2.4

3 12.5 54.5 7.9 4.6 5.6 2.7 3.6 10.4 2.4

200

n = 5 n = 20 n = 50
1 42.9 132.9 39.1 10.7 109.7 9.2 4.7 243.3 6.9

2 13.4 61.5 8.1 4.8 5.7 2.8 3.4 10.2 2.3

3 12 58.8 8 4.7 5.7 2.8 3.5 10.6 2.4

1: multivariate t with 3 df distribution; 2: multivariate gamma distribution; 3: multivariate exponential distribution.
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Figure 2: Corresponding normal Q-Q plot of the breast cancer data.
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5.2. Data Analysis. A quantile-quantile (Q-Q) plot of each
index, including 599 historical observations, is shown in
Figure 2, which highlights that the normality assumption is
invalid, which leads us to reject the null hypothesis that
the data are normally distributed. Thus, we use the proposed

distribution-free control scheme to monitor the breast can-
cer data.

We let m = 100 and n = 5. We use the 1–350 IC data to
find the control limits of the S-W chart, S-MD chart, and
proposed chart. For a fair comparison, the IC ARL of all
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Figure 3: (a) S-W chart for monitoring breast cancer data. (b) S-MD chart for monitoring breast cancer data.
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Figure 4: The proposed chart for monitoring breast cancer data.
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control charts is set equal to 400, and the remaining 249
breast cancer data are monitored. The curves of the S-W
and S-MD charts of the monitored banknote authentication
data are shown in Figure 3, which indicates that the S-W
chart produces a false alarm when the process is IC; con-
versely, the S-MD chart produces no OC signal when the
process is OC. Figure 4 shows the proposed chart for moni-
toring breast cancer data and shows that the statistic of the
proposed chart falls out of the control limits after 353 obser-
vations. Compared with the S-W and S-MD charts, the pro-
posed chart can detect a shift more accurately and earlier
than the other charts.

6. Conclusions and Discussion

This paper provided a new control scheme for detecting
location and scale changes. Inspired by Mukherjee and Mar-
ozzi [50], we proposed an effective control chart that simul-
taneously monitors changes in both location and scale. In
this paper, Breast Cancer Wisconsin Data Sets are provided
by using the proposed method. Spectral analysis is also
reviewed and conducted to investigate the periodicities of
shorter time series, and then, nonlinear least squares fitting
is used for fitting analysis. The real-data example shows that
the proposed scheme performed well for detecting process
changes. In this study, we mainly considered the standard
Euclidean distance to reduce the dimensionality of high-
dimensional data; the other methods of dimensionality
reduction still need to be investigated in more detail.
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