
Research Article
Early Diagnosis of Retinal Blood Vessel Damage via Deep
Learning-Powered Collective Intelligence Models

Pranjal Bhardwaj,1 Prajjwal Gupta ,1 Thejineaswar Guhan ,2

and Kathiravan Srinivasan 1

1School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632 014, India
2School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632 014, India

Correspondence should be addressed to Kathiravan Srinivasan; kathiravan.srinivasan@vit.ac.in

Received 27 April 2022; Accepted 30 May 2022; Published 23 June 2022

Academic Editor: Pan Zheng

Copyright © 2022 Pranjal Bhardwaj et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Early diagnosis of retinal diseases such as diabetic retinopathy has had the attention of many researchers. Deep learning through
the introduction of convolutional neural networks has become a prominent solution for image-related tasks such as classification
and segmentation. Most tasks in image classification are handled by deep CNNs pretrained and evaluated on imagenet dataset.
However, these models do not always translate to the best result on other datasets. Devising a neural network manually from
scratch based on heuristics may not lead to an optimal model as there are numerous hyperparameters in play. In this paper,
we use two nature-inspired swarm algorithms: particle swarm optimization (PSO) and ant colony optimization (ACO) to
obtain TDCN models to perform classification of fundus images into severity classes. The power of swarm algorithms is used
to search for various combinations of convolutional, pooling, and normalization layers to provide the best model for the task.
It is observed that TDCN-PSO outperforms imagenet models and existing literature, while TDCN-ACO achieves faster
architecture search. The best TDCN model achieves an accuracy of 90.3%, AUC ROC of 0.956, and a Cohen’s kappa score of
0.967. The results were compared with the previous studies to show that the proposed TDCN models exhibit superior
performance.

1. Introduction

Diabetic retinopathy (DR) is a medical condition caused due
to complications caused by diabetes mellitus that influences
the ocular perceivers and causes damage to the delicate tis-
sues of the retina. This condition can occur in any adult
who is suffering from either type 1 or type 2 diabetes. As dia-
betic retinopathy increases with time, it eventually causes a
complete loss of vision. In this paper, we will be discussing
the four different types of DR (nonproliferative DR, maculo-
pathy, preproliferative, and proliferative). With the rise in
cases for DR, there arises a need for automation for the
detection of diabetic retinopathy in fundus images. Identifi-
cation of individual characteristics and extraction of features
are important for the assessment of eye disorders such as DR
and other retinal diseases.

Manual inspection of fundus images can prove to be a
tedious process to decipher subtle variations in microaneur-
ysms, optic disks, hemorrhages, blood vessels, hard exudates,
soft exudates, and macular edema. In such situations, CAD
(computer-aided diagnostic) systems can significantly reduce
the manual inspection load for professionals. These methods
also reduce margins of error compared to ophthalmologists
while examining the fundus images. With the introduction of
convolutional neural networks, deep learning has become the
de facto for computer vision-based problems. CNNs have the
capability to extract features automatically and decipher pat-
terns for better understanding of the data. Deep CNN models
are large deep learning models which leverage the power of var-
ious CNNs and pooling layers. These models typically stack a
bunch of CNNs together to form a feed-forward network and
often produce state-of-the-art results. Most of the deep CNN
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models are trained and tested on the imagenet classification
dataset, and the versatility of deep learning enables it to transfer
learning from one dataset to another. This aspect of transfer
learning has made most computer vision problems efficient
and solvable through training imagenet models on a dataset
[1–5]. The imagenet models are usually employed with
approaches like transfer learning.

Although transfer learning is a powerful concept, models
trained on imagenet often do not obtain the best result when
trained on an independent dataset. The reasons for the same
could include the size of the dataset, the size of the model,
and the type of the data, thus bringing the need for tailor-
made models. Models can be proposed on the basis of the
dataset, where a small dataset may require a lightweight
model. With the help of lightweight models, better perfor-
mance and high scalability can be achieved. In such a situa-
tion, tailor-made models could possibly be the most efficient
model for the job. However, building tailored models can be
computationally expensive. Moreover, in certain cases, the
features extracted from the imagenet dataset would not be
a great starting point, the reason for the same being the dis-
similarity of the images in the imagenet dataset and the data-
set on which the model is to be trained. For example, the
imagenet dataset contains objects such as cars and animals
which do not resemble fundus images.

Nature-inspired swarm algorithms have been heavily
employed for feature selection on various tasks. These algo-
rithms have performed efficiently in hyperparameter search/
optimization. Hyperparameter optimization methods such as
grid search have been computationally expensive methods
and give the best result within a search space. Hence, swarm
algorithms have been used for architectural proposals. Nature-
inspired swarm algorithms are a subset of evolutionary algo-
rithms. These algorithms in general have been known to shrink
the search space whether it be feature selection or hyperpara-
meter optimization. However, the usage of swarm-based algo-
rithms has been limited to feature selection as demonstrated
across in [6–8]. Most used cases of swarm-related algorithms
inDR classification are restricted to either hyperparameter opti-
mization or feature extraction. This methodology utilizes both
methods by proposing new models with various hyperpara-
meters based on the dataset. TDCNs are the outcomes of the
swarm algorithms, and in this case, 2 algorithms are used.
The objective of these models is to provide custom models
which are efficient and accurate for a given dataset. The pro-
posed models rely solely on architecture rather than fixed
models with a set starting weight to achieve accuracy. Therefore,
the significance of transfer learning diminishes which addresses
the problems caused by imagenet models.

The major contributions of this paper include the
following:

(i) A formal definition of search space complexity for
searching tailor-made models

(ii) Utilizing two swarm intelligence algorithms,
namely, ant colony optimization (ACO) and parti-
cle swarm optimization (PSO), to perform heuristic
architecture search in multidimensional space

(iii) Two tailored ConvNets (TDCN) called TDCN-
ACO and TDCN-PSO were obtained from ACO-
and PSO-based searches. TDCN-PSO being signifi-
cantly smaller (lightweight) achieves better perfor-
mance over 3 metrics, accuracy, AUC ROC, and
Cohen’s kappa, than the imagenet models. The
model’s performance is solely defined on the basis
of architecture search (a dynamic process) rather
than designing a fixed model

(iv) TDCN-PSO and TDCN-ACO produce competitive
results with many proposed architectures in litera-
ture for fundus image classification

2. Related Works

Over the years, various deep learning approaches have been uti-
lized to diagnose retinal vascular diseases, including usage of
imagenet models, transfer learning, and image segmentation.
Kanungo et al. [9] proposed an Inception-V3 architecture-
based approach in which multiple convolution filter inputs
are processed on the same input. This takes advantage of mul-
tilevel feature extraction from each input. The accuracy
achieved is comparatively less than the other approaches based
on similar architectures. Zeng et al. [10] proposed a deep Sia-
mese CNN architecture for automatic diabetic retinopathy clas-
sification. The model takes two fundus images as input, i.e., the
left and right eye image. Transfer learning approaches have
shown great results in terms of DR classification. Lam et al.
[11] proposed an approach using GoogleNet and AlexNet to
demonstrate transfer learning. Sakaguchi et al. [12] used GNNs
to construct the region of interest graphs which is helpful for
further classification of DR using CNN. Although imagenet
and transfer learning-based approaches performwell on bench-
mark datasets, they do not perform similarly on some niche
datasets as they were designed keeping a general purpose in
mind. In order to increase the performance of the model, the
need for tailoring models arises.

Hyperparameter optimization (HO) plays a key role
when designing tailor-made models for specific datasets.
Over the years, automated hyperparameter search algo-
rithms and libraries have become increasingly popular; the
widely used ones include hyperopt [13], optuna [14], and
Auto WEKA [15]. The total search space including all sub-
sets is 2n where n is the number of features, thus posing a
high-dimensional problem. The early works focused on
using Bayesian optimization for hyperparameter tuning
[16–18], but these techniques suffer the drawback of being
computationally complex. Li et al. address the problem of
HO as an exploration-based nonstochastic infinite-armed
bandit problem and proposed hyperband to solve the same
[19]. Falkner et al. addressed the robustness and scalability
of HO [20], and Hazan et al. addressed the high-
dimensional problems [21], each work resulting in a mani-
fold increase in performance over hyperband. Hintz et al.
pointed out that a significant speedup can be achieved by
carrying out the search on lower-dimensional data represen-
tation at the beginning and increasing the dimensions later
in the optimization process [22]. Some of the recent works
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revolve around using reinforcement learning for adaptive
and dynamic HO in contrast to other approaches which
require the user to set generic ranges in order to define the
HO search space [23, 24].

Nature-inspired swarm-based techniques are a subset of
swarm intelligence which in turn is a subset of metaheuristic
algorithm. Nature-inspired swarm algorithms have been of
great use when it comes to feature selection in the tabular
dataset as it achieves optimal results with substantially lower
computational resources [25]. This behavior of swarm-based
techniques has been taken to advantage in hyperparameter
selection which is a computationally expensive process as
mentioned before. Bee colony optimization and dragonfly
algorithm were used by Yasen and Al-Madi [26] to select
the size of hidden nodes in the neural network. Crossover
and mutation were also combined to devise new models.
All in all, the models were trained on medical patients’ data,
and the comparative results were obtained. Similarly, Sun
et al. [27] used PSO to determine the dimensionality of the
autoencoder to be used, moving to the applications of
swarm-based algorithms on the application of retinal fundus
images.

Bajčeta et al. [7] proposed a segmentation model of
blood vessels where they have applied ACO in fundus
images, and ACO performs feature extraction. Hooshyar
and Khayati [8] proposed a mathematical model in which
they have used eigenvalues of the Hessian matrix. They used
a Gabor filter bank to extract the features from retinal
images. For classification purposes, fuzzy c-means and
ACO models are produced. Asad et al. [28] proposed an
approach to ensure improved ant clustering-based segmen-
tation. The approach was developed with the help of a new
heuristic function of the ACO algorithm. Kavitha and
Ramakrishnan [29] employed an ACO algorithm using an
OTSU method which is based on the inputs from optic disc
and macula. Balakrishnan et al. [6] came up with a hybrid
model for classification and feature extraction from retinal
images. Channel extraction and median filter are used for
preprocessing. After the preprocessing stage, the authors
used a histogram of oriented gradient (HOG) with a com-
plete local binary pattern (CLBP) to perform feature selec-
tion. Particle swarm optimization along with fuzzy
membership functions is used by Bhimavarapu et al. [30]
to cluster images, and then, probabilistic models were used
to segment fundus images. Although nature-inspired
swarm-based methods have been extensively studied on
hyperparameter optimization, its application is restricted to
feature selection alone in diabetic retinopathy. Furthermore,
identifying intrinsic features in medical datasets has led
researchers to build complex deep architectures which are
computationally expensive. For faster convergence and
inference, there is a requirement of lightweight models
which can be achieved using the likes of nature-inspired
swarm algorithms as discussed in further sections.

3. Methodology

The process of generation of a tailored model can be defined
as a search on a set of models Sm formed by the combina-

tions of layers from a set of layers Sl using a selection metric
f and a goal G. For a given Sm, the search is deemed success-
ful if the set of resultant models Sr is a subset of the set of
models Sr which satisfy G on f with an acceptable perfor-
mance bound ϵ.

Sr = m : m ∈ Sm, f mð Þ + ϵ⊢Gf g: ð1Þ

The complexity of the search is determined by the cardi-
nality of the set SmðtsÞ. For a given bound of the minimum
number of layers Bl and a maximum number of layers Bu,
ts can be obtained by

ts = 〠
Bu

b=Bl

tbl , ð2Þ

where tl is the cardinality of the set sl.
This search space can be restricted by using various

design parameters (order, count, blocks, etc.) on the occur-
rence of layers. This search space evidently becomes very
large as tl and Bl increase, and simple techniques like a brute
force search become time and resource intensive. This prob-
lem can be solved using heuristic-based search algorithms,
such as swarm intelligence algorithms as demonstrated fur-
ther in this section.

For the two swarm-based techniques discussed in this
paper (ACO and PSO), we obtain a single model (Ss) as
the result of the search. We tested the results on three selec-
tion metrics as discussed in Section 4. The search goal G was
set to the best result obtained in the case of imagenet models
or better essentially resulting in a search which yields light-
weight models of similar performance to imagenet models
or high performance models or both. The value of ϵ was
set such that the search resulted in a model which performed
better than at least one of the imagenet models. The nature
of results is characterized by the settings of Bl and Bu. The
detailed success criterion is listed in Table 1.

The resultant architectures, TDCN-ACO, and TDCN-
PSO have been described in the following sections using
the abbreviations in Table 2.

3.1. TDCN-ACO Search Using Ant Colony Optimization.
Ants have inspired many methods and techniques, among
which the most studied is the general purpose optimization
technique known as ACO (ant colony optimization). ACO
is inspired by the behavior of some ant species. These ants
deposit pheromone on the ground to mark a favorable path
for the rest of the members of the colony. Each ant moves
randomly and more pheromone gets deposited on the path.
The more the pheromone on the path, the higher is the
probability of the path being followed. In this work, the
implementation proposed by Byla and Pang [31] is used.

The search for models is based on the number of maxi-
mum ants and maximum search depth; the algorithm starts
the process by creating an internal graph with just an input
node. Sequentially, ants are created until the number of
maximum ants allowed is created. These ants follow ant col-
ony selection (ACS) rule, wherein the ants choose a
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particular layer based on the algorithmic calculation in
ACO. If the chosen layer has not been chosen by a previous
ant, then the layer is added as a neighbor node to the node
chosen by the previous ant. Based on the same rule, the
parameters of the layer are also chosen from a specified list
of parameters. Once the choice is made, ACS local phero-
mone update is done by the ant. The same is done until
the maximum number of ants allowed, traverses through
to the same depth. The paths are converted to neural net-
works, and based on the evaluation metric, the best ant is
chosen, and now, an ACS global pheromone update is done.
Note that the previous update is kept local to encourage the
ants to pave new paths. Figure 1 conveys the same in a pic-
torial fashion.

For this dataset, 4 hyperparameters were mainly
handled:

(i) Number of ants: 8 and 16. Based on the experiments
conducted by [31], it was found that the greatest
decrease in error was identified when the number
of ants was increased from 8 to 16. 32 may yield bet-
ter results, but the duration of computation will
increase

(ii) Search depth: 32. Most of the available image
models tend to be deep models; therefore, a search
depth of 32 was used

(iii) Epochs: it is kept at 10 epochs

(iv) Image size: 32 and 64. When large image sizes are
used, the accuracy more or less remains the same.
This was surprising considering the performance
output with respect to the image size

The permutations among the defined hyperparameters
have generated 4 models. The trend across the models hap-
pens to look like this, C2D | BN till one max pooling, and
lastly followed by a series of DE | BN layers. The choice of
layers across models is almost comparable to the traditional
model building approach, where usually every CN2D layer is
succeeded by a pooling such as avg. pooling. However, the
trend of using a pooling layer before flattening the outputs
of CNN has generally shown success, and this process uti-
lizes that.

As far as the search space is concerned, a total of 4 layers
were permuted across C2D, MP or AP, BN, and DE. The
search space for every layer varies as per requirements:

(i) C2D: 9 permutations possible

(ii) MP: 2 permutations possible

(iii) BN: 1 permutation possible

(iv) DE: 4 permutations possible

The number of permutations can be maintained within a
permutation matrix which can be accessed simultaneously
when a layer is accessed L = ½C2D,MP, BN ,DE� and = ½9, 2
, 1, 4�. So if a layer Li is chosen, then Pi is also chosen, where
i is the index in the array L. So the search space when n is the

number of layers is shown in

Search space = ts = PnumC2D
0 + PnumMP

1 + PnumBN
2 + PnumDE

3 :

ð3Þ

The search space is model independent and considering
a model of 12 C2D | BN then MP and lastly 3 DE | BN layers
gives a search space as shown in

ts = 282, 429, 569, 261: ð4Þ

In total, there exist 16 ants at maximum denoted by ant
for a total depth of 32. Equation (5) conveys the number of
models which were trained in the tailor fitting process:

Number of models trained = ants ∗ depth = 16 ∗ 32 = 512:
ð5Þ

3.2. TDCN-PSO Search Using Particle Swarm Optimization.
Particle swarm optimization is a nature-inspired,
population-based algorithm that has been found to optimize
or converge better than standard optimization algorithms
like conjugate descent, gradient descent, and Newton
method in multidimensional space. Stochastic search is used
to achieve the same by moving the particles (candidate solu-
tions) in the search space using mathematical computations
to calculate the velocity and direction of the particle swarm
by considering the particle’s current position and goal. A
global best (in terms of position) is maintained as well as a
local best for each particle is maintained which influences
in making decisions for the particle’s movement in conse-
quent iterations. This results in the general behavior of the
swarm moving towards the best solutions for the given
search space.

The position and velocity after each generation or itera-
tion of the algorithm can be obtained by

Xt+1ij = Xtij +Vt+1
ij , ð6Þ

Vt+1ij =wVtij + c1r
t1 pbestij − Xtij
� �

+ c1r
t2 gbestj − Xt

ij

� �
,

ð7Þ
where Xt

i is the position vector of ith particle at ith and Vt
i

is the position vector of ith particle at ith.
Many modifications to these equations have been pro-

posed over time which offers specific benefits of their own,
but the original algorithm is proceeded across for a general
comparison of this algorithm with others.

Table 1: Search goals and performance bounds used in this work.

Metric G ϵ

Accuracy ≥74.8 1.5%

AUC ROC ≥0.91 0.2

Cohen’s kappa ≥0.776 0.02
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The tailoring of models is carried out by taking several
parameters into consideration such as population size, num-
ber of iterations and runs, the minimum and maximum
number of layers, and probability of each type of layer.
Using these parameters, the particles are initialized by
assigning them random CNN architectures represented in
an array form that satisfy the conditions and constraints
defined by the parameters (number of layers, layer probabil-
ities, kernel sizes, and so on). Then, each particle is fit and
evaluated to find the local and global best based on the accu-
racy obtained on the validation data. The good blocks in the
global best are passed onto further generations, and each
particle is evaluated again in every iteration. An architecture
search using PSO mainly involves six procedures, namely,

representation of particles in form of architectures (in our
case deep ConvNets) of varying properties, initializing the
particles, evaluating the fitness of individual particles, a mea-
sure of the difference between two particles, computation of
velocity, and updating the particles as illustrated in Figure 2.

In this paper, the search on a set formed by the combina-
tion of 4 different kinds of layers is performed, namely, con-
volutional, max pooling, average pooling, and fully
connected, making tl as 4. We set the bounds Bl = 3 and
Bu = 20, effectively giving us equation (8).

ts = 〠
20

b=3
4b ⇒ ts = 1,466,015,503,680: ð8Þ

Table 2: ConvNet layer abbreviations used in this work.

Abbreviation Layer

C2D Conv2D (convolutional layer with 2-dimensional filters)

BN Batch normalization

DO Dropout

MP Max pooling

AP Average pooling

DE Dense or fully connected

F Flatten

For I in current max
depth

No Yes

ACO select rule

Append current
node to path

Complete path
Update local

pheromone with
current ant

Evaluate ant

Generate ant path

Ant creation

For I in ant count

Build graph

No

Yes

Generate ants

Find best ant

Update global
pheromone with

best ant

Increase current
depth

Best ant obtained

Graph.current depth < max

depth

Current node

neighbours = 0?

Figure 1: TDCN-ACO search using ant colony optimization.
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This means that the search space for the algorithm con-
sists of more than 1466 billion models when no design con-
straints are applied. A simple design constraint was kept as
follows:

(i) At least 1 DE layer

(ii) F has occurred before the first DE layer

(iii) No C2D layer after F layer

This decreased the search space manifolds. The number
of models searched by the PSO algorithm (Sm,pso) is a func-
tion of the number of iterations i, number of runs, and
swarm size p and is given by

Sm,pso = r × i × p: ð9Þ

For this paper, the following hyperparameters are set r
= 5, i = 12, and p = 20, which gives Sm,pso = 1200. These
values depend on the quality of TDCN required hardware
availability and time constraints.

Note that each updated particle was considered as a new
model. To carry out the architecture search, the implemen-
tation proposed by Junior et al. [32] was used.

TDCN-PSO is the model represented by the global best
particle at the end of the architecture search. The hyperpara-
meters used for the search can be found in Table 3. The
resultant architecture has some peculiar features such as 4
consecutive pooling layers and irregular batch normalization
and dropout layers, all of which are characteristics of a
model unique to the dataset. The architecture of TDCN-
PSO found for APTOS dataset is as follows: C2D | C2D |
BN | DO | C2D | BN | MP | AP | MP | MP | DO | C2D |
BN | F | DO | DE | BN.

4. Experimental Setup

The dataset that we used for this paper is “ATPOS 2019
Blindness Detection” from a Kaggle competition conducted
in 2019. This dataset contains high-resolution images of
the retina taken in different lighting conditions, with left
and right fields for every test subject. The images have been
captured through varying devices, offering different scenar-
ios and generalizations of the developed model for adoption
by a wide variety of hardware. The images present in the
data are of different orientations too, some are shown ana-
tomically (macula on left, optic nerve on right for right
eye), and others are shown inverted. The training set consists
of 3662 images, while the test set contains 1928 images.

For each iteration

For each particle in
population

Update particle
velocity

Update particle
CNN architecture

Train particle

Particle accuracy
gBest accuracy

No
Yes

Update gBest

Run End

Evaluate gBest

Fit gBest

Training

Initialization

Rus Start

For each run

Initialize CNN architecture for
each particle according to layer

probabilities defined in the
hyperparameters

Train first particle and
set it as gBest

For each particle in
population

Train the particle

Particle accuracy
gBest accuracy

No

Yes

Update gBest

Figure 2: TDCN-PSO search using particle swarm optimization.
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The images are categorized into 5 classes (Table 4). Thus,
this dataset poses a classification problem. The preprocess-
ing strategies applied involve resizing.

Resizing: resizing in the digital image is changing the
horizontal and vertical resolution of an image. Since the
input images are in different resolutions, coming from dif-
ferent hardware, we decided to resize the images to 256 ×
256 for the imagenet models, 32 × 32 and 64 × 64 for ACO,
and 128 × 128 for PSO-CNN. Smaller image size was used
for the swarm algorithms because of the high computational
complexity and the time required to train the models.

The dataset is split into 10-fold cross validation. The fol-
lowing method is used to preserve the class wise distribution
while evaluating the model. Also, this gives considerate
weightage to classes, such as severe and proliferate DR, with
lower number of samples.

To compare the performance of the proposed model
imagenet models along with existing models are used. Three
deep CNN models with imagenet weights, namely, Xception,
Resnet 50, and Inception-V3, are used. The choice was
restricted to these models due to the lower number of layers
and parameters present which would provide a fair compar-
ison for models proposed by nature-inspired algorithms
used through this study. All the models were trained till
the validation metrics (AUC and accuracy) would converge
which in this case was approximately 20 epochs. Hence,
patience criteria was kept at 2.

The following metrics were used to evaluate the pro-
posed models.

(i) Accuracy: accuracy is a widely used metric for evalu-
ating classification models. This metric is the ratio of
predictions that the proposed model is correctly pre-
dicted and the total number of samples. Accuracy is
defined in

Table 3: Hyperparameter setting for TDCN-PSO search.

Category Hyperparameter Value

Particle swarm optimization

Number of runs (r) 5

Number of iterations (i) 12

Swarm size pð Þ 20

Cg 0.5

CNN architecture initialization

Minimum number of outputs from a Conv layer 3

Maximum number of outputs from a Conv layer 256

Minimum number of neurons in a FC layer 1

Maximum number of neurons in a FC layer 300

Minimum size of a Conv kernel 3 × 3

Maximum size of a Conv kernel 7 × 7
Minimum number of layers Bl 3

Maximum number of layers Bu 20

Dropout rate 0.5

Training

No. of epochs for the global best 100

No. of epochs for particle evaluation 1

Bath normalize layer outputs Yes

Probability

Probability of convolutional layer 0.7

Probability of pooling layer 0.15

Probability of fully connected layer 0.15

Table 4: Classes in APTOS 2019 dataset.

Class ID Class name Number of samples

0 No DR 1805

1 Mild 370

2 Moderate 999

3 Severe 193

4 Proliferative DR 295

Table 5: Comparison of TDCN models with imagenet models and
literature.

Model Accuracy
AUC
ROC

Cohen’s
kappa

Inception 73.2 0.91 0.738

Xception 74.8 0.87 0.772

Resnet50 73.8 0.89 0.776

Shaban.et al. [33] 88 0.930 0.910

S. Kassani et al. [34] 83.09 0.950 0.892

Taufiqurrahman et al.
[35]

85 0.820 0.925

Bodapati et al. [36] 84.31 0.970 0.758

TDCN-ACO 78.4 0.907 0.795

TDCN-PSO 90.3 0.956 0.967

7Computational and Mathematical Methods in Medicine



Trainable parameters in models

35 M

30 M

25 M

20 M

15 M

10 MN
um

be
r o

f p
ar

am
et

er
s

5 M

0 M
Inception Xception Resnet 50 TDCN-ACO TDCN-PSO

Model parameters

Figure 3: Size comparison of TDCN and imagenet models.
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Figure 4: Pixel histogram for imagenet samples.
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Figure 5: Pixel histogram for APTOS samples.
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Accuracy =
True Positive + TrueNegative
Total Number of Samples

ð10Þ

(ii) AUC: AUC means the area under the curve. It is a
chart that visualizes the trade-off between true posi-
tive rate (TPR) and false positive rate (FPR) for every
threshold. Expression for AUC is given in

Recall/sensitivity =
True positive

True positive + false negatives
, ð11Þ

False positive rate =
False positive

True negative + false positive
ð12Þ

(iii) Cohen’s kappa score: for the evaluation of the
models, we have used a metric called Cohen’s kappa
coefficient which has been used for evaluating the
submissions on the Kaggle competition for this
dataset.

Cohen′s kappa score = pr oð Þ − pr eð Þ
1 − pr eð Þ ð13Þ

Cohen’s kappa is a quantitative measure of similarity
between the ratings of two annotators on the same sample.
It is calculated by taking into account the observed agree-
ment and the hypothetical probability of chance agreement.
Expression for Cohen’s kappa is given in (13).

5. Results and Discussions

Table 5 represents the comparison of TDCN models with
imagenet models and the other models in the literature.
Figure 3 illustrates the size comparison of TDCN and ima-
genet models.

The results presented in Table 5 can be explained as
follows:

(i) In the case of imagenet models, Xception gave the
best accuracy score of 74.8%, Inception gave the
best AUC ROC score of 0.91, and Resnet50 gave
the best Cohen’s kappa score of 0.772

(ii) TDCN-ACO provided a classification accuracy of
78.4% which is more than that observed in the case
of imagenet models, AUC ROC score of 0.907, and
Cohen’s kappa score of 0.795. Only Inception gave
better results than TDCN-ACO in terms of AUC
ROC score

(iii) TDCN-PSO outperformed all the imagenet models
and TDCN-ACO in terms of all the three metrics
recorded. It provided a classification accuracy of
90.3%, AUC ROC score of 0.956, and Cohen’s
kappa score of 0.967

(iv) TDCN-PSO was significantly small in size with over
2.5 million parameters, which is about 9 times
smaller than Xception and 13 times smaller than
TDCN-ACO as shown in Figure 3

(v) In terms of AUC ROC, only [31] provided better
performance than TDCN-PSO, while [33, 34] gave
comparable results

(vi) Considering the performance over all the three met-
rics, TDCN-PSO gave one of the best results, while
TDCN-ACO has a good place among the models
and approaches compared

The imagenet dataset contains images distributed into
1000 different classes. The images from different classes dif-
fer significantly from each other in terms of features and
entropy. Figure 4 shows two random images belonging to
two classes, namely, ship and parachute. We plot the histo-
gram of pixel value frequencies in order to study the distri-
bution of features. Figure 5 shows the same histogram plot
for two images from the APTOS dataset. From the two plots,
it can be inferred that while the imagenet samples differ sig-
nificantly in terms of distribution, the APTOS images are
comparatively similar. This is one of the reasons why the
tailor-fitted models TDCN-ACO and TDCN-PSO perform
better than the imagenet models. Table 6 represents the
TDCN-ACO results with respect to different hyperpara-
meter settings.

Models proposed by TDCN-ACO with hyperparameters
of image size 64 with 16 ants perform the best as shown in
Table 6. By looking at the ROC AUC (Figure 6(a)) and con-
fusion matrix (Figure 6(b)), it can be deduced that other
than the class proliferate the model captures features that
make for efficient detection. The number of parameters in
the model is the highest compared to the other models but
performs better than the imagenet models; therefore, one
can conclude that difference in the number of parameters
combats or performs better than the features captured by
CIFAR training.

The AUC ROC curve and classification matrix for
TDCN-PSO are shown in Figures 6(c) and 6(d). The mean
training accuracy of all the runs was 89.48% with a standard
deviation of 0.54%. Figure 7(a) shows that the lowest gbest
accuracy was obtained in run 0 of 88.7% and the highest in
run number 4 (the 5th run) of 90.31. An improvement of
0.83% accuracy over mean accuracy was obtained by

Table 6: TDCN-ACO results with respect to different
hyperparameter settings.

Image Ant Accuracy ROC AUC Kappa

32 8 75.7 0.89 0.710

32 16 77 0.905 0.776

64 8 76.8 0.888 0.776

64 16 78.4 0.907 0.795
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running the algorithm 5 times. Figures 7(b) and 7(c) show
the trend of accuracy with respect to iterations for the 5th
run which achieved the best results on the validation set.
For this run, a new gbest was found in every iteration except
from iterations 4 to 6 where the gbest remained the same
and hence the flat nature of the curve. The steepness of the
curve can be associated with the amount of information
being passed from the gbest to the new particle in the subse-

quent evolutions (iterations). The best performing model
(gbest model) out of the 5 runs provided an accuracy score
of 90.3146%, AUC ROC score of 95.6, and a Cohen’s kappa
score of 96.67 with 2,515,406 parameters which is a substan-
tially better score than the state-of-the-art models with a sig-
nificantly smaller model.

The results in Figure 6(c) show that the model found by
TDCN-PSO performed really well in terms of AUC ROC
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Figure 6: (a) TDCN-ACO AUC ROC curve, (b) TDCN-ACO confusion matrix, (c) TDCN-PSO AUC ROC curve, and (d) TDCN-PSO
confusion matrix.
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scores. An AUC score of 0.99 for the “No DR” (no diabetic
retinopathy) class conveys that the model is very accurate
in classification when no diabetic retinopathy is present. In
the confusion matrix obtained, it can be observed that the
model was unable to produce highly accurate classifications
for “severe” and “proliferative DR” classes. This was because
of the skewed distribution of classes in the dataset, and the
same was observed in TDCN-ACO.

6. Conclusions

In this paper, we have developed the lightweight deep
learning-powered collective intelligence models for fundus
image classification. The process of tailoring the model archi-
tecture is a problem that can be stated as a search in a multidi-
mensional space. This paper highlights that for the chosen
dataset, APTOS 2019, the models from architecture search
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Figure 7: (a) Run vs. gbest accuracy, (b) run 5 gbest train accuracy, and (c) run 5 gbest validation accuracy.
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perform better than models trained using transfer learning
from imagenet weights. We utilized two swarm intelligence
algorithms, namely, ant colony optimization and particle
swarm optimization, to efficiently search this large space.
These algorithms take a heuristic-based approach which
involves deriving information from the best performing entity
in the swarm. The resultant tailored deep ConvNets (TDCN)
called TDCN-ACO, and TDCN-PSO outperformed the ima-
genet models over the metrics accuracy, AUC ROC, and
Cohen-Kappa scores. TDCN-PSO while being 9 times smaller
achieved an improvement of 15.5% in terms of accuracy, 0.046
in terms of AUC ROC, and 0.191 in terms of Cohen-Kappa
score when compared to the best performing imagenet models
in each metric. The obtained results were compared with the
previous studies to show that these tailored models perform
similar if not better over somemetrics. The future scope of this
work includes leveraging the power of other swarms existing
in nature. Furthermore, tailoring an ensemble of models for
datasets can be the next step to further improve the results
obtained in the paper.
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