
Research Article
Network Pharmacology, Molecular Docking, and Molecular
Dynamic-Based Investigation on the Mechanism of Compound
Chrysanthemum in the Treatment of Asthenopia

Junjie Qiu , Biying Zheng , Hengpu Zhou , Chengcong Ye , Menglin Shi ,
Senlin Shi , and Suxiang Wu

School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China

Correspondence should be addressed to Senlin Shi; pjstone@163.com and Suxiang Wu; wsx173@126.com

Received 27 September 2022; Revised 24 November 2022; Accepted 6 December 2022; Published 30 December 2022

Academic Editor: Sathishkumar V E

Copyright © 2022 Junjie Qiu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As a clinical empirical prescription for ophthalmology, compound chrysanthemum has been used gradually and has a good effect
on eye fatigue. However, the detailed mechanisms of antiasthenopia have not been studied. In order to clarify the mechanisms of
the compound chrysanthemum in the treatment of asthenopia, network pharmacology was combined with experimental study in
this paper. A total of 593 genes and 39 active chemicals were identified, and both were considered to be essential to the
advancement of asthenopia research. The results of the molecular docking analysis demonstrated a certain affinity between
PRKACA, PRKCA, PRKCB, and their related compounds; molecular dynamic simulations assessed the stability of these
receptors and ligands. The effects of compound chrysanthemum extract on ciliary muscle were studied in vitro and in vivo. By
using the MTT assay, compound chrysanthemum extracts (50, 100, 200, 400, and 800 g·mL-1) showed no effect on the
proliferation of rCSMCs for 24 and 48 hours. It raised nitric oxide and decreased Ca2+ in ciliary muscle cells isolated from the
eyeballs of rats. Besides, compound chrysanthemum extract had a direct relaxing effect on the isolated gastric smooth muscle
of rats by reducing the contractile tension. Furthermore, in vivo experiment results showed that, compared to the incandescent
lamp-irradiated rats (model group), SD rats treated with compound chrysanthemum extracts (660mg·kg-1 and 1320mg·kg-1,
orally) displayed considerably retracted pupils and increased NO content. It is also found that compound chrysanthemum
extract can downregulate the mRNA expression of PKA and PKC in the calcium signaling pathway. Overall, our results
suggested that compound chrysanthemum extract may lessen visual fatigue through multiple components, multiple targets, and
multiple pathways.

1. Introduction

Asthenopia is one of the most common eye diseases on the
ophthalmology. After utilizing the eyes for a prolonged
period of time, it may result in symptoms like vision disrup-
tion and eye discomfort. In severe cases, it can even deterio-
rate into systemic symptoms [1–4]. Clinically speaking,
visual fatigue is categorized as a syndrome because it might
develop due to local, systemic, mental, or psychological rea-
sons [5, 6]. The main manifestations of symptom include
redness, soreness, itching, overflow of tears, diplopia, head-
ache, dry eyes, foreign body sensation, and nausea [7–9].

The compound chrysanthemum (CC) is composed of
Chrysanthemi Flos, Cassiae Semen, Lycii Fructus, Polygonati
Rhizoma, Ligustri Lucidi Fructus, and Ecliptae Herba. It is a
clinically proven prescription that has been used extensively
in ophthalmology and has good curative benefits. Chrysan-
themum and Lycii Fructus, as traditional Chinese herbs,
always have the effect of brightening the eyes and relieving
asthenopia [10]. Studies have proved that chrysanthemum
has a strong antioxidant effect and can slow down retinal
damage [11]. In Japan, these 2 herbs are also widely used
to treat eye fatigue [12]. The 2-O-β-D-glucosyl-L-ascorbic
acid in Lycii Fructus can improve the antioxidant capacity
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of oxidatively damaged lens and slow down the damage of
lens to maintain the transparency of lens [13, 14]. The active
ingredients such as flavonoids, terpenoids, and organic acids
in chrysanthemum have pharmacological effects on relieving
fatigue, protecting liver, regulating immunity, etc. [15–19].

Chrysanthemum also can inhibit the apoptosis of lacrimal
gland acinar cells, lacrimal gland duct cells and improve
the basic secretion of tear fluid to maintain the stability of
the tear film. It may be one of the mechanisms of chrysan-
themum improving the symptoms of dry eyes [20]. Cassiae

Figure 1: Illustration of CC in treatment of asthenopia.
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semen contains a variety of active ingredients such as anthra-
quinones and polysaccharides, which have the effects of pro-
tecting the liver, scavenging free radicals, and enhancing
immunity [21, 22]. The polysaccharides, flavonoids, and
other active components of Lycii Fructus provide pharmaco-
logical effects such as liver and kidney protection and tired-
ness relief [23–26]. The pathological changes of glaucoma
and other eye illnesses are also well-adjusted by it [27].
The main components of Polygonati Rhizoma are polysac-
charides, anthraquinones, alkaloids and steroidal saponins,
etc., which have the effects of regulating immunity, antitu-
mor, antifatigue, and inhibiting bacteria. Ligustri Lucidi
Fructus is rich in triterpenoids and flavonoid, which hold
potential to antiasthenopia. There have been multiple
studies which indicate that Wedelolactone in Ecliptae Herba
plays a role in inhibiting hepatocyte apoptosis and liver
damage [28–31].

In recent years, computer technology has been widely
used to solve medical problems [32, 33]; after we find possi-
ble targets for some diseases, like dengue, tuberculosis [34,
35], etc., we can use molecular docking technology to predict
the binding energy of active compounds and potential tar-
gets; molecular dynamics simulation technology can simu-
late the effect of active compounds and potential targets
after binding. These computer technologies can help us
more effectively explore the mechanism of drug treatment
to diseases [36, 37], but experimental verification is essential.

In this study, we used network pharmacology to explore
the mechanism and signaling pathways of CC against asthe-
nopia. Subsequently, the binding affinity and the stability of
the targets to the active CC compounds were predicted using
molecular docking and molecular dynamic. Additionally, the
results of the cell and animal studies demonstrated that CC
can increase the production of NO, decrease the content of
Ca2+, and reduce the mRNA expression of PKA and PKC,
so as to achieve the therapeutic effect of relaxing the ciliary
muscle. The flowchart of the whole study design is illustrated
in Figure 1.

2. Materials and Methods

2.1. Chemicals and Reagents. QijuDihuang oral liquid
(QJDHOL) was purchased from Hubei Dongxin Pharma-
ceutical Co., Ltd. Other Medicinal herbs were purchased
from Zhejiang Chinese Medical University Chinese Medi-
cine Decoction Pieces Co., Ltd. rCSMCs were purchased
from Shanghai Qincheng Biotechnology Co., Ltd. Australian
Fetal Bovine Serum and RPMI 1640 was purchased from
Thermo Fisher Scientific-CN. Griess reagent was purchased
from Shanghai Yuanye Bio-Technology Co., Ltd. Pluronic
F127 and Fura-2/AM (5um) was purchase from Shanghai
Yisheng Biological Technology Co., Ltd. MonScript™ RTIII
Super Mix with dsDNasekit and MonAmp™SYBR® Green
qPCR Mix kit for qRT-PCR were bought from Monad Bio-
technology Co., Ltd. (Wuhan, China). RNAeasy™Plus Animal
kit was purchased from the Beyotime Institute of Biotechnol-
ogy (Jiangsu, China). Other chemicals were obtained from
Tianjin Yongda Chemical Reagent Co., Ltd.

2.2. Network Pharmacology-Based Analysis

2.2.1. Screening the Effective Components and Potential
Targets of CC. The Traditional Chinese Medicine Systems
Pharmacology Database and Analysis Platform (TCMSP,
https://old.tcmsp-e.com/tcmsp.php) was utilized to screen
active ingredients of CC by using “Juhua,” “Juemingzi,”

Table 1: The information of the active compounds in CC.

Number Compound

1 Acacetin

2 Butin

3 Mandenol

4 3′-O-Methylorobol

5 Pratensein

6 Demethylwedelolactone

7 Wedelolactone

8 Luteolin

9 Quercetin

10 Kaempferol

11 Eriodictyol

12 Lucidusculine

13 DFV

14 Baicalein

15 3′-Methoxydaidzein

16 Truflex OBP

17 Diosgenin

18
((1S,5S,7S)-7-Acetoxy-5-isopropenyl-2,8-dimethylene-

cyclodecyl) acetate

19 1,3,8,9-Tetrahydroxybenzofurano(3,2-c)chromen-6-one

20
9,10-Dihydroxy-7-methoxy-3-methylene-4H-

benzo(g)isochromen-1-one

21 Atropine

22 Glycitein

23 Rhein

24 Toralactone

25 Rubrofusarin

26 Aurantio-obtusin

27 Obtusin

28 Ethyl linolenate

29 Quinizarin

30 4′,5-Dihydroxyflavone
31 Chryseriol

32 Isorhamnetin

33 Artemetin

34 Eupatorin

35 24-Ethylcholest-4-en-3-one

36 Diosmetin

37 Naringenin

38
5,7-Dihydroxy-2-(3-hydroxy-4-
methoxyphenyl)chroman-4-one

39 (2R)-7-Hydroxy-2-(4-hydroxyphenyl)chroman-4-one
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“Gouqizi,” “Huangjing,” “Nvzhenzi,” and “Mohanlian” as
keywords, with the criteria OB ≥ 30% and DL ≥ 0:18 [38].
With good gastrointestinal absorption ((GI) absorption)
capabilities in the pharmacokinetics column and at least
two yeses for the first five conditions in the druglikeness col-
umn, the acquired components were analyzed using the
SwissADME database [39]. Subsequently, the Swiss Target
Prediction platform generated the relevant targets based on
the active substances screened.

2.2.2. Prediction of Potential Targets of Asthenopia. Using
“asthenopia,” “eye fatigue,” and “visual fatigue,” as the key-
words, asthenopia-related targets were gathered from the
GeneCards database (https://www.genecards.org/), Online
Mendelian Inheritance in Man (OMIM) database (https://
www.omim.org/), and Therapeutic Target Database (TTD)
(http://db.idrblab.net/ttd). By importing the CC active ingre-
dient targets and asthenopia related targets into VENNY2.1
(https://bioinfogp.cnb.csic.es/tools/venny/), their common
targets were obtained [40].

2.2.3. Construction of a Protein-Protein Interaction (PPI)
Network and Active Compound-Disease Target Network.
With the help of the online software Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) (https://
string-db.org/), the PPI network was obtained. The human
species was selected, and the confidence value is set to high-
est confidence in the parameter setting [41]. Subsequently,
The PPI network was visualized with Cytoscape 3.7.0 soft-
ware, and the score of each node was calculated using the
CytoNCA, a Cytoscape plugin. Core network were detected
according to betweenness centrality (BC) values, and the
top 50 genes generated were considered as hub genes; to
construct the core network, the credibility of the interaction
between the target proteins increases with score. In the

meanwhile, to construct an active compound-disease target
network, the active compounds from CC and the relevant
targets were imported into Cytoscape.

2.2.4. GO and KEGG Pathway Enrichment Analysis. The
Gene Ontology (GO) analysis is used to describe the biolog-
ical functions of targets which include three aspects: biolog-
ical processes (BP), molecular functions (MF), and cellular
components (CC). The Kyoto Encyclopedia of Genes and
Genomes (KEGG) is a database which has the ability to per-
form functional enrichment analysis power. The clusterPro-
filer software package of the R platform was used to conduct
GO and KEGG functional enrichment analysis, with a con-
sidering threshold of p < 0:05 [42].

2.2.5. Molecular Docking. Using molecular docking analysis,
the binding situation of protein and small molecules can be
predicted. The significant genes, PRKACA, PRKCA, and
PRKCB, were selected to conduct molecular docking. We
obtained the crystal structures of PRKACA (PDB ID:
2GU8), PRKCA (PDB ID: 2GZV), and PRKCB (PDB ID:
2I0E) from the Protein Data Bank (PDB) database of the
Research Collaboratory for Structural Bioinformatics
(RCSB). Firstly, minimizing the target protein free energy
with Chem3D, the target proteins were introduced into
AutoDock-Tools (Version: 1.5.7), where water molecules
and original ligands in the target proteins were removed,
and hydrogen atoms were added, then docking box genera-
tion within 40Å with the original ligand as the center. The
active ingredients that can bind to these targets were used
as ligands, and the 3D molecular conformations of the ingre-
dients were then obtained from the PubChem Compound
database [43]. Subsequently, the docking experiments were
achieved with the help of AutoDock Vina in a semiflexible
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Figure 2: Compounds and targets screening. (a) Compounds in six herbal medicines in compound chrysanthemum. (b) Venn diagram of
potential targets of CC for the treatment of asthenopia.
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way and Discovery Studio software was used to visualize
the results.

2.2.6. Molecular Dynamic Simulations (MDs). After molecu-
lar docking, Discovery Studio 2019 was used to verify the
reliability of the results. The complexes were first structured
automatically using the macromolecule tool, including
building loops and protonating. The receptor-ligand com-
plexes were then put into a CHARMm forcefield, and
explicit periodic boundary model was chosen; meanwhile,
0.145M NaCl was added to neutralize the system. Subse-
quently, running the “standard dynamic cascade” mode, this
process consists of five steps: minimization, minimization 2,

heating, equilibration, and production. The specific parame-
ters were set as follows: the system temperature rose from
50 k to 300 k, 500 ps for equilibration at target temperature,
10000 ps for production; all of the above time steps were
2 ps; the rest of the parameters remained as default [37, 44].

2.3. Experimental Verification

2.3.1. Preparation of Drugs. The parched extract was
obtained by the optimal refluxing process and drying
process based on the preliminary research of our labora-
tory, which contained ethanol extract and aqueous extract.
The Krebs solution was used to prepare liquid medicines
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Figure 3: Identification of intersection target network. (a) The PPI network of all common targets. (b) The PPI network of top 50 targets.
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with concentrations of 21.75mg·mL-1, 43.5mg·mL-1, and
87mg·mL-1.

Weigh the medicinal materials according to the prescrip-
tion of compound chrysanthemum and then decoct them
twice with ten times the amount of distilled water. Mix the
medicinal solution and dry it into an extract. Prepare the
decoction at a concentration of 43.5mg·mL-1 with Krebs’
solution. According to the drug instructions, the daily dose
of 1.8mL·kg-1 QJDHOL for rats was converted from the dose
for adults. Dilute it to a solution with a concentration of
0.075mg·mL-1 by adding a certain volume of Krebs’ solution.

2.3.2. Cell Viability. rCSMCs were plated at 5 × 104 mL−1 in
96-well plates and treated with compound chrysanthemum
extract (CCE) at a concentration of 50, 100, 200, 400, and
800μg·mL-1 for 24 h and 48h. Then, 20μL MTT solution
at a concentration of 5mg·mL-1 was added to each well.

After incubating for 4 h at 37°C, 200μL DMSO was added
to each well of the plates that aspirated the supernatant.
The cell viability measured for the absorbance at 490nm
on an enzyme-labeled instrument after shaking for about
15min. The following formula was used to compute the
growth inhibition rate:

Growth inhibition rate =
ODcontrol –ODadministrationð Þ

ODcontrol

� �
× 100%:

ð1Þ

2.3.3. Determination of NO Production. The NaNO2 solu-
tions with concentrations of 0, 20, 40, 60, 80, 100, 120,
140, 160, 180, and 200μmol·L-1 were prepared to establish
a standard curve of NO. The rCSMCs in logarithmic growth
phase were treated with CCE at 200, 400, and 800μg·mL-1
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Figure 4: Identification of active compound-potential target network.
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Figure 7: Continued.
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for 24 h and 48 h after being starved for 4 h. The level of NO
generation was ascertained by detecting nitrite, a stable
byproduct of NO interaction with Griess's reagent, in the
culture supernatant. Using a microplate reader, the absor-
bance of the reaction product was measured at 540nm to
determine the nitrite concentration.

The Griess reagent A solution: 0.1% N-1-naphthalene
ethylenediamine hydrochloride aqueous solution.

The Griess reagent B solution: 1% sulfaphosphoric acid
aqueous solution, φðH3PO4Þ = 5%.

2.3.4. Measurement of Ca2+. The rCSMCs in logarithmic
growth phase were incubated at 37°C for 60min with HEPES
buffer containing Fura-2/AM (5μM) and Pluronic F-127
(0.001%) after being rinsed with HEPES buffer 3 times.
Then, the supernatant was aspirated, and the rCSMCs were
rinsed with HEPES buffer for 3 times, which was followed
by CCE treatment (200, 400, and 800μg·mL-1) for 100 s to
confirm changes in Ca2+ content. Using excitation wave-
lengths of 340nm and 380nm and emission wavelengths
of 510nm, a microplate reader was used to measure the fluo-
rescence intensity of the cells. Fura-2/AM was used as the

Table 2: Binding energy of active compounds and hub targets.

Target Compound Binding energy (kcal/Mol)

PRKACA Obtusin -8.8

PRKCA

Ethyl linolenate -4.7

Glycitein -7.2

Mandenol -4.6

Rhein -8.1

Truflex OBP -6.0

Wedelolactone -7.3

PRKCB

Atropine -6.4

Glycitein -8.3

Lucidusculine -7.4

Rhein -9.0

Wedelolactone -8.2
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Figure 7: Molecular docking of active compounds and hub targets. (a) The 2D and 3D structure diagrams of PRKACA and Obtusin
interaction. (b) The 2D and 3D structure diagrams of PRKCA and Ethyl linolenate interaction. (c) The 2D and 3D structure diagrams of
PRKCA and Glycitein interaction. (d) The 2D and 3D structure diagrams of PRKCA and Mandenol interaction. (e) The 2D and 3D
structure diagrams of PRKCA and Rhein interaction. (f) The 2D and 3D structure diagrams of PRKCA and Truflex OBP interaction. (g)
The 2D and 3D structure diagrams of PRKCA and Wedelolactone interaction. (h) The 2D and 3D structure diagrams of PRKCB and
Atropine interaction. (i) The 2D and 3D structure diagrams of PRKCB and Glycitein interaction. (j) The 2D and 3D structure diagrams
of PRKCB and Lucidusculine interaction. (k) The 2D and 3D structure diagrams of PRKCB and Rhein interaction. (l) The 2D and 3D
structure diagrams of PRKCB and Wedelolactone interaction.
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fluorescent marker of Ca2+, and the fluorescence intensity
ratio indicated the content of Ca2+ in rCSMCs.

2.3.5. Measurement of Muscle Tension. The stomach of the
Sprague Dawley (SD) rats was dissected and soaked in
Krebs’ solution for maintaining its activity. The longitudinal
muscles of the stomach were cut out on a glass slide
infiltrated with Krebs’ solution. The gastric muscle strip
specimens about 2.0 cm in length and 0.3 cm in width were
cut out with its ends knotted with sutures after removing
the mucosal layer. The specimen was placed in a constant
temperature water and bathed with 15mL Krebs’ solution
and oxygen. One end of it was fixed on a thin rod, and the
other end was connected to a tension transducer. The
changes in muscle tension were measured by MPA2000
Biosignal Quantitative Recording and Analysis System.

Fresh Krebs solution was replaced into the water bath
every 15 minutes to stabilize the specimen for 1 h. The mus-
cle tension (X) before administration was recorded after the
specimen was stabilized. After 5 minutes, 6mL Krebs’ solu-
tion, QJDHOL, CCE, and decoction were added to different
water baths, which ensured that the final concentrations of

the positive control group, the CCE low-dose group, the
CCE medium-dose group, the CCE high-dose group, and
the decoction group in the water bath were 0.0214mg·mL-1,
6.2mg·mL-1, 12.4mg·mL-1, 24.8mg·mL-1, and 12.4mg·mL-1.
Changes in muscle tension were observed and recorded after
5 minutes of drug action. The formula for the change rate of
muscle tension is as follows:

Variation Rate of Muscle Tention %ð Þ = Xbefore − Xafterð Þ
Xbefore

� �
× 100%:

ð2Þ

2.3.6. Antiasthenopia Effect of CCE In Vivo. Male SD rats
(300 ± 20 g) provided by Shanghai BK company (the quality
certificate number is SYXK (Zhe) 2018-0012) were divided
into 6 groups according to weight, which were fed adaptively
for 7 days with normal water and food at a temperature of
25°C and relative humidity of 50 ± 20%. The control group
was given distilled water for 3 days without glare, and the
model group was irradiated with incandescent lamp (100w)
for 15min without administration. The positive control group
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Figure 8: Results of molecular dynamic simulations of the complexes. (a) RMSD of PRKACA-Obtusin, PRKCA-Rhein, PRKCB-Rhein. (b)
RMSF of PRKACA-Obtusin. (c) RMSF of PRKCA-Rhein. (d) RMSF of PRKCB-Rhein.
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receivedQJDHOL for 3 days at a dose of 1.8mL·kg-1. The CCE
was administered orally at 330mg·kg-1, 660mg·kg-1, and
1320mg·kg-1 for 3 days, and then the rats were irradiated with
incandescent lamp (100w) for 15min. The state of the rat’s
eyeballs was observed under a slit lamp after the illumination.

The pupil diameter and the eyelid diameter of the rats
were measured, and the ratio named pupil diameter/eyelid
diameter was calculated. After sacrifice, the eyeballs of rats
were immediately enucleated and washed in PBS. The ciliary
smooth muscles were carefully separated on ice and
weighed. The supernatant was homogenized and centri-
fuged, and then the Griess assay was used to quantify the
amount of NO in the ciliary smooth muscles.

2.3.7. Quantitative Real-Time PCR (qRT-PCR). Total RNA
was extracted from SD rats in accordance with the kit’s
instructions. Next, RNA samples were reverse transcribed
into cDNA and used as a template for PCR amplification.
The following conditions for PCR amplification were used:
predenaturation at 95°C for 30 sec, 40 cycles of denaturation
at 95°C for 10 sec, and annealing at 60°C for 30 sec. The
internal reference was GAPDH. The data were analyzed by
the 2−ΔΔCt method [45, 46].

2.3.8. Statistical Analysis. The statistical analysis were per-
formed using the SPSS 20.0 software, and the results were
expressed as mean ± SD. Differences between groups were
analyzed by ANOVA one-way analysis of variance. Statisti-
cal significance was set at p < 0:05 and p < 0:01.

3. Results

3.1. Identification of Active Compounds and Potential
Targets. Using the TCMSP database and ADME database,
39 active compounds were obtained in CC (Table 1).
Figure 2(a) showed 11 of CC belonged to Chrysanthemi Flos,
8 to Cassiae Semen, 5 to Lycii Fructus, 4 to Polygonati Rhi-
zoma, 3 to Ligustri Lucidi Fructus, and 6 to Ecliptae Herba.
Based on the 39 active compounds, 749 targets were found
in the Swiss Target Prediction database. Additionally,
12004 asthenopia targets were gathered from the Gene-
Cards, OMIM, and TTD databases. Then, removing dupli-
cate targets, 6724 potential targets remained. By the online
tool Venny 2.1.0 software, an intersection of compound-
related targets and disease-associated targets were remained,
which contained 593 targets (Figure 2(b)).

3.2. PPI Network Analysis. To identify central targets, we
constructed a PPI network, which may comprehensively
elucidate the possible mechanism of CC treatment for
asthenopia. There were 593 nodes and 2293 edges in the net-
work (Figure 3(a)). Based on their betweenness centrality
values, the top 50 nodes were selected to build a subnetwork
(Figure 3(b)); it can be seen that the betweenness centrality
values of SRC (298.3), HSP90AA1 (283.6), STAT3 (219.0),
DRD2 (212.6), and ESR1 (168.6) were the largest, which
were likely to be the hub targets in the progression of
asthenopia.

3.3. Compound-Disease Target Network. The active
compound-disease target network was constructed to better
understand the probable mechanism of CC on asthenopia.
As shown in Figure 4, the network had 632 nodes with
3330 edges. The network showed the potential interaction
between compounds and disease targets, which revealed
the probable mechanism of the CC in the treatment of
asthenopia. With this network, we were able to obtain 39 active
compounds related to asthenopia, with an average degree value
of 85.38. According to the BC value, the top 5 active
compounds were Diosgenin, Lucidusculine, 24-Ethylcholest-
4-en-3-one, Rhein, and Truflex OBP.

3.4. GO Enrichment Analysis. GO enrichment analysis was
used to discover the underlying BPs, CCs, and MFs of the
593 target proteins (Figure 5). The results showed that these
proteins were related to 3552 biological processes. Among
them, peptidyl-tyrosine phosphorylation, peptidyl-tyrosine
modification, and antibiotic response and cellular calcium
ion homeostasis ranked the top four. There were 195 cellular
components obtained, which membrane raft, membrane
microdomain, membrane region, and neuronal cell body
were mainly related. In terms of molecular functions, a total
of 333 MFs were identified, the top MFs were significantly
enriched in protein tyrosine kinase activity, neurotransmitter
receptor activity, transmembrane receptor protein tyrosine
kinase activity, and protein serine/threonine kinase activity.

3.5. KEGG Enrichment Analysis. KEGG pathway analysis
was performed for the 593 target proteins, and a total of
186 KEGG pathways were significantly enriched. The top
20 signaling pathways were chosen for visual display
(Figure 6(a)). The hub targets were shown to be considerably
enriched in neuroactive ligand-receptor interaction, the
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Figure 9: Inhibition rate of CCE on the proliferation of the rat
ciliary smooth muscle cells. rCSMCs were treated with CCE at
concentrations ranging from 50 μg·mL-1 to 800μg·mL-1 for 24 h
and 48 h. The data are represented as mean ± SD (n = 3).
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PI3K-Akt signaling pathway, and the calcium signaling
pathway, suggesting that CC may treat asthenopia by regu-
lating these signaling pathways. The calcium signaling path-
way was shown in Figure 6(b).

3.6. Validation by Molecular Docking. In order to provide
further illustration of how the active compounds bind to
the targets, PRKACA, PRKCA, PRKCB, and related active
compounds were selected to perform molecular docking as
receptors and ligands (Figure 7). PRKACA was a member
of the PKA family; meanwhile, PRKCA and PRKCB were
members of the PKC family. The three hub genes were
enriched in calcium signaling pathway and top ranked in
the PPI network. There were hydrogen bonding interactions,
π-π interactions, and hydrophobic were primarily involved
between the receptor and ligand. The bind of Obtusin and
THR 183, Rhein and ASN 31, GLN 91, Glycitein and LYS
371, GLU 390, ASP 483, Rhein and ASP 484, PHE 485,
Wedelolactone and GLU 665, and SER 664 were hydrogen,
so their binding affinity were high. The interaction of Ethyl
linolenate and active site residues was an alkyl chain, so
the docking score was very low, the same situation also
occurred in Mandenol and PRKCA. Table 2 indicated that
the binding energies of the ligands to receptors were almost
less than -5.0 kcal/mol, which successfully demonstrated that
related active compounds could bind well with PRKACA,
PRKCA, and PRKCB.

3.7. MDs. To further investigate the protein-ligand complex,
the three complexes with the best molecular docking results
were selected for molecular dynamics analysis; the results
were showed in Figure 8. Root mean square deviation
(RMSD) can evaluate the stability of the trajectory, when

the trajectory is steep, it indicates that the system has under-
gone some kind of violent transformation, and when the tra-
jectory is smooth, it indicates that the system has reached
equilibrium. During the initial period, the RMSD of the
protein-ligand complexes varied considerably; the RMSD
value of PRKACA-Obtusin complex was stable after 1.5 ns;
as for the PRKCA-Rhein and PRKCB-Rhein, the stable time
was approximately 5 ns, suggesting that at this point, the
complex had a stable conformation (Figure 8(a)). Root mean
square fluctuation (RMSF) was an indicator to assess the
degree of movement of atoms; lower RMSF value meant less
drift. Figures 8(b)–8(d) demonstrated that the residues
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Figure 10: Effect of EEC on (a) relative viability and (b) NO in rat ciliary smooth muscle cells. rCSMCs were treated with 200, 400, and
800μg·mL-1 of CCE for 24 h and 48 h. Cytotoxicity was estimated by the MTT assay, and NO was quantified using the Griess agent. The
data are represented as mean ± SD (n = 3). ∗p < 0:05 and ∗∗p < 0:01.

0 200 400 800
0.00

0.25

0.50

0.75

The concentration of extract (𝜇g/mL)

34
0/

38
0 

ra
tio

⁎⁎
⁎⁎

⁎⁎

Figure 11: Effect of EEC on Ca2+ in rat ciliary smooth muscle cells.
Changes of Ca2+ were evoked by various concentrations of CCE
(200 μg·mL-1, 400 μg·mL-1, and 800μg·mL-1). The data are
represented as mean ± SD (n = 3). ∗p < 0:05 and ∗∗p < 0:01.
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deviation was low. Above all, these results suggested the sta-
bility of the complexes.

3.8. Experimental Validation

3.8.1. The Inhibitory Effect of CCE on the Proliferation of
rCSMCs. The inhibitory effect of CCE with different concen-
trations on the proliferation of rCSMCs at different administra-
tion time was shown in Figure 9. When the concentrations of
CCE were 50, 100, 200, 400, and 800μg·mL-1, it had no inhib-
itory effect on the growth of rCSMCs for 24h and 48h.

3.8.2. Effect of CCE on NO Production in rCSMCs. The con-
centration of NaNO2 solution was taken as the abscissa, and
the OD value was taken as the ordinate to perform linear
regression. The regression equation was y = 0:0045x + 0:0603
(R2 = 0:9956), and the linear range was 0-200μmol·L-1. The
effect of CCE on NO production in rCSMCs was shown in
Figure 10. CCE was applied to rCSMCs for 24 and 48 hours
at doses ranging from 0μg·mL-1 to 800μg·mL-1. There were
no appreciable changes in cell viability following CCE at these
concentrations (Figure 10(a)). Therefore, rCSMCs were treated
with 200, 400, and 800μg·mL-1 of CCE to determine NO
production. Compared with the control group, CCE with a
concentration of 200μg·mL-1 had a significant increase on the
production of NO in rCSMCs (p < 0:05), and it had a very evi-
dent effect on the content of NO at concentrations of 400 and
800μg·mL-1, when the administration time was 24h (p < 0:01).
When the administration time increased to 48h, CCE obvi-
ously elevated the production of NO in rCSMCs with concen-
trations of 200, 400, and 800μg·mL-1 (p < 0:01) (Figure 10(b)).

3.8.3. Effect of CCE on Ca2+ in rCSMCs. The effect of CCE
with different concentrations on Ca2+ in rCSMCs was shown

in Figure 11. The fluorescence intensity ratio was signifi-
cantly reduced under the action of CCE at concentrations
of 200, 400, and 800μg·mL-1, and within a certain range,
the higher the concentration of CCE, the smaller the fluores-
cence intensity ratio. Compared to the control group, CCE
quickly decreased the Ca2+ levels in these cells. As a result,
Ca2+ concentrations were significantly reduced by CCE in
a dose-dependent manner.

3.8.4. Changes in Muscle Tension before and after
Administration. Figure 12 shows the results of muscle ten-
sion and its change rate before and after administration of
gastric muscle strips in each group of rats. In this vitro
model, SD rats were sacrificed to obtain statistically suffi-
cient data. It can be seen from the results that there was no
significant decrease in muscle tension in Krebs’ group com-
pared with the muscle tension before administration, while
the contraction tension of the other groups was obviously
reduced. CCE with medium dose and above had a remark-
ably enhancement on variation rate of muscle tension in
the positive control group (QJDHOL group). There was no
significant effect on variation rate of muscle tension in
decoction group. Therefore, it showed that a certain concen-
tration of CCE had a direct relaxing effect on the isolated
gastric smooth muscle of rats, which could effectively reduce
its contraction tension, and its efficacy was better than that
of decoction.

3.8.5. Antiasthenopia Effect of CCE In Vivo. To verify if the
effect of CCE could be investigated in vivo, we studied the
antiasthenopia effect of CCE (low dose, medium dose, and
high dose) on NO levels in irradiation-induced visual fatigue
animal experiments. The concentration of NaNO2 solution
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Figure 12: Changes in muscle tension before administration and after administration (a) and the variation rate of muscle tension on the
gastric muscle of SD rats (b). The gastric muscle strip specimens performed distinctly different telescopic movements, which were
stimulated with Krebs’ solution, QJDHOL, decoction, and different concentrations of CCE. The data are represented as mean ± SD (n = 6).
△△p < 0:01 vs. before administration. ∗p < 0:05 and ∗∗p < 0:01 vs. Krebs. ##p < 0:01 vs. decoction.
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was taken as the abscissa, and the OD value was taken as the
ordinate to perform the linear regression. The regression
equation was y = 0:0064x + 0:0771 (R2 = 0:9940), and the
linear range was 0-100μmol·L-1. The pupils of the rats
dilated especially in control group compared with the rats
that were not irradiated, while the pupils of the rats in other
group treated with CCE and QJDHOL retracted a lot
(Figure 13). The effect on NO in the supernatant of ciliary
muscle homogenate of rats was shown in Figure 14(a).
CCE with medium dose and high dose significantly
increased intracellular NO levels in rats irradiated with
incandescent lamp compared with the model group. There

was no significant difference in NO content between the
low-dose group and the model group as well as the QJDHOL
group. The analysis of the data showed that CCE had not
only a contraction on pupil of rats but also a certain effect
on increasing the content of NO in the supernatant of rat
ciliary muscle homogenate (Figure 14(b)).

3.8.6. qRT-PCR Validation of the Hub Genes. The expression
of hub targets (PKA and PKC) which enriched in calcium
signaling pathway was evaluated using qRT-PCR. As shown
in Figure 15, compared with the control group, the mRNA
expression of PKA was decreased significantly in high-dose

(a) (b)

(c) (d)

(e) (f)

Figure 13: Pupils of rats observed under the ophthalmoscope. (a) Control group. (b) Model group. (c) QJDHOL group. (d) CCE low-dose
group. (e) CCE medium-dose group. (f) CCE high-dose group.
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group, and PKC were decreased significantly in medium-
dose and high-dose group. These results confirmed that after
the treatment of CCE, the mRNA expressions of PKA and
PKC were inhibited to varying degrees. The primers utilized
in our study were listed in Table 3.

4. Discussion

Asthenopia is one of the most common eye diseases. The
incidence of visual fatigue has been rising annually in recent
years, and the patients who suffer from it are also getting

younger and younger due to the accelerating social rhythm
and increased strain in job, life and other aspects. Astheno-
pia will not only seriously interfere with the vision and
quality of life but also further lead to age-related macular
degeneration (AMD), cataract, blindness, and other diseases.
Clinical studies have shown that the formation of asthenopia
is closely related to eye factors. Excessive use of the eye will
lead to ciliary muscle fatigue. With the decline of ciliary
muscle function, the ability of the eye to adjust will also
decline, resulting in asthenopia. The concentration of cal-
cium ions in smooth muscle is one of the main factors that
cause ciliary muscle contraction. Compound chrysanthe-
mum is commonly used clinically to treat asthenopia in
China, but the mechanism is not clear. The emergence of
network pharmacology provides a new method to study
the mechanism of action of drugs and diseases. In this study,
we conducted a systemic study using a combination of
network pharmacology and experimental verification to
explored the potential mechanism and the target of com-
pound chrysanthemum in treating asthenopia.

In this paper, after the intersection of disease genes and
drug target genes, 39 active compounds and 593 target genes
were found, which play an important role in the treatment of
visual fatigue. Through PPI network analysis, we can get the
network of genes, and SRC, HSP90AA1, STAT3, DRD2, and
ESR1 were identified to be the hub genes. An active
compound-target network was constructed; sorted by BC
value, Diosgenin, Lucidusculine, 24-Ethylcholest-4-en-3-
one, and Rhein may be the active ingredients in CCE treat-
ment of asthenopia. GO analysis identified a wide range of
targets involved in peptidyl-tyrosine phosphorylation,
membrane raft, and protein tyrosine kinase activity. KEGG
analysis showed that the antiasthenopia effect of compound
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Figure 15: The mRNA expression of PKA and PKC. The data are
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Figure 14: Effect of EEC on (a) the ratio of the pupil diameter to the eyelid diameter in SD rat and (b) NO in the rat ciliary muscle. In this
in vivo model, the rats were irradiated with incandescent lamp (100w) for 15min. CCE was administered with low dose, medium dose, and
high dose for three days before irradiation with incandescent lamp. Intracellular NO levels were measured by the Griess agent. The data are
represented as mean ± SD (n = 6). ##p < 0:01 vs. control. ∗p < 0:05 and ∗∗p < 0:01 vs. model.
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chrysanthemum was related to neuromodulation and cell
signal transduction, of which calcium signaling pathway
ranked third. Finally, through molecular docking and molec-
ular dynamic, it was verified that PRKACA, PRKCA, and
PRKCB can closely bind to related components.

Ciliary smooth muscle relaxation is known to be regulated
by cAMP-independent mechanisms such as nitric oxide-
mediated relaxation. Therefore, an increase in NO level can
cause the smooth muscles in the eye to relax [47]. Nitric oxide
is synthesized from L-arginine by NO synthase and is known
to relax vascular smooth muscle through the elevation of
cGMP that, in turn, mediates a relaxation response [38,
48–51]. NO synthase has been found in ciliary muscle and
other ocular tissues [52]. NO plays a significant role in
mediating visual accommodation and relaxing the constricted
ciliary muscle. Furthermore, prior research has shown that the
Ca2+ concentration in cultured smooth muscle cells is a
primary factor affecting the smooth muscle contraction. In
order to maintain a balance between contraction and relaxa-
tion in smooth muscle while it is at rest, Ca2+ must be strictly
controlled within a proper range. Ca2+ is a ubiquitous intracel-
lular signal in all eukaryotes, being an important component
of cell signaling, and is involved in diversity effects such as
neuronal activity, cell motility, etc. [53].

In the present work, the MTT method was used to treat
rCSMCs with a range of different concentrations of CCE.
The results showed that CCE had no effect on the growth
of rCSMCs at these concentrations and could increase the
production of NO and reduce the content of Ca2+. More-
over, we found that a certain concentration of CCE could
relax smooth muscle by the rat gastric smooth muscle
in vitro test. Additionally, according to the results of the
in vivo antiasthenopia test, it was confirmed that CCE had
a constricting effect on the pupil of SD rats and could
increase the NO content in homogenate supernatant of rat
ciliary muscle. The mRNA expressions of PKA and PKC
on the calcium signaling pathway were detected by qRT-
PCR; CCE could achieve a therapeutic effect by reducing
the mRNA expression of the two proteins.

5. Conclusion

With the help of network pharmacology, we found that 39
active compounds and 593 targets were closely related to
the effect of compound chrysanthemum in the treatment
of asthenopia. The predicted active compounds were vali-
dated by performing molecular docking and molecular
dynamic simulations with targets. The KEGG analysis indi-
cated that the enriched pathways were related to neuroactive
ligand-receptor interaction, the PI3K-Akt signaling pathway,
and the calcium signaling pathway. In vitro experiment, our

experiment proved that the safety of CCE and preliminarily
confirms that CCE could relax ciliary smooth muscles by
increasing the concentration of NO and decreasing the con-
centration of Ca2+ to treat asthenopia. In vivo experiment,
compound chrysanthemum had not only constricted pupil
of rats but also increased the content of NO; meanwhile,
the mRNA expressions of PKA and PKC were inhibited to
varying degrees. Our research provides a new idea for the
treatment of asthenopia.
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