
Research Article
A Higher-Order Galerkin Time Discretization and Numerical
Comparisons for Two Models of HIV Infection

Attaullah ,1 Şuayip Yüzbaşı,2 Sultan Alyobi ,3 Mansour F. Yassen ,4,5

and Wajaree Weera6

1Department of Mathematics and Statistics, Bacha Khan University Charsadda, KP 24461, Pakistan
2Department of Mathematics, Faculty of Science, Akdeniz University, TR-07058 Antalya, Turkey
3King Abdulaziz University, College of Science & Arts, Department of Mathematics, Rabigh, Saudi Arabia
4Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam Bin Abdulaziz University,
Al-Aflaj 11912, Saudi Arabia
5Department of Mathematics, Faculty of Science, Damietta University, New Damietta, 34517 Damietta, Egypt
6Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

Correspondence should be addressed to Sultan Alyobi; saalyoubi1@kau.edu.sa

Received 14 June 2022; Revised 10 September 2022; Accepted 20 September 2022; Published 9 November 2022

Academic Editor: Chen Mengxin

Copyright © 2022 Attaullah et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Human immunodeficiency virus (HIV) infection affects the immune system, particularly white blood cells known as CD4+ T-
cells. HIV destroys CD4+ T-cells and significantly reduces a human’s resistance to viral infectious diseases as well as severe
bacterial infections, which can lead to certain illnesses. The HIV framework is defined as a system of nonlinear first-order
ordinary differential equations, and the innovative Galerkin technique is used to approximate the solutions of the model. To
validate the findings, solve the model employing the Runge-Kutta (RK) technique of order four. The findings of the suggested
techniques are compared with the results obtained from conventional schemes such as MuHPM, MVIM, and HPM that exist
in the literature. Furthermore, the simulations are performed with different time step sizes, and the accuracy is measured at
various time intervals. The numerical computations clearly demonstrate that the Galerkin scheme, in contrast to the Runge-
Kutta scheme, provides incredibly precise solutions at relatively large time step sizes. A comparison of the solutions reveals
that the obtained results through the Galerkin scheme are in fairly good agreement with the RK4 scheme in a given time
interval as compared to other conventional schemes. Moreover, having performed various numerical tests for assessing the
efficiency and computational cost (in terms of time) of the suggested schemes, it is observed that the Galerkin scheme is
noticeably slower than the Runge-Kutta scheme. On the other hand, this work is also concerned with the path tracking and
damped oscillatory behaviour of the model with a variable supply rate for the generation of new CD4+ T-cells (based on viral
load concentration) and the HIV infection incidence rate. Additionally, we investigate the influence of various physical
characteristics by varying their values and analysing them using graphs. The investigations indicate that the lateral system
ensured more accurate predictions than the previous model.

1. Introduction

Despite recent scientific advancements and substantial
health-care initiatives, HIV/AIDS infection remains one of
the most devastating diseases in human history. So still, sev-
eral communities are still seriously impacted by this disease.
At the moment, the global spread of HIV infection has an

influence on the rising prevalence of other infectious dis-
eases. Infectious diseases are illnesses that can be diagnosed
clinically and have a large impact on the human community.
They are caused by bacterial pathogens such as microorgan-
isms, retroviruses, fungal, and parasitic agents or by harmful
proteins known as prions. The most common are bacterial
infectious diseases and tuberculosis, as well as virus-borne
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HIV and influenza [1, 2]. The hepatitis C virus (HCV) is
highly widespread, with almost 71 million cases globally,
and coinfections with HIV are also extremely frequent, with
approximately 2.3 million coinfections [3]. Infection with
HIV destroys the body’s immune system; affects bodily
organs such as the brain, kidney, and heart; and leads to
death. Unfortunately, there is presently no treatment for this
infectious illness. However, there are effective retroviral
medications for improving patients’ health complications.
HIV is spread through sexual contact, sharing needles, and
direct interaction with virus-infected blood or other bodily
fluids, as well as mother-to-child transmission during deliv-
ery [2]. HIV is the virus that causes a disease known as
immunodeficiency syndrome (AIDS), which weakens the
body’s capability to fight infection and leaves it vulnerable
to attacks from contagious diseases. To improve health-
care therapy, a detailed overview of the inflammatory and
coagulation processes in HIV infection is essential [4]. In
humans, CD4+ T-cells are HIV’s targeted cells, and these

cells play an essential role in the immune system’s response.
Their depletion can have a wide range of implications,
potentially disrupting the immune system’s functionality.
Therefore, the reduction in the number of these cells is uti-
lised as a symptomatic and illness stage indicator. In illnesses
such as allergies and autoimmune disorders, regulatory T-
cells (Treg) play significant roles in maintaining self-
tolerance and immunological regulation. These cells also
have a role in suppressing efficient immune responses to
microbial organisms and cancerous cells [5]. Since the inves-
tigation is about the density of CD4+ T-cells, we will refer to
T-cells and I-cells as healthy/infected CD4+ T-cells through-
out the rest of the manuscript.

Numerous investigations have been conducted in order
to identify the transmission dynamics of biological processes
and infections. Cao et al. [6] presented a comprehensive
approach to identifying successful treatment approaches
and druggable targets by investigating regulatory interac-
tions of cell phenotypic switching using precisely calculated
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Figure 1: The diagrammatic description of the model and HIV virus.
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probability landscapes of response networks. Mathematical
formulation of infectious illnesses, such as HIV/AIDS coin-
fection and acute infection, is identified as a vital tool for
understanding the dynamics of disease elimination and/or
control [7]. The significance of immunological responses to
HIV in modelling was highlighted by [8]. Omondi et al.
[9] developed and evaluated a model containing a sex popu-
lation that examined the HIV infection dynamics in both
males and females. Vaidya et al. [10] examined how mor-
phine affects resistivity to target cells, viral dynamics, and
viral replication in a steady state, T-cell loss, and the effi-

ciency of antiretroviral treatment (ART). They also looked
into how morphine can boost basic reproduction rates,
which poses significant challenges to HIV prevention. Vai-
dya et al. [11] established a viral infection model and inves-
tigated the role of antibody responses in reducing viral
infection rates during infection. Calshaw and Raun [12]
developed a model which consists of populations of T-cells,
I-cells, and virus particles. Yusuf et al. [13] introduced a
model and analysed the transmission behaviours of HIV
infection. Singh [14] suggested a fractional order HIV
model, with plasma densities of T-cells, I-cells, and free

Table 1: Description of state variables, parameters, and their values [41] (units: day-1 mm-3).

Descriptions Values

Dependent variables

T0 Population of T-cells 0.10

I0 Population of I-cells 0.0

V0 Population of HIV particles 0.10

Parameters and constants

s The supply rate of T-cells 0.1

r The growth rate of the T-cell population 3

μT The killing rate of T-cells 0.02

μI The killing rate of I-cells 0.3

μV The destruction rate of free virus 2.4

k The infection rate of T-cells by free virus 2:4 × 10−5

N The density of virus released by I-cells Varies

Tmax The maximum density of T-cells 1500

Table 2: The findings of the Galerkin method, RK4 method, MuHPM [41], MVIM [40], and HPM [38] for TðtÞ.
ti MuHPM [41] MVIM [40] HPM [38] RK4 method Present solutions

0.0 0.10000000 0.10000000 0.100000000 0.1000000000000 0.1000000000000

0.1 0.14635895 0.14635910 0.146358900 0.1463563334215 0.1463584928222

0.2 0.20880772 0.20880810 0.208799100 0.2088006788767 0.2088064964841

0.4 0.40623923 0.40624080 0.405606600 0.4062136749646 0.4062347843124

0.6 0.76442034 0.76442870 0.756448500 0.7643508145370 0.7644082444391

0.8 1.41403830 1.41409400 1.364215000 1.4138702489163 1.4140090611266

1.0 2.59157570 2.59192100 2.378679000 2.5911951903662 2.5915094589373

1.2 4.72392418 4.72578300 4.006512000 4.7230983734038 4.7237803350162

1.4 8.57832730 8.58722300 6.521303000 8.5765895980001 8.5780243166268

1.6 15.5227925 15.5616700 10.27357000 15.519228130625 15.522170203755

1.8 27.9613543 28.1196100 15.70079000 27.954219776306 27.960106298377

2.0 50.0080707 50.6147700 23.33740000 49.994185112927 50.005637473626

3.0 605.328400 758.304100 121.4166000 605.19715873002 605.30962600425

4.0 1387.07811 -38782.630 428.1830000 1387.0365698936 1387.0734647790

5.0 1484.41661 -1.2822E+7 1179.633000 1484.4129741128 1484.4162185194

10 578.768500 -7.535E+18 31121.36000 578.01860976666 578.80322177533

30 42.9620000 -7.954E+65 6710438.000 42.988262407096 42.979478181920

70 51.1260000 -8.86E+159 4.49161E+08 50.731613644543 50.729213455592
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virus. They examined the dynamics of fractional HIV infec-
tion in T-cells as well as the impact of treatment. Thirumalai
et al. [15] investigated the fractional order differential equa-
tions to analyse the combination of drug treatments for HIV
infection. AlShamrani [16] suggested and evaluated an adap-
tive immune response model for HIV infection. Zaka Ullah
and Baleanu [17] presented the SICA model in a fractional
structure for the transmission dynamics of HIV/AIDS. Thir-

umalai et al. [18] studied HIV infection for T-cells using a
model based on a system of differential equations. They eval-
uated and assessed an approximate solution of the mathe-
matical model and presented a count of T-cells, I-cells, and
viruses present at any given instant. Khan and Odinsyah
[19] investigated HIV dynamics using a fractional operator
of the Caputo type. They utilised the data of HIV infection
cases in Indonesia from 2006 to 2018 to approximate the

Table 3: The findings of the Galerkin method, RK4 method, MuHPM [41], MVIM [40], and HPM [38] for IðtÞ.
ti MuHPM [41] MVIM [40] HPM [38] RK4 method Present solutions

0.0 0.00000000 0.00000000 0.00000000 0.0000000000000 0.0000000000000

0.1 0.00000286 0.00000286 0.00000286 0.0000028645332 0.0000028648471

0.2 0.00000603 0.00000603 0.00000603 0.0000060318789 0.0000060325464

0.4 0.00001316 0.00001315 0.00001315 0.0000131564860 0.0000131579785

0.6 0.00002122 0.00002122 0.00002122 0.0000212206776 0.0000212231597

0.8 0.00003018 0.00003017 0.00002994 0.0000301728102 0.0000301764661

1.0 0.00004004 0.00004002 0.00003918 0.0000400314158 0.0000400364581

1.2 0.00005088 0.00005084 0.00004844 0.0000508700174 0.0000508766963

1.4 0.00006283 0.00006270 0.00005697 0.0000628162070 0.0000628248219

1.6 0.00007608 0.00007574 0.00006354 0.0000760684228 0.0000760793421

1.8 0.00009096 0.00009011 0.00006649 0.0000909418517 0.0000909555499

2.0 0.00010799 0.00010597 0.00006346 0.0001079686795 0.0001079858141

3.0 0.00030568 0.00021559 -0.0001816 0.0003055957917 0.0003056674148

4.0 0.00210920 0.00040533 -0.0014837 0.0021084186444 0.0021090778379

5.0 0.02011931 0.00074045 -0.0055038 0.0201107695276 0.0201179825874

10.0 828.594800 0.01387534 -0.2285212 828.38422383941 828.56686684266

30.0 775.293700 1625.28280 -64.142730 775.29918583941 775.28577475039

70.0 594.704000 2.2292E+13 -4621.4330 594.00643606878 594.00643962536

Table 4: The findings of the Galerkin method, RK4 method, MuHPM [41], MVIM [40], and HPM [38] for VðtÞ:
ti MuHPM [41] MVIM [40] HPM [38] RK4 method Present solutions

0.0 0.10000000 0.10000000 0.10000000 0.1000000000000 0.1000000000000

0.1 0.07866315 0.07866318 0.07866315 0.0786638145502 0.0786632635595

0.2 0.06187980 0.06187991 0.06187825 0.0618808474016 0.0618799805166

0.4 0.03829484 0.03829596 0.03819947 0.0382961304371 0.0382950575829

0.6 0.02370450 0.02371029 0.02268158 0.0237057031284 0.0237047074676

0.8 0.01468033 0.01470042 0.00925511 0.0146813143229 0.0146804932549

1.0 0.00910082 0.00915723 -0.0104847 0.0091015790768 0.0091009447531

1.2 0.00565326 0.00579375 -0.0498259 0.0056538216298 0.0056533518393

1.4 0.00352541 0.00385124 -0.1294878 0.0035258155248 0.0035254781828

1.6 0.00221475 0.00293882 -0.2801688 0.0022150382652 0.0022148022419

1.8 0.00141046 0.00297863 -0.5450945 0.0014106541633 0.0014104933204

2.0 0.00092039 0.00426490 -0.9825656 0.0009205205645 0.0009204146275

3.0 0.00032941 0.13649810 -9.1749200 0.0003293651184 0.0003293983282

4.0 0.00141090 5.40689000 -43.553080 0.0014103809499 0.0014108255861

5.0 0.01292825 214.291400 -143.65180 0.0129227583497 0.0129273975037

10.0 668.789590 2.095E+10 -5456.7680 668.57158158359 668.75792981167

30.0 983.982000 1.916E+42 -150636600 983.92573498469 983.92438186017

70.0 769.490000 1.602E+106 -1.0827E+8 768.96288598031 768.95708309906
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HIV model and determine the basic reproduction number.
They proceeded by providing a mathematical description
of the HIV/AIDS population. Chen and Zheng [20] explored
the formation of spatial patterns in a predator-prey model
with predator-taxis under homogenous zero-flux boundary
conditions. They used the predator-taxis coefficient as the
Turing bifurcation’s possible critical value to play its part
in constructing the spatial pattern. Chen and Wu [21]
explored the diffusive nutrient-microorganism dynamics in
a spatially heterogeneous environment. Chen et al. [22]
studied the pattern formation and secondary instabilities of
the Gierer-Meinhardt model, an activator-inhibitor system,
including the Eckhaus instability and zigzag instability. By
performing a linear stability analysis at the unique positive
equilibrium, conditions on the Hopf bifurcation and Turing
instability are discovered. Chen et al. [23] suggested a
predator-prey model with a delayed ratio. They explored
the system’s Turing-Hopf bifurcation and established ampli-
tude equations using the multiple time scale methodology.
Theoretical and numerical simulations are used to find spa-
tiotemporal solutions. Abdel et al. [24] examined the accu-
rate travelling wave solutions of the fractional model of
HIV-1 for T-cells and the effects of medication therapy.
Naik et al. [25] suggested a Caputo-like fractional order
model of HIV-1 that incorporates interactions between can-
cer cells and shows the chaotic behaviour. Raza et al. [26]
developed a delayed model to study HIV dynamics in the

community as well as the stability of a susceptible-
infectious-immune system with a delay period.

In the literature, a variety of traditional analytical and
numerical schemes are used to find the approximate solution
of various models to describe the HIV dynamics. The homo-
topy analysis method (HAM) was applied by Ismail and
Alomari [27], Ongun [28] performed the Laplace Adomian
decomposition technique (LADM), Doğan [29] imple-
mented the multistep LADM, and Yüzbaşı and Karaçayır
[30] developed a novel computational approach based on
exponential polynomials related to the Galerkin scheme for
the HIV infection model. Recently, Sohaib [31] have studied
the Legendre wavelet collocation method and the continu-
ous Galerkin-Petrov scheme to obtain the solutions to the
HIV model. They made comparison of the outcomes and
highlighted the precision and efficacy of the proposed
schemes in contrast to other approaches employed to the
model. Yüzbaşı et al. [32] presented an exponential
approach for numerical solutions to the HIV model based
on T-cells. The technique involves exponential polynomials
and collocation points. Haq et al. [33] investigated the
dynamics of a fractional order smoking cessation model
and presented an approximate solution based on the Laplace
transformation. Attaullah et al. [34] have applied the Galer-
kin time discretization scheme to the following HIV models
and compared the results with the Runge-Kutta method.
Yüzbaşı [35] developed the Bessel collocation approach

Table 5: The absolute errors between the findings of the Galerkin and RK4 schemes for TðtÞ, IðtÞ, and VðtÞ with same step size and t ∈
½0, 70�.

cGP 2ð Þj=0:01 − RK4j=0:01
��� ���

ti T tð Þ I tð Þ V tð Þ
0.0 0.00000000000000E-10 0.00000000000000E-14 0.00000000000000E-11

0.1 2.84775258929670E-10 3.46123001238724E-14 4.45784936742299E-11

0.2 7.67201135953854E-10 7.50830062186403E-14 7.01317059981221E-11

0.3 1.55009055591293E-09 1.21598593011158E-13 8.27457546925814E-11

0.4 2.78372330742016E-09 1.74456149260862E-13 8.67752675270950E-11

0.5 4.68632355143939E-09 2.34046319786763E-13 8.53053669369608E-11

0.6 7.57295037789874E-09 3.00841803183537E-13 8.04949266963728E-11

0.7 1.18961085426861E-08 3.75390284178614E-13 7.38314721859812E-11

0.8 1.83025996580710E-08 4.58311269117091E-13 6.63192608468810E-11

0.9 2.77127207848338E-08 5.50296584017097E-13 5.86177772987639E-11

1.2 8.98785703640215E-08 8.88763672032833E-13 3.77432252118837E-11

1.4 1.89002486550294E-07 1.17644883093106E-12 2.69146562675848E-11

1.6 3.87287119707480E-07 1.52607589651126E-12 1.85752377021564E-11

1.8 7.73954734967219E-07 1.95361702347036E-12 1.23150862337690E-11

2.0 1.50285070077416E-06 2.48521210934657E-12 7.65154150976499E-12

3.0 1.44064168807745E-05 1.06163661303844E-11 6.34902492992889E-12

4.0 4.45008413407777E-06 9.61197484453114E-11 6.36393082328879E-11

5.0 3.44141881214455E-07 1.02496256620954E-09 6.58341856724087E-10

10 2.90578410613307E-05 2.45547904569321E-05 2.57475288663045E-05

30 1.43229695481750E-06 2.60882575275900E-06 5.73396846448304E-07

70 4.48719525536490E-07 1.54975691657455E-06 1.31251681523281E-06
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and implemented it on the HIV T-cell model. The suggested
technique comprises of resolving the problem to the system
of nonlinear algebraic equations by expanding the approxi-
mate solutions with unknown coefficients employing Bessel
polynomials. For the numerical investigation, Ahmed et al.
[36] proposed an extended temporal model of HIV with
medication treatment impact using the backward Euler and
Crank-Nicolson techniques. The HIV model of T-cells was
explored by Yüzbaşı [37], and an operational technique
was suggested to numerically address the model problem.
Merdan [38] utilised the homotopy perturbation method
(HPM) to examine the numerical outcomes of HIV model.
Attaullah [39] approximates the solution of the HIV infec-
tion model with full logistic proliferation and variable source
terms employing the Galerkin scheme. The modified multi-
variational iteration method (MVIM) is used by Merdan
et al. [40] in order to approximate the suggested model.
Multistage homotopy perturbation method (MuHPM) is
used by Leal et al. [41] and demonstrated the path tracking
behaviour of HIV dynamics.

1.1. Fundamental Objectives. The fundamental aim of the
present paper is to examine the well-known HIV infection
model of T-cells characterized by Leal et al. [41] based on
three coupled nonlinear ordinary differential equations.
The mentioned model is solved by applying the Galerkin
discretization scheme known as the continuous Galerkin-
Petrov method, briefly cGP(2) method. This method has

superiority to some extent over the other traditional tech-
niques. Each time interval in the cGP(2) method has two
unknowns that can be computed by solving a 2 × 2 block
system. The suggested approach is accurate to three orders
over the whole time period and even demonstrates super
convergence to four orders in discrete time points. To illus-
trate the reliability of the Galerkin scheme, the model is
solved using the Runge-Kutta technique of order four, short-
ened as the RK4 method. Our second aim is to compare the
solutions of the Galerkin method with the findings of other
techniques, e.g., MuHPM [42], MVIM [40], and HPM
[38]. All the findings are visualised through different graphs.
The comparative study was performed to validate the accu-
racy and computational cost (in terms of time) of the Galer-
kin and RK4 methods for the same and different time step
sizes. Therefore, to having an idea about the accuracy and
reliability of the approximate solutions obtained from the
proposed technique, the well-known classical RK4 method
is also implemented. Estimate the absolute errors between
the results of both schemes to better understand and authen-
ticate our proposed method’s applicability in practical prob-
lems. The assessment of the absolute values of errors
between the Galerkin scheme and RK4 scheme solutions
shows that the solutions provided are more accurate in com-
parison to the solutions obtained through conventional
schemes. The graphical and tabular outcomes demonstrated
that the proposed scheme is very accurate and achieves
highly accurate results at a larger step size in comparison

Table 6: The absolute errors for TðtÞ, IðtÞ, and VðtÞ between the Galerkin and RK4 techniques for t ∈ ½0, 70� with different step sizes.

cGP 2ð Þj=0:01 − RK4j=0:0001
��� ���

ti T tð Þ I tð Þ V tð Þ
0.0 0.00000000000000E-11 0.00000000000000E-15 0.00000000000000E-12

0.1 5.86432846727547E-11 7.12909557572966E-15 8.69847249784783E-12

0.2 1.57959229030169E-10 1.54760669814828E-14 1.36827840724330E-11

0.3 3.19075987853523E-10 2.50826784472732E-14 1.61410537713458E-11

0.4 5.72855207714440E-10 3.60121817349207E-14 1.69235597757833E-11

0.5 9.64069601927520E-10 4.83457641053866E-14 1.66324766459613E-11

0.6 1.55727908346393E-09 6.21799635977353E-14 1.56892346336868E-11

0.7 2.44506304092340E-09 7.76247081478616E-14 1.43842576738606E-11

0.8 3.75948450148655E-09 9.48020382628059E-14 1.29135296206284E-11

0.9 5.68795943678424E-09 1.13844887293310E-13 1.14057773642484E-11

1.0 8.49506598399330E-09 1.34896515615809E-13 9.94224494399454E-12

1.2 1.83776105444622E-08 1.83649035106863E-13 7.31735158576718E-12

1.4 3.84712617318428E-08 2.42403387401731E-13 5.19390173231438E-12

1.6 7.82565194867857E-08 3.12689110715247E-13 3.55596108114753E-12

1.8 1.54546054176308E-07 3.96344591803606E-13 2.32396979264748E-12

2.0 2.94468271988535E-07 4.95918884842010E-13 1.40495156741166E-12

3.0 2.23191591430805E-06 1.76651054895061E-12 1.14225539834048E-12

4.0 5.47712943443912E-07 1.65905887118678E-11 1.07716444271155E-11

5.0 4.52982931165025E-08 1.77432183529058E-10 1.13838096935104E-10

10 4.84750069063011E-06 4.06695653509814E-06 4.55263102594472E-06

30 2.30107175980265E-07 4.45262458015350E-07 1.09476786747109E-07

70 7.22985902257278E-08 2.61271452473011E-07 2.25629946726258E-07

6 Computational and Mathematical Methods in Medicine



100 20 30 40 50 60 70
0

500

1000

1500
T 

(t)
 =

 co
nc

en
tr

at
io

n 
of

 h
ea

lth
y 

CD
4+

 T
-c

el
ls 

at
 ti

m
e ‘

‘t’’

Time in days

cGP (2)
RK4

(a)

100 20 30 40 50 60 70
0

400

200

600

800

1000

1200

I (
t) 

= 
co

nc
en

tr
at

io
n 

of
 in

fe
ct

ed
 C

D
4+

 T
-c

el
ls 

at
 ti

m
e ‘

‘t’’

Time in days

cGP (2)
RK4

(b)

100 20 30 40 50 60 70
0

400

200

600

1000

800

1200

1400

V
 (t

) =
 co

nc
en

tr
at

io
n 

of
 H

IV
 v

iru
s a

t t
im

e ‘
‘t’’

Time in days

cGP (2)
RK4

(c)

0.10
0

0.2 0.50.40.3 0.6 0.7 0.8 0.9 1
Time in days

CGP (2)
RK4

T 
(t)

 =
 co

nc
en

tr
at

io
n 

of
 h

ea
lth

y 
CD

4+
 T

-c
el

ls 
at

 ti
m

e ‘
‘t’’

1

0.5

1.5

2

2.5

3

(d)

0.10
0

0.2 0.50.40.3 0.6 0.7 0.8 0.9 1
Time in days

CGP (2)
RK4

I (
t) 

= 
co

nc
en

tr
at

io
n 

of
 in

fe
ct

ed
 C

D
4+

 T
-c

el
ls 

at
 ti

m
e ‘

‘t’’

1.5

0.5

2.5

2

1

3

4

3.5

4.5  

(e)

Figure 2: Continued.
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to the existing techniques employed for the mentioned
model. The Galerkin scheme is an adaptive scheme that
achieves the same accuracy at a larger step size at a lower
cost. The detailed analysis of the aforementioned model
demonstrates that the Galerkin scheme is more authentic
and accurate than the previous approaches employed for
the model. Our third aim is to develop it by the insertion
of a new dynamic supply term dependent on the viral den-
sity for the generation of new T-cells and a mass action term
in the HIV model. Leal et al. [41] suggested the HIV infec-
tion model with a stable parameter for the production of
new T-cells from the thymus. However, HIV has the poten-
tial to invade T-cells in the thymus, which might affect the
generation of new cells from the thymus. Therefore, the

model discussed in [41] is extended by introducing a vari-
able source term (“sðVÞ = 0:5Is + ðsI/I +VÞ” discussed
in [43, 44]) based on viral density. In addition, the mass
action term kVT is introduce to explain how infection
occurs when the virus interacts with T-cells, causing free
virus to be eradicated at a rate of −kVT , where k indicates
the infection rate. Moreover, the variation of different clini-
cal parameters involved in the model is observed by chang-
ing their values. A computer program written in
mathematical software is used to perform these
computations.

1.2. The Outline of the Paper. The rest of the article is struc-
tured as follows: Section 4 introduces the fundamental for-
mulation of the HIV model. Section 3.1 provides the
Galerkin method implemented for the model. Numerical
results, behaviours of different parameters, and comparison
of the solutions of the Galerkin method and RK4 method
with other classical techniques applied to the model are dis-
cussed in Section 4.1. Section 5 gives the conclusion and
summary of the article.

2. Basic Mathematical Structure of the HIV
Infection Model

This section concerns the model suggested by Leal et al. [41].
Our first aim in this study is to apply the continuous
Galerkin-Petrov time discretization scheme [31, 34] to the
following HIV model and to compare outcomes with the
methods existing in literature to validate the accuracy and
efficiency of the scheme and the MATLAB code. The model
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Figure 2: The geometrical comparison between the findings of the Galerkin and RK4 schemes for TðtÞ, IðtÞ, and VðtÞ for t ∈ ½0, 70� and
t ∈ ½0, 1� with j = 0:1:

Table 7: The numerical cost in terms of the CPU time (in seconds)
for the cGP(2) scheme and RK4 scheme for t ∈ ½0, 70�.

CPU time (in seconds)
1/j cGP(2) method RK4 method

70 0.851371 0.058463

100 0.958954 0.054076

200 1.607708 0.067753

500 2.687663 0.084981

1000 4.473871 0.124775

1500 5.245537 0.199593

2000 6.021062 0.234840

5000 10.244101 0.515386

10000 17.510589 0.859149

20000 31.660067 1.945279
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Figure 3: The mesh graphs of the Galerkin method, RK4 method, MuHPM [41], MVIM [40], and HPM [38] for the model and the
computation cost in terms of CPU time (f).
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is as follows:

dT
dt

= s − μTT + rT 1 − T + I
Tmax

� �
,

dI
dt

= kVT − μII,

dV
dt

=NμII − μVV + kVT ,

ð1Þ

where the state variables TðtÞ,IðtÞ, and VðtÞ show the den-
sity of T-cells, I-cells, and the HIV virus in the blood, respec-
tively. The diagrammatic illustration of the HIV model and
the structure of the HIV virus are given in Figure 1. The ini-
tial conditions of state variables, different parameters, and
constants with their explanations are provided in Table 1.

3. The Numerical Schemes

This section discusses the numerical schemes used to solve
the above-mentioned model. Nowadays, the Galerkin
approach has been used effectively to handle a wide range
of complicated problems in engineering and science, seen
for example [31, 45–49]. We implemented the technique
on the HIV model discussed in [41]. In addition, we employ
the conventional Runge-Kutta approach to assess the preci-
sion of the Galerkin scheme findings.

3.1. The Continuous Galerkin-Petrov (cGP) Technique. The
system of ODE’s for the considered model can be written
follows:

Find ~u : ½0, tmax�⟶V =ℝd like as follows:

dt~u tð Þ =F t, ~u tð Þð Þ∀t ∈I ,
~u 0ð Þ = u0,

ð2Þ

where dt shows the time derivative of ~uðtÞ, I = ½0, T� is the
total interval, and ~uðtÞ = ð~u1ðtÞ, ~u2ðtÞ, ~u3ðtÞÞ ∈ V ⇒ ~uð0Þ = ð
~u1ð0Þ, ~u2ð0Þ, ~u3ð0ÞÞ ∈ V are the initial values of ~uðtÞ at t = 0
. We also assume that ð~u1ðtÞ, ~u2ðtÞ, ~u3ðtÞÞ = ðTðtÞ, IðtÞ, Vðt
ÞÞ which implies that ð~u1ð0Þ, ~u2ð0Þ, ~u3ð0ÞÞ = ðTð0Þ, Ið0Þ, Vð
0ÞÞ. The function F = ð f1, f2, f3Þ is nonlinear and is
described as F : I ×K ⟶K :

The weak formulation (see [31, 34, 45–49] for explana-
tions) of a the problem (2) is follows: find ~u ∈ X such that
~uð0Þ = ~u0 andð

I

dt~u tð Þ, v tð Þh idt =
ð
I

F t, ~u tð Þ, ν tð Þð Þh idt for all ν ∈Y ,

ð3Þ

where X and Y represent the solution and test space,
respectively, to explain the time discretization of a varia-
tional type problem (2).

To characterize the function t⟶ ~uðtÞ, we describe the
space CðI ,KÞ = C0ðI ,KÞ that is the space of continuous

functions ~u: I ⟶K equipped with the norm as follows:

~uk kC I ,Kð Þ = sup
t∈I

~uk kK : ð4Þ

We will use the space L2ðI ,KÞ as the space of discon-
tinuous functions which is given by

L2 I ,Kð Þ = ~u : I ⟶K : ~uk kL2 I ,Kð Þ =
ð
I

~uk k2Kdt<∞
� �1/2

( )
: ð5Þ

In time discretization, we split the intervals I into N
subintervals I τ = ½tτ−1, tτ�, where τ = 1,⋯,N and 0 = t0 <
t1 < t2 <⋯ < tN−1 < tN = T . The parameter j indicates the
time discretization parameter, as well as the maximum time
step size j = max

1≤τ≤N
jτ, where jτ = tτ − tτ−1 is the length of nth

time interval I τ. The following set of time intervals Mj = f
I 1,⋯,I Ng will be called the time mesh. We find out the
solution ~u: I ⟶K on each time interval I τ by a function
~uj: I ⟶K which is a piecewise polynomial of some order

l w.rt time. The time-discrete solution space for ~uj is X
l
j ⊂X

and is defined by

X l
j = ~u ∈ C I , Kð Þ: ~ujI τ

∈ ℙl I τ,Kð Þ for allI τ ∈Mj

n o
,

ð6Þ

where

ℙl I τ,Kð Þ = ~u : I τ ⟶K : ~u tð Þ = 〠
l

s=0
Usts, for all t ∈I τ,Us ∈K ,∀s

( )
:

ð7Þ

The discrete test space for ~uȷ isY
l
ȷ ⊂Y and is defined by

Yk
j = v ∈ L2 I ,Kð Þ: vjI τ

∈ℙk−1 I ,Kð Þ∀I τ ∈Mj

n o
, ð8Þ

which is composed of l − 1 piecewise polynomials (see
[31, 34, 45–49] for details) and is discontinuous at the time
step end nodes. We multiply equation (2) by the test func-
tion νȷ ∈Y

k
ȷ and integrate over the interval I . We get the

discrete-time problem: find ~uȷ ∈Xk
ȷ such that ~uȷð0Þ = 0 andð

I

~uȷ′ tð Þ, νȷ tð Þ
D E

dt =
ð
I

F t, ~uȷ tð Þ, νȷ tð Þ
À Á
 �

dt∀νȷ ∈Y
l
ȷ, ð9Þ

where 〈·and·〉 represent the usual inner product in L2ðI ,
KÞ: This discretization is known as the exact continuous
Galerkin-Petrov method or simply the “exact cGP(l)
scheme” of order k. The Galerkin-Petrov name is due to
the fact that the solution space X l

ȷ is different from the test

space Y l
ȷ. The term “exact” denotes that the time integral

on the right-hand side of equation (9) is determined exactly.
Because the discrete test space Y l

ȷ is discontinuous, equation
(9) could be computed by a time marching technique in
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Figure 4: The polar and bar graphs of errors between the findings of the Galerkin and RK4 schemes and bar graphs for the Galerkin and
RK4 schemes for TðtÞ, IðtÞ, and VðtÞ:
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Figure 5: Continued.
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Figure 5: The impact of significant parameters on the HIV infection model for T-cell generation with varying source term (dependent on
viral load).
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which local problems on the interval are handled succes-
sively. Therefore, we select the test function νȷðtÞ = νφðtÞ
with arbitrary time independent ν ∈K and a scalar function
φ : I ⟶ℝ which is zero on I jI τ

and a polynomial of
order less than or equal to l − 1 on the time interval I τ = ½
tτ−1, tτ�. Then, we get from (9) the I τ problem of the exact
cGP scheme of order l: find ~uȷjI τ

∈ℙlðI τ,KÞ such that

ð
I τ

dt~uȷ tð Þ, ν

 �

φ tð Þdt =
ð
I τ

F t, ~uȷ tð Þ
À Á

, ν

 �

φ tð Þdt∀ν ∈K∀φ ∈ℙl−1 I τð Þ,

ð10Þ

with the initial condition ~uȷjI τ
ðtτ−1Þ = ~uȷjI τ−1

ðtτ−1Þ for

τ ≥ 2 and ~uȷjI τ
ðtτ−1Þ = ~u0 for τ = 1.

In case of a nonlinear function Fh·, · i, we need to calcu-
late the integrals numerically on the right-hand side of equa-
tion (10). The ðl + 1Þ-point Gauβ-Lobatto formula is exact if
the function to be integrated has a polynomial of degree less
than or equal to 2l − 1. As a result, this formula is applied to
the integral on the left-hand side of (10) which will give the
exact value. Then, the “I τ problem of the numerically inte-
grated cGPðlÞ method” is as follows: find ~uȷjI τ

∈ ℙlðI τ,KÞ
such that ~uȷðtτ−1Þ = ~uτ−1,

〠
l

s=0
ŵsdt~uȷ tτ,sð Þφ tτ,sð Þ = 〠

k

s=0
ŵsF tτ,s, ~uȷ tτ,sð ÞÀ Á

φ tτ,sð Þ∀φ ∈ ℙl−1 I τð Þ,

ð11Þ

where ws are the weights and t̂ ∈ ½−1, 1�, s = 0, 1, 2, 3,⋯, l
represent the nodes on the reference interval. To find ~uȷ on
each time interval I τ, we use a polynomial ansatz to illus-
trate it as follows:

~uȷ tð Þ = 〠
k

s=0
Us

τϕτ,s tð Þ∀t ∈I τ, ð12Þ

where the coefficients Us
τ are the components of K and the

functions ϕτ,s ∈ℙlðI τÞ are the Lagrange basis functions (see
[31, 34, 45–49] for more details) with respect to l + 1 suitable
nodal points tτ,s ∈I τ satisfying conditions mentioned
below:

ϕτ,s tτ,rð Þ = δr,s, r, s = 0, 1, 2,⋯, l, ð13Þ

where δr,s is the Kronecker delta that is defined as

δr,s =
1 if r = s,
0 if r ≠ s:

(
ð14Þ

Like in [50], the tτ,s have been defined as the quadrature
points of ðl + 1Þ-point Gauβ-Lobatto formula (for detail
information, see [31, 34, 45–49]) on the interval I τ. For
the selection of initial conditions, we can set tτ,0 = tτ−1 which

denotes the initial condition for equation (10)

U0
τ = ~uȷ

��
I τ−1

if τ ≥ 2,

for τ = 1⇒U0
τ = ~u0:

ð15Þ

We define the basis functions ϕτ,s ∈ℙlðI τÞ via the affine
reference transformation (see [31, 34, 45–49] for detail
explanations) �T : Î ⟶I τ, where Î = ½−1, 1� and

t = �T t̂
À Á

= tτ + tτ−1
2 + ȷτ

2 t̂ ∈I τ∀t̂ ∈I τ, τ = 1, 2, 3⋯ ,N:

ð16Þ

Let bϕs ∈ℙlðÎ Þ, s = 0, 1,⋯, l, demonstrate the basis func-
tions that meet the requirements

bϕ s t̂r
À Á

= δr,s, r, s = 0, 1,⋯, l, ð17Þ

where t̂0 = −1 and t̂r , r = 1, 2,⋯, l, are the quadrature points
for the reference interval Î . Then, we define the basis func-
tions on the given interval I τ by the mapping

ϕτ,s tð Þ = bϕs t̂
À Á

with t̂ = �T−1
τ tð Þ = 2

ȷτ
t + tτ−1 − tτ

2

� �
∈ Î :

ð18Þ

Likewise, the test basis functions φτ,r are described by the

suitable reference basis functions bφ ∈ℙl−1ðÎ Þ, i.e.,

φτ,r tð Þ =cφr
�T−1
τ tð Þ

� �
 ∀t ∈I τ, r = 1, 2,⋯, l: ð19Þ

From the representation (12), we get for dt~uȷ

dt~uȷ tð Þ = 〠
k

s=0
Us

τϕτ,s′ tð Þ∀t ∈I τ: ð20Þ

By putting (20) in (10), we get

ð
I τ

dt~uȷ tð Þ, ν

 �

φ tð Þ dt =
ð
I τ

〠
l

s=0
Us

τ, ν
* +

ϕs′ tð Þφ tð Þ: ð21Þ

The integral is now transformed into the reference inter-
val hatI and computed using the ðl + 1Þ-point Gauβ-Lobatto
quadrature formula which leads, for each test basis function
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Figure 6: Continued.
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Figure 6: The impact of significant parameters on the HIV infection model for T-cell generation with varying source term (dependent on
viral load).
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φ ∈ ℙl−1 and for all ν ∈K ,

ð
Î τ

〠
l

s=0
Us

τ, νh ibϕ s′ t̂
À Ábφ t̂

À Á
dt̂

=
ð
Î τ

F ωτ t̂
À Á

, 〠
l

s=0
Us

τ t̂
À Á !

, ν
* +bφ t̂

À Á
dt̂∀ν ∈K ,

⇒ 〠
l

μ=0
ŵμ 〠

l

s=0
Us

τ, νh ibϕ s′ t̂μ
À Ábφ t̂μ

À Á
= 〠

l

μ=0
ŵμ F ωτ t̂μ

À Á
, 〠

l

s=0
Us

τ
bϕ s t̂μ
À Á !

, ν
* +bφ t̂μ

À Á
,

ð22Þ

where ŵμ are the weights and t̂μ ∈ ½−1, 1� are the points of
integration with t̂0 = −1 and t̂l = 1. If we choose the test
functions φτ,i ∈ℙl−1ðI τÞ such that

bφ btμ� �
= ŵð Þ−1δr,μ r, μ = 1, 2,⋯, l: ð23Þ

Now find the coefficients that are unknown Us
τ ∈K for

s = 1,⋯, l,

〠
l

s=0
αr,sU

s
τ =

ȷτ
2 F tτ,r ,Us

τð Þ + βrF tτ,0,Us
τð ÞÈ É

∀i = 1, 2,⋯, l,

ð24Þ

where Us
τ =Us

τ−1 for τ > 1 and U0
1 = ~u0 for τ = 1 and

αr,s = bϕ s′ t̂r
À Á

+ βr
bϕ s′ t0ð Þ, βr = ŵ0bφr t̂0

À Á
: ð25Þ

We will discuss the cGP(k) method for the cases l = 1
and l = 2 in the following subsections.

3.1.1. The cGP(1) Method. We used the two point Gauβ-
Lobatto formula with tτ,0 = tτ−1, tτ,1 = tτ and weights ŵ0 =
ŵ1 = 1 which gives the well-known trapezoidal rule. We
obtain α1,0 = −1, α1,1 = 1, and β1 = 1. For the single coeffi-
cient U1

τ = ~uȷðtτÞ ∈K , the problem leads to the following
block equation:

α1,1U
1
τ − ατ,0U

0
τ =

ȷτ
2 F tτ,U1

τ

À Á
+F tτ−1,U0

τ

À ÁÈ É
: ð26Þ

3.1.2. The cGP(2) Method. Three-point Gauβ-Lobatto for-
mula (Simpson’s rule) is used to define the quadratic basis
functions with weights ŵ0 = ŵ2 = 1/3, ŵ1 = 4/3, t̂0 = −1, t̂1

= 0, and t̂2 = 1. Then, we get

αr,s =
−
5
4 1 1

4
2 −4 2

0@ 1A,

 βr =
1
2
−1

0@ 1A,

r = 1, 2, s = 0, 1, 2:

ð27Þ

Thus, the system to be solved for U1
τ,U2

τ ∈K from the
known U0

τ =U2
τ−1 becomes

α1,1U2
τ = −α1,0U0

τ + ȷτ2 F tτ,1,U1
τ

À Á
+ β1F tτ,0,U0

τ

À ÁÈ É
,

α2,1U
1
τ + α2,2U

2
τ = −α2,0U

0
τ +

ȷτ
2 F tτ,2,U2

τ

À Á
+ β2F tτ,0,U0

τ

À ÁÈ É
,

ð28Þ

where U0
τ indicate the initial condition at the current time

interval.

3.2. Runge-Kutta Method. This is a well-known technique of
order four, established by Kutta [51] and extensively utilised
for initial value problems (see [52, 53] for more details).

3.3. Comparison and Computation Analysis. This section
demonstrates the significance of the Galerkin and RK4
methods to the system of ODE’s 4.1–4.3 in the aforemen-
tioned model. The initial conditions and parameter values
are given in Table 1. In order to determine the effectiveness
of the suggested technique, we contrasted the numerical and
graphical solutions achieved by the Galerkin scheme with
those obtained by the RK4 method and other conventional
methods, i.e., MuHPM [41], MVIM [40], and HPM [38],
provided in Tables 2–4 for TðtÞ, IðtÞ, and VðtÞ: After the
evaluation, it was revealed that the proposed approach pro-
duced more precise findings than the solutions obtained
through conventional approaches. Furthermore, numerical
computations are carried out using the Galerkin scheme
and the RK4 scheme with the same and different time step
sizes. The absolute errors between the outcomes were
assessed using both approaches, as demonstrated in
Tables 5 and 6. From comparison, it is clearly visible that
the Galerkin scheme achieves more precise findings at a
larger step size as compared to the RK4 technique.
Figure 2 shows the results of both methods for t ∈ ½0, 1�
and t ∈ ½0, 70� with ȷ = 0:1 steps. The figures showed that
the results overlapped over each other throughout the time
period. In addition, the analysis of the numerical costs for
different step sizes in terms of time shows that the Galerkin
method is more time-consuming as in comparison to the
RK4 method is presented in Table 7 and Figure 3(f). The
polar and bar graphs illustrate the absolute errors between
the solutions of the Galerkin and RK4 approaches depicted
in Figure 4. The mesh graphs for the solutions of the Galer-
kin method, RK4 method, MuHPM [41], MVIM [40], and
HPM [38] are visualised in 3. Overall, we may conclude that

18 Computational and Mathematical Methods in Medicine



200 40 1008060 120 140 160 180 200
0

500

1000

1500

T 
(t)

 =
 co

nc
en

tr
at

io
n 

of
 h

ea
lth

y 
CD

4+
 T

-c
el

ls 
at

 ti
m

e ‘
‘t’’

Time in days

(a)

200 40 1008060 120 140 160 180 200
Time in days

0

400

200

600

800

1000

1200

I (
t) 

= 
co

nc
en

tr
at

io
n 

of
 in

fe
ct

ed
 C

D
4+

 T
-c

el
ls 

at
 ti

m
e ‘

‘t’’

(b)

200 40 1008060 120 140 160 180 200
Time in days

0

400

200

600

1000

800

1200

1400

V
 (t

) =
 co

nc
en

tr
at

io
n 

of
 fr

ee
 H

IV
 p

ar
tic

le
s a

t t
im

e ‘
‘t’’

(c)

Figure 7: Continued.
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Figure 7: The impact of significant parameters on the HIV infection model for T-cell generation with varying source term (dependent on
viral load) and phase diagram.
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the numerical approach reported in this article can be relied
on to produce reasonably flexible and accurate results when
applied to comparable problems.

4. Mathematical Formulation of the HIV
Infection Model

The study of HIV/AIDS infection requires an understanding
of T-cell population dynamics because T-cells are the major
target of HIV particles. Since these cells are generated in the
bone marrow, premature T-cells are directed to the thymus
for further differentiation and maturation before becoming
immune-competent T-cells. However, HIV may be able to
infect these cells in both bone marrow and the thymus and
destroy the supply of new cells [54]. But majority of the
HIV models in the literature assumed with the constant rate
of generation of new T-cells from the thymus. Herein, we
modified the HIV model assumed by Leal et al. [41]. We
consider the innovative model with the assumption that

the production of new cells from the thymus is a decreasing
function based on viral load (“sðVÞ = 0:5Is + ðsI/I +VÞ”
used in [43, 44, 55]) rather than the constant source term.
Further, include mass action term “kVT ,” where k is the
infection rate. Infection occurs when a virus infects T-cells,
reducing them at the rate of “−kVT” and producing virus
at the rate of “kVT .” It is observed that the mentioned model
gives more accurate and realistic-based findings for T-cells,
I-cells, and HIV. The new model is follows:

dT
dt

= 0:5Is + sI
I +V

− μTT + rT 1 − T + I
Tmax

� �
− kVT ,

dI
dt

= kVT − μII,

dV
dt

=NμII − μVV + kVT ,

ð29Þ
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Figure 8: The phase diagram of HIV infection model including T-cell generation with varying source term (dependent on viral load).
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where TðtÞ, IðtÞ, and VðtÞ represent the density of T-cells, I-
cells, and virus particles in the blood, respectively. The dia-
grammatic illustration of the HIV model and the structure
of the HIV virus are illustrated in Figure 1. Following confir-
mation of the aforementioned scheme and validation of the
MATLAB code, we applied the aforesaid scheme to a novel
established model and visualised the dynamical behaviour
of the model with the interaction of major clinical parame-
ters. The initial conditions of state variables, various param-
eters, and constants with their explanations are provided in
Table 1 and I = 1mm-3.

4.1. Analysis and Discussions. In this section of the research,
several numerical simulations are carried to illustrate the
detailed behaviour of the proposed model. Figures 5(a)–
5(c) depict that by increasing the quantity of free virus pro-
duced by reduction of T-cells, the concentration of T-cells
increases at top level initially. But after ten days approxi-
mately, its wavelength starts decreasing with time and
touches the lowest level. Due to killing of viral particles
and cell response, the density of T-cells increases again after
initial decline. However, immune cells are directly impacted
by viral particles; their number steadily diminishes over
time, indicating that T-cells are targeted by viruses. The
increasing value of “N” gives rapid rise to the depletion of
T-cells at huge level and is more predictable sign for AIDS.
The profile of I-cells shows oscillatory behaviour, and the
wavelength is increasing by increasing the generation rate
of free virus “N:” The viruses attack the immunity cells
and convert these T-cells into I-cells. Due to such virus rep-
lication and infection of T-cells, the amount of I-cells
increases. Meanwhile, the immune system has the capability
to identify viruses and destroy them to control the infection.
Therefore, the rate of I-cells again decreases after seventy
days approximately. The influence of growth rate (“r”) of
the T-cell population on the dynamical behaviour of sate
variables ðTðtÞ, IðtÞVðtÞÞ is visualised in Figures 5(d)–5(f).
From the graphical view, it could be observed that state var-
iables show considerably the same dynamics by increasing
the growth rate and death rate but speeds up the decaying
oscillation. The impact of increasing the death rate ðμTÞ of
the T-cell population on the dynamical behaviour of sate
variables is depicted in Figures 6(a)–6(c). If the mortality
rate of T-cells increases, there is no significant influence on
the density of T-cells in the earliest stages. Since the virus
attacks T-cells on a continuous basis, a gradual but signifi-
cant decline occurs after seventy days. Similarly, the time
period for the concentration of I-cells and free HIV virus
particles is affected slightly. Figures 6(d)–6(f) demonstrate
that if the mortality rate of the I-cell population grows, the
rate of T-cells reaches a maximum in the early days but
begins to drop in concentration with the passage of time,
and a continuous pattern of crest and trough with a small
wavelength in density of T-cells could be noticed. The pop-
ulation of I-cells diminishes, although time has a vital effect,
as seen in the graphs. Since HIV particles are latently pres-
ent, they affect the number of I-cells, and their patterns dis-
play the same behaviour as I-cells. The infection rate
oscillates over a seventy-day time-frame, and the death rate

of I-cells has a significant effect on the growth of viral parti-
cles. By reducing the mortality rate of virus particles, the
concentration of T-cells decreases with time, whereas speed-
ing the depletion with longer wavelengths, as illustrated in
Figure 7(a). The HIV particles target T-cells; their concen-
tration rises if the mortality rate of HIV particles is lowered.
Also, at the end of ten days, the initial and final densities of
T-cells are almost identical, whereas the density of I-cells
and viral particles grows and the time for growth in I-cell
and viral particles decreases, as shown in Figures 7(b) and
7(c).

The phase and chaotic behaviour of the specified model
are shown in Figures 7(d)–8(b). Many scientific and engi-
neering applications are based on a system’s chaotic nature
[34]. It is well acknowledged that there is a substantial ten-
dency toward understanding and representing chaotic sys-
tem behaviours. The chaotic diagrams demonstrate the
feasibility and application of the suggested numerical
approach, which may be generalized to novel chaotic
systems.

5. Concluding Remarks

In this paper, the continuous Galerkin-Petrov time discreti-
zation scheme is implemented for the model for HIV infec-
tion, which is comprised of three nonlinear ordinary
differential equations. Afterwards, implement the RK4
method for solving the model and compare the solutions
of both techniques. Moreover, a comprehensive analysis of
the outcomes of the Galerkin method and RK4 method with
findings of other schemes available in the literature is pre-
sented in detail. The assessment of the absolute values of
errors between the Galerkin scheme and RK4 scheme solu-
tions shows that the solutions provided are more accurate
in comparison to the solutions obtained through conven-
tional schemes. The graphical and tabular outcomes demon-
strated that the proposed scheme is very accurate and
achieves highly accurate results at a larger step size in com-
parison to the existing techniques employed for the men-
tioned model. The Galerkin scheme is an adaptive scheme
that achieves the same accuracy at a larger step size at a
lower cost. In comparison towards other approaches, our
technique yields more accurate results than other methods
that have addressed the same problem. The findings demon-
strate that the approach employed may be utilised for
numerous types of nonlinear systems of differential equa-
tions. The performance of the proposed approach demon-
strates that these methods are logically effective and
reliable for solving nonlinear problems in complex dynami-
cal systems. On the other hand, we examined the dynamical
behaviour of the model with a variable supply rate (depend-
ing on viral load) of new T-cells. The influence of significant
clinical parameters on the dynamics of T-cells, I-cells, and
free HIV virus particles is described and observed by varying
their values. The main findings are as follows:

(1) Increasing the density virus produced by per I-cells
ðNÞ increases the concentration of T-cells, I-cells,
and virus particles

22 Computational and Mathematical Methods in Medicine



(2) The decaying oscillatory behaviour is observed in the
density of state variables by rising the value of r

(3) By enhancing the mortality of I-cells, the density of
T-cells and virus rises while the population of I-
cells diminishes

(4) The increase in population of all state variables is
observed by decreasing the mortality rate of HIV

In addition, the phase and chaotic behaviour of the
aforementioned model are presented. Many scientific and
technical applications are predicated on the chaotic charac-
ter of a system. It is widely accepted that there is a heavy ten-
dency toward comprehending and portraying chaotic system
behaviours. The chaotic diagrams show the practicality and
accessibility of the suggested numerical technique, which
may be expanded to novel chaotic systems.

In the future, we plan to elaborate on the research by
incorporating vaccination rates and investigating their
impact on the model’s dynamical behaviour.
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