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Objective. Develop a set of knee joint martial arts injury monitoring models based on deep learning, train and evaluate the model’s
effectiveness. Methods. This paper mainly collects knee MRI images of 1546 patients with knee joint martial arts injuries from
2015 to 2020. Through manual annotation, the data set is divided into six categories: meniscus injury, tendon injury, ligament
injury, epiphyseal cartilage injury and synovial joint capsule loss. The human knee collaborative MRI image database is
established, and the data set is divided into the training and validation sets. And test set. Establish a deep neural network, train
the model using the training set and validation set, locate the knee joint injury location, and classify the specific injury type.
The model’s validity was validated using the test set, and the model’s sensitivity, specificity, and mean accuracy for detecting
lesions were evaluated. Results. In the test set, the accuracy of meniscus injury, tendon injury, ligament injury, bone and bone
cartilage injury and synovial joint capsule injury were 83.2%, 89.0%, 88.0%, 85.9%, 85.6% and 83.5%, respectively, and the
overall average accuracy value was 86.0%. The sensitivity and specificity of the model were 91.3% and 87.3%, respectively.
Conclusion. The application of the deep learning method in the classification and detection of knee joint martial arts injuries
can significantly improve the diagnosis effect, reduce the diagnosis time and misdiagnosis rate, and provide decision support
for surgery.

1. Introduction

In the teaching and training of martial arts, to achieve fast
reaction speed and movement speed, athletes have high
requirements on the explosive power of lower limbs; athletes
need to complete quick knee bend, knee extension, half knee
bend and other movements, which cause a lot of local load
on the knee joint, easy to lead to a common knee injury.
According to statistics, the prevalence of knee osteoarthritis
in Chinese wushu athletes is as high as 15.6% [1].

Medically, knee lesions are usually diagnosed by mag-
netic resonance imaging (MRI). MRI can clearly show artic-
ular cartilage and bone areas and is typically segmented layer

by layer by an experienced physician [2]. However, due to
the relatively complex anatomical structure of the knee joint,
and the injury often involves multiple tissue parts, the diag-
nosis is challenging, and the phenomenon of missed diagno-
sis usually occurs.

In recent years, with the development and application of
convolutional neural networks in medical image analysis,
deep learning-based diagnosis has become a feasible method
in medical image segmentation [3].

With the development and application of convolutional
neural networks in medical image analysis, deep learning-
based diagnosis has become a feasible method in medical
image segmentation.
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In terms of knee imaging application, four types of parts
were to be divided: femur bone (FB), femur cartilage (FC),
Tibia bone (TB) and Tibia cartilage (TC) [4]. Due to the differ-
ences in shape and size of different parts, it is difficult for con-
ventional image recognition algorithms to identify multiple
factors simultaneously. Therefore, few diagnosis methods of
knee joint lesions are combined with deep learning methods.

This paper, based on U-net codification and decoding
architecture, multi-scale context feature extraction module
and multi-output fusion module, is designed for segmenta-
tion targets of different sizes in knee MRI. Feature reuse is
strengthened [5]. The cascade U-net was proposed for knee
joint image segmentation. The knee MRI image library was
used to train and verify its effectiveness.

2. Methodology

The U-net used in this paper is an advanced feedforward neu-
ral network [6]. Feedforward neural network, also known as a
multilayer perceptron, is a one-way multilayer artificial neural
network. Data information is transmitted to the next layer
through the upper layer, and the knowledge of the next layer
does not influence or feedback on the upper layer [7].

Due to the complex structure of the knee joint and the
structural imbalance of different tissue sizes, this paper
adopted a cascaded U-net network framework with
expanded functions and flexibility for multi-mode segmen-
tation recognition of human knee MRI.

2.1. Basic U-Net Model. U-net is essentially a codec model, as
shown in Figure 1.

In the coding stage, the network extracts the feature
information of the image through the cascaded convolution
module. It reduces the resolution through the maximum
pooling operation of the feature graph to increase the recep-
tive field of the convolution operation and obtain more
global information [8].

In the decoding stage, the corresponding design replaces
the maximum pooling operation with a deconvolution opera-
tion to restore the resolution of the feature map. At the same
time, the number of channels in each small module is halved.

The core operation in the U-net network is to introduce
a jump connection between the encoding and decoding
layers to reduce the loss of underlying feature information
caused by the pooling operation in the encoding stage. The
high-level features are helpful for pixel classification, while
the low-level features help generate acceptable boundaries.
The jump connection directly splices the low-level detail fea-
tures and high-level semantic features of corresponding
stages in the coding-decoding layer. It then carries out fea-
ture compression and fusion through the convolution oper-
ation, finally achieving high-quality segmentation.

2.2. Cascading U-NET Model. Although U-net has achieved
excellent results in biomedical image recognition, there is
still room for improvement. Based on the traditional U-
net, this paper adds the segmentation network structure,
takes the network positioning and pruning of the U-net as
the input, and obtains the accurate segmentation result by

updating the network training parameters [9]. Therefore,
this paper mainly makes the following improvements based
on the structure of the positioning network.

2.2.1. Improved down Sampling. In the location network, this
paper uses the mode of maximum pooling to construct the
pooling layer for down-sampling. This down-sampling
mode is conducive to extracting powerful features such as
edges. It can strengthen the translation invariability of net-
work features so that high-level features have a larger recep-
tive field [10].

Although the pooling operation may eliminate some
unimportant semantic features in feature extraction, it will
also delete some significant features. To solve this problem,
this paper introduces a convolution layer with a convolution
kernel size of 3× 3× 3 and a step size of 2. It adds an LReLU
activation function layer to replace the original pooling
layer. This down-sampling method, which uses convolution
operation instead of pooling operation, can reduce the input
image’s resolution, reduce the input signal’s size, and
increase the receiving field of the features in the subsequent
network layer to expand the receptive field.

Convolution layer under-sampling, besides can realize
the primary function of the pooling layer, still can keep the
input image for more details, more semantic features are
extracted. In addition, using the convolution layer to replace
the pooling layer for down-sampling can reduce the amount
of convolution computation and reduce the memory occu-
pied by the network in the training process [11].

2.2.2. Residual Module. To avoid gradient dispersion and
gradient explosion caused by the too high depth of the net-
work model and to further improve the training efficiency
and generalization ability of the model, the residual mecha-
nism is introduced to optimize the model.

The residual mechanism is put forward as the original is
to solve the deep web layer caused by the increase in the
number of network degradation [12, 13]; introducing a
residual block can effectively control the gradient diffusion
problems, no more parameters are presented at the same
time, due to the residual is compared commonly small,
residual learning will be more accessible, further strength-
ened the network characteristic expression ability, improve
the network performance.

Figure 2(a) shows the introductory module in U-net, and
Figure 2(b) shows the residual module that combines the
Batch Normalization (BN) operation. The activation func-
tion used is ReLU. Since the dimension changes occurred
in the residual module, that is, the number of channels in
the input and the number of channels in the output do not
match and cannot be directly added, the number of channels
is transformed by 1× 1 convolution, and at the same time,
the convolution of 1× 1 does not introduce too many
parameters [14–16].

2.2.3. Extended Convolution Module. In a U-NET network,
maximum pooling is used to conduct a downsampling oper-
ation on a feature graph, which can increase the receptive
field of convolution operation while maintaining a small
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convolution kernel and losing spatial location information
to a certain extent [17]. Therefore, an extended convolution
mechanism is introduced in this paper, as shown in Figure 3.

Figure 3(a) shows a two-dimensional convolution with a
kernel size of 3, expansion rate of 1 and step size of 1, which
is equivalent to conventional convolution. The receptive
field is a 3× 3 region, and the number of parameters is 9.
Figure 3(b) shows a convolution kernel size of 3 and an

expansion rate of 2. For the two-dimensional convolution
with a step size of 1, except for the position of the blue
dot, the weight of other places is 0. Although the number
of parameters is still 9 at this time, the size of its receptive
field is 7× 7.

2.2.4. Deep Supervision Mechanism. In this paper, the seg-
mentation network introduces depth supervision mechanism
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Figure 1: Basic U-net frame.
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Figure 2: U-net based on (a) basic module and (b) residual module.
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Figure 3: The receptive field of detailed convolution based on (a) 3× 3 and (b) 7× 7.
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to the hidden layer in the up sampling expansion path, and
carries out depth supervision for the last three layers with dif-
ferent sizes, respectively, and outputs the feature information
of the hidden layer to the output layer [18].

This paper uses the deep supervision mechanism, does
not need to introduce additional with the objective function,
supervision is directly through the layer for convolution
operation, get the characteristics of the corresponding cate-
gory information, will be on the characteristics of the deep
category information sampling, and the adjacent shallow
overlay, feature category information through step by step
a repeated operation, finally get an output feature class is
used to calculate the objective function. By establishing in-
depth supervision of the hidden layer, the hidden layer fea-
tures are directly extracted, and the semantic feature infor-
mation of the hidden layer is effectively retained.
Meanwhile, the gradient dispersion problem can be effec-
tively controlled and the network performance can be
improved through sufficient training of the shallow layer
network. The basic structure of depth supervision mecha-
nism is shown in Figure 4.

2.3. Experimental Settings

2.3.1. MRI Classification and Labeling of Knee Joint. Accord-
ing to the clinical diagnostic criteria of MRI of knee joint,
knee joint injury was classified into 6 categories and 21 items
by location, including all common lesions of sports-related
knee joint injury, including:(1) meniscus injury (meniscus
I~ II degree injury, meniscus III degree injury); (2) Tendon
injury (quadriceps tendon injury medial femoris tendon
injury, lateral femoris tendon injury, gastrocnemius intra
or lateral head tendon injury, popliteal tendon injury); (3)
ligament injury (anterior cruciate ligament injury, posterior
cruciate ligament injury, medial collateral ligament injury,
lateral collateral ligament injury, ballad ligament injury, ilio-
tibial band injury); (4) bone and osteochondral damage
(osteomalacia, bone marrow edema, exfoliative osteochoni-
tis); (5) synovial capsule injury (joint effusion, synovitis);
(6) Peripheral soft tissue injury (subcutaneous fasciitis,
lipoedema, popliteal cyst) [19].

In this paper, MRI of patients with martial arts injury of
knee joints from 2015 to 2020 was screened. After compara-
tive analysis, repetitive and poor quality data were removed,
and 1546 MRIwas finally obtained. For each MRI, the loca-
tion and type of lesions in the image were located by manual
labeling. The annotation results showed that among the
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Figure 4: Deep supervision structure.

Table 1: Statistics table of knee joint image samples.

Injured part Sample size Proportion Label

Meniscus 1242 80.3% 1

Tendon 29 1.9% 2

Ligamentous 254 16.4% 3

Bone and apical cartilage 557 36.0% 4

Synovial capsule 1494 96.6% 5

Soft tissue 340 22.0% 6

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Cascading
U-net U-net

Manual
segmentation

Figure 5: Effects of different models on the identification of lesions.
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1546 MRI images, there were 1242 cases of meniscus injury,
29 cases of tendon injury, 254 cases of ligament injury, 557
cases of bone and bone cartilage injury, 1494 cases of syno-
vial joint capsule injury, and 340 cases of soft tissue injury.
The annotation results are shown in Table 1.

2.3.2. Data Preprocessing. By observing the annotation
results, we found that the vast majority of knee joint lesions
involved two or more combined injuries. At the same time,
among different types of injuries, synovial joint capsule
injury accounted for the highest proportion (96.6%), while
tendon injury accounted for the lowest proportion (1.9%).

At the same time, to further improve the model’s gener-
alization ability, we divide the training set and the test set by
cross-validation. First, divide the original data into ten equal
pieces, ensuring that each piece has the same proportion of
different types of data as the original data. During each
training, one sample is selected as the test set and the rest
as the training set. Since the data of the training set and
the test set do not intersect, the over-fitting phenomenon
can be avoided to a certain extent.

2.3.3. Judgment Criteria. The prediction result of the model
includes two parts, one is the location of lesion, the other
is the prediction of lesion type.

The Intersection-over-Union (IOU) was used as the cri-
terion for locating the lesion. Intersection-over-Union is a
concept used in object detection. It is the overlap rate of can-
didate bound and ground truth bound generated, that is, the
ratio of their intersection to union. The calculation formula
of cross ratio is shown in Equation (1).

IOU = area Cð Þ ∩ area Gð Þ
area Cð Þ ∪ area Gð Þ ð1Þ

In the formula, area (C) and area (G), respectively,
represent the lesion regions predicted by model and man-
ually labeled. The larger the VALUE of IOU is, the higher
the fitting degree of the lesion location predicted by the
model and the artificially labeled lesion location is. In this
paper, we define that when the IOU value is greater than
0.35, the model’s lesion location prediction is successful.

The sensitivity, specificity, F1 and average accuracy
values commonly used in the classification algorithm were
used to evaluate the model for the prediction of lesion types.

Since the model prediction is divided into two parts, we
define that only when the lesion location and lesion type are

predicted successfully, the model belongs to the classification
success, and calculate relevant statistical data based on this.

In order to compare the model performance, this paper
takes the traditional U-net model as the benchmark and uses
the same data set and training method to analyze and com-
pare the predicted results.

3. Experimental Results

Through training, the effect of lesion recognition of cascadedU-
NETmodel and traditional U-NETmodel is shown in Figure 5.

In Figure 5, the red, green and yellow boxes, respectively,
represent the cascade U-NET model, the traditional U-NET
model and the manually identified lesion regions, and Case1
to Case 6, respectively, represent the six lesion types men-
tioned above.

Through observation, the focus area identified by the cas-
cade U-net model is basically the same as the focus area iden-
tified by manual annotation, and the model is more accurate
in area size than manual annotation. The traditional U-net
model can roughly identify the location of the lesion, but the
area is large, and there is a certain gap in accuracy compared
with the cascaded U-net model. The performance parameters
of the two models are shown in Table 2.

In Table 2, the left side represents the recognition effect
of the cascading U-net model, and the right side represents
the recognition effect of the traditional U-net model.

Through the analysis of the data in the table, it can be
found that in the recognition of different types of lesions,
the indicators of the cascade U-NET are slightly higher than
the traditional U-NET model. In the aspect of ligament
injury, the recognition effects of the two models were basi-
cally equal, which may be due to the fact that the sample
data of ligament injury were few, and the over-sampling
model had a higher recognition intensity for such samples.
The experimental results show that the cascaded U-NET
model has considerable feasibility in the field of knee joint
medical image recognition, and has significantly improved
performance compared with the traditional model.

4. Discussion

The strenuous exercises and activities of wushu determine that
it is more likely to cause sports injuries; according to the inves-
tigation, wushu athletes’ knee joint injuries are more serious.
In other professions, such as athletes, soldiers, etc., common
knee injury is also higher due to the accumulation of exercise
load.

Table 2: Identification accuracy of different models.

Injured part Sensitivity Specificity F1 value Mean accuracy

Meniscus 95.5/93.7 61.5/60.1 74.9/73.5 83.2/80.3

Tendon 91.3/91.3 87.3/87.2 89.2/89.1 89.0/89.0

Ligamentous 91.1/89.8 83.5/82.5 87.0/85.6 88.0/85.7

Bone and apical cartilage 88.4/87.5 87.6/86.7 88.0/87.1 85.9/85.0

Synovial capsule 91.2/89.4 74.7/73.5 82.3/80.7 85.6/82.5

Soft tissue 86.1/85.2 85.8/84.8 85.9/84.9 83.5/82.3
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At present, the diagnosis of knee joint injury mainly
relies on manual recognition MRI. Due to the complex
structure of the knee joint, different parts to be identified dif-
fer significantly in shape and size. Manual identification
takes a long time, with low accuracy, and sometimes the
phenomenon of missed diagnosis and misdiagnosis occurs.

In recent years, deep learning has developed rapidly and
has been widely used in the medical field. Deep learning has
been used to segment human organs and reconstruct human
structures. In medical imaging, deep learning model can be
trained to replace manual recognition of human characteris-
tics and provide a reference for manual diagnosis.

In this paper, the deep learning algorithm is combined
with knee MRI, and the improved cascade U-net model is
used to identify the site and type of knee lesions. Finally,
good results are achieved on the test data set. Compared
with the traditional deep learning model and manual label-
ing method, it has specific clinical application value.

5. Conclusion

In this paper, we use deep learning algorithms combined
with knee MRI diagnosis. Improvements have been made
to the traditional U-NET model to improve training effi-
ciency and model efficiency. Compared with the traditional
manual labeling method, there is a certain improvement.
In the test data set, the average recognition accuracy of the
model reached 86.0%, and it could accurately identify the
location of lesions and classify the types of lesions, indicating
that the model has high application value in medicine and is
worthy of further development and research.
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