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The purpose of this paper is to investigate the approximate solution of the casting-mould heterogeneous system with Caputo
derivative under the homotopy idea. The symmetry design of the system contains the integer partial differential equations and
the fractional-order partial differential equations. We apply Yang transform homotopy perturbation method (YT-HPM) to
find the approximate solution of temperature distribution in the casting-mould heterogeneous system. The YT-HPM is a
combined form of Yang transform (YT) and the homotopy perturbation method (HPM) using He’s polynomials. Some
examples are provided to demonstrate the superiority of the suggested technique. The significant findings reveal that YT-HPM
minimizes the enormous without imposing any assumptions. Due to its powerful and robust support for nonlinear problems,
this approach presents a remarkable appearance in the functional studies of fractal calculus.

1. Introduction

A differential problem of symmetry is a modification that
generates the differential equation continuously in such a
way that these symmetries can help to achieve the solution
of the differential equation. Solving these equations is some-
times easier than solving the original differential equations.
In the past few decades, nonlinear fractional differential
equations (FDEs) in mathematical physics have been con-
tending for a prominent role in a variety of fields, including
biological research, applied science, signal processing, con-
trol theory, finance, and fractal dynamics [1–3]. Debnath
[4] presents some recent applications of fractional calculus
and obtained the numerical computation of fractional deriv-
atives and integrals. Heydari et al. [5] applied the Legendre
polynomials to obtain the numerical solution of nonlinear
fractal-fractional optimal control problems. Wang and

Wang [6] employed a semi-inverse method to obtain the
fractal variational principles for two different types of dis-
continuous plasma physics. FDEs are the generalized forms
of the integer-order differential equations but some nonlin-
ear mathematical models of integer-order derivatives do
not implement well in most of the circumstances [7–9]. This
is because integer-order derivatives are limited operators
that are unsuitable for infinite variance, whereas the
fractional-order derivatives are global to account for neigh-
borhood dominance.

Various types of differential equations with the fractional
derivative can be used to precisely characterize many pro-
ceedings of physics and engineering. Khan et al. [10] con-
structed an operator using the Caputo fractional
differentiation to validate the performance of this approach.
The challenge of discovering approximate and exact solu-
tions to FDEs is much critical. The homotopy perturbation
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technique (HPM) [11] is a well-known method for obtaining
series solutions to a variety of linear and nonlinear differen-
tial equations of arbitrary order. Many powerful and efficient
strategies have been proposed such as Laplace homotopy
perturbation method [12], weighted least squares method
[13], iterative method [14], homotopy perturbation Sumudu
transform method [15], Elzaki transform decomposition
approach [16], Laplace decomposition method [17], and
natural homotopy transform method [18] with a logic sensi-
tivity function and small diffusivity. Grzymkowski et al. [19]
employed HPM whereas Tripathi and Mishra [20] adopted
HPM together with the Laplace transform to determine the
temperature distribution in the casting-mould heteroge-
neous system as a continuous function, which is particularly
useful for analyzing the mould. Vanani et al. [21] used a
weighted approach based on HPM to solve the heat equation
in the cast-mould heterogeneous domain. Later, this pro-
posed approach has also been examined in more than one
spatial dimension, indicating that this method has a broader
application in nonlinear PDE systems [22, 23]. This study is
particularly powerful for fractal theory and fractal calculus,
and it can be seen as dependable in getting analytical solu-
tions and suitable for other nonlinear issues [24–26].

This study presents the idea of YT-HPM to obtain the
solution of casting-mould heterogeneous system with frac-
tional order in Caputo sense. Yang transform coupled with
the homotopy perturbation method presents the results in
the form of series and this series approaches to the exact
solution very rapidly. The quality of the current method is
appropriate to provide the analytical results to the given
examples. This study is summarized as follows: in Section
2, we start with some primary definitions in Caputo sense.
In Sections 3 and 4, we formulate the problem for the imple-
mentation of YT-HPM. In Section 6, we apply this scheme
to two numerical problems to show its capability and effi-
ciency. Results and discussion with concluding remarks are
given in Sections 7 and 8.

2. Preliminary Concepts

In this segment, we demonstrate some fundamental proper-
ties of fractional calculus along with Yang transform, which
help to construct the idea of YT-HPM.

Definition 1. The fractional-order derivative in Caputo sense
is given as [27]

Dα
ηΨ θ, ηð Þ = 1

Γ λ − αð Þ
ðη
0
η − ρð Þλ−α−1Ψ φ, ρð Þdρ, λ − 1 < α ≤ λ,  λ ∈ℕ:

ð1Þ

Definition 2. Recently, Yang [28] introduced the Yang-
Laplace transform that if ΨðηÞ is a function, then YT can
be written as

Y Ψ ηð Þ½ � =M wð Þ =
ð∞
0
e− η/wð ÞΨ ηð Þdη, η,w > 0: ð2Þ

Definition 3. The inverse transform Y−1 is defined as

Y−1 M wð Þ½ � =Ψ ηð Þred, ð3Þ

where Y−1 is the inverse Yang operator.

Definition 4. The Yang transform for nth derivatives is
defined a [28]

Y Ψn ηð Þ½ � = M wð Þ
wn

− 〠
n−1

λ=0

Ψλ 0ð Þ
wn−λ−1 , n = 1, 2, 3,⋯: ð4Þ

Definition 5. The Yang transform for fractional-order deriv-
atives is defined as [29]

Y Ψα ηð Þ½ � = M wð Þ
wα

− 〠
n−1

λ=0

Ψλ 0ð Þ
wα−λ−1 , 0 < α ≤ n: ð5Þ

3. Remarks

The YT of some helpful expressions are as follows:

Y 1½ � =w,
Y η½ � =w2,

Y ηλ
h i

= Γ λ + 1ð Þwλ+1:

ð6Þ

4. The Description of the Problem

In this segment, we formulate the casting-mould system to
analyze the temperature distribution. Let us consider, two
regions, Ψðθ, ηÞ indicating for casting and Φðθ, ηÞ for mould
on the boundary of the problem as shown in Figure 1, such
that

Ψ = θ, ηð Þ: θ ∈ θ1, 0½ �, η ∈ 0, η∗½ Þ,
Φ = θ, ηð Þ: θ ∈ 0, θ2½ �, η ∈ 0, η∗½ Þ,

ð7Þ

with the boundaries on these domains δi,  i = 1, 2, 3, 4, 5 are
distributed as

δ1 = θ, 0ð Þ: θ ∈ θ1, 0ð Þf g,
δ2 = 0, ηð Þ: θ ∈ 0, η∗½ �f g,
δ3 = θ1, ηð Þ: θ ∈ 0, η∗½ �f g,
δ4 = θ, 0ð Þ: θ ∈ 0, θ2½ �f g,
δ5 = θ2, ηð Þ: θ ∈ 0, η∗½ �f g:

ð8Þ

These functions satisfy the heat conduction equation
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inside the domains such as:

∂αΨ θ, ηð Þ
∂ηα

= a
∂2Ψ θ, ηð Þ

∂θ2
, θ, ηð Þ ∈Ψ,

∂αΦ θ, ηð Þ
∂ηα

= b
∂2Φ θ, ηð Þ

∂θ2
,   θ, ηð Þ ∈Φ,

ð9Þ

where ∂α/∂ηα is the derivative of functions Φðθ, ηÞ and Ψð
θ, ηÞ order α in Caputo sense, a and b are the thermal diffu-
sivity, Ψ and Φ represent the temperature, and η and θ refer
to the time and spatial, respectively [30]. These boundaries
satisfy the following initial and boundary conditions:

Ψ θ, 0ð Þ = ϕ1 θð Þ, on δ1,
Φ θ, 0ð Þ = ϕ2 θð Þ, on δ4,
Ψ θ1, ηð Þ = ψ ηð Þ, on δ3,
∂Φ θ2, ηð Þ

∂θ
= q ηð Þ, on δ5,

Ψ 0, ηð Þ =Φ 0, ηð Þ, on δ2,

ζ1
∂Ψ 0, ηð Þ

∂θ
= ζ2

Φ 0, ηð Þ
∂θ

, on δ2:

ð10Þ

The selection of these boundary conditions is an impor-
tant task for the determination of the casting-mould
problem.

5. Idea of YT-HPM

In this part, we will demonstrate the concept of YHPTM. Let
us assume fractional-order PDE such as

Dα
ηΨ θ, ηð Þ + RΨ θ, ηð Þ +NΨ θ, ηð Þ = g θ, ηð Þ, ð11Þ

Ψ θ, 0ð Þ = h θð Þ, ð12Þ

where R and N are linear and nonlinear differential opera-
tors, respectively, and gðθ, ηÞ is called the source function.

Applying the YT to Equation (11),

1
wα

Y Ψ θ, ηð Þ −wΨ θ, 0ð Þ½ � = −Y R Ψ θ, ηð Þð Þ +N Ψ θ, ηð Þð Þ +Y g θ, ηð Þ½ �½ �,
Y Ψ θ, ηð Þ½ � =wh θð Þ −wα Y R Ψ θ, ηð Þð Þ +N Ψ θ, ηð Þð Þ½ �½ � +Y g θ, ηð Þ½ �:

ð13Þ

By using inverse Y ,

Ψ θ, ηð Þ =Ψ θ, 0ð Þ −Y−1 wα Y R Ψ θ, ηð Þð Þ +N Ψ θ, ηð Þð Þ½ �½ � +Y g θ, ηð Þ½ �½ �:
ð14Þ

However, HPM is stated as

Ψ θ, ηð Þ = 〠
∞

i=0
piΨi θ, ηð Þ, ð15Þ

where p is the homotopy parameter and

NΨ θ, ηð Þ = 〠
∞

i=0
piHiΨ θ, ηð Þ: ð16Þ

The following strategy can be operated to acquire He’s
polynomials:

Hi Ψ0 +Ψ1+⋯+Ψið Þ = 1
n!

∂i

∂pi
N 〠

∞

i=0
piΨi

 ! !
p=0

, n = 0, 1, 2,⋯:

ð17Þ

With the help of Equations (15) and (16), we can get
Equation (14) such as

〠
∞

i=0
piΨi θ, ηð Þ =Ψ θ, 0ð Þ − pY−1 wαY R 〠

∞

i=0
piΨi θ, ηð Þ

 !("

+ 〠
∞

i=0
piHnΨi θ, ηð Þ

)
�:

ð18Þ

We can get the following terms by evaluating the p com-
ponents

p^0 : Ψ0 θ, ηð Þ =Ψ θ, 0ð Þ,
p1 : Ψ1 θ, ηð Þ = −Y−1 wαY RΨ0 θ, ηð Þ +H0 Ψð Þf g½ �,
p2 : Ψ2 θ, ηð Þ = −Y−1 wαY RΨ1 θ, ηð Þ +H1 Ψð Þf g½ �,
p3 : Ψ3 θ, ηð Þ = −Y−1 wαY RΨ2 θ, ηð Þ +H2 Ψð Þf g½ �,

⋮

pi : Ψi θ, ηð Þ = −Y−1 wαY RΨi θ, ηð Þ +Hi Ψð Þf g½ �:
ð19Þ

Thus, we can summarize the set of Equation (19) in the
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Figure 1: Domain of the problem.
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(a) Surface solution of Ψðθ, ηÞ when α = 0:25
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(c) Surface solution of Ψðθ, ηÞ when α = 0:75

Figure 2: Continued.
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Figure 2: The surfaces solution of Ψðθ, ηÞ for distinct values of α.
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Figure 3: Plot of Ψðθ, ηÞ for different values of α:
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series form such as

Ψ θ, ηð Þ =Ψ0 θ, ηð Þ +Ψ1 θ, ηð Þ +Ψ2 θ, ηð Þ+⋯,

Ψ θ, ηð Þ = lim
N⟶∞

〠
N

n=0
Ψn θ, ηð Þ:

ð20Þ

6. Numerical Examples

Case I: let us consider

θ1 = −1, θ2 = 1 a = 1
4 , b = 1,

ζ1 = 1, ζ2 = 2, Ψ0 θ, ηð Þ = e2θ, Φ0 θ, ηð Þ = eθ:

ð21Þ

Thus, system of Equation (9) becomes

∂αΨ
∂ηα

= 1
4
∂2Ψ
∂θ2

,

∂αΦ
∂ηα

= ∂2Φ
∂θ2

:

ð22Þ

Now, takingYT and using its property definition, we get

Y Ψ θ, ηð Þ½ � =wΨ θ, 0ð Þ +wαY
1
4
∂2Ψ
∂θ2

" #
,

Y Φ θ, ηð Þ½ � =wΦ θ, 0ð Þ +wαY
∂2Φ
∂θ2

" #
:

ð23Þ

Thus, inverse YT takes place as

Ψ θ, ηð Þ =Ψ θ, 0ð Þ +Y−1 wαY
1
4
∂2Ψ
∂θ2

( )" #
,

Φ θ, ηð Þ =Φ θ, 0ð Þ +Y−1 wαY
∂2Φ
∂θ2

( )" #
:

ð24Þ

Using the initial condition Equation (21) into Equation
(24), we get

Ψ θ, ηð Þ = e2θ +Y−1 wαY
1
4
∂2Ψ
∂θ2

( )" #
,

Φ θ, ηð Þ = eθ +Y−1 wαY
∂2Φ
∂θ2

( )" #
:

ð25Þ

Applying HPM to get with He’s polynomials, we get

〠
∞

i=0
piΨi θ, ηð Þ = e2θ +Y−1 wαY

1
4〠

∞

i=0
pi
∂2Ψi

∂θ2

 !" #
,

〠
∞

i=0
piΦi θ, ηð Þ = eθ +Y−1 wαY 〠

∞

i=0
pi
∂2Φi

∂θ2

 !" #
:

ð26Þ

Start with the initial condition to get the following itera-
tion in the form of series

Ψ0 θ, ηð Þ =Ψ θ, 0ð Þ = e2θ,

Φ0 θ, ηð Þ =Φ θ, 0ð Þ = eθ,

Ψ1 θ, ηð Þ =Y−1 wαY
1
4
∂2Ψ0
∂θ2

 !" #
= e2θ

ηα

Γ 1 + αð Þ ,

Φ1 θ, ηð Þ =Y−1 wαY
∂2Φ0
∂θ2

 !" #
= eθ

ηα

Γ 1 + αð Þ ,

Ψ2 θ, ηð Þ =Y−1 wαY
1
4
∂2Ψ1
∂θ2

 !" #
= e2θ

η2α

Γ 1 + 2αð Þ ,

Φ2 θ, ηð Þ =Y−1 wαY
∂2Φ1
∂θ2

 !" #
= eθ

η2α

Γ 1 + 2αð Þ ,

Ψ3 θ, ηð Þ =Y−1 wαY
1
4
∂2Ψ2
∂θ2

 !" #
= e2θ

η3α

Γ 1 + 3αð Þ ,

Φ3 θ, ηð Þ =Y−1 wαY
∂2Φ2
∂θ2

 !" #
= eθ

η3α

Γ 1 + 3αð Þ ,

⋮

ð27Þ
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𝛼 = 1
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Figure 4: The surfaces solution of Φðθ, ηÞ for distinct values of α.
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Consequently, the series may be demonstrated as:

Ψ θ, ηð Þ =Ψ0 +Ψ1 +Ψ2 +Ψ3+⋯,
Φ θ, ηð Þ =Φ0 +Φ1 +Φ2 +Φ3+⋯,

ð28Þ

which can be written as follows

Ψ θ, ηð Þ = e2θ 1 + ηα

Γ 1 + αð Þ +
η2α

Γ 1 + 2αð Þ + η3α

Γ 1 + 3αð Þ+⋯
� �

,

Φ θ, ηð Þ = eθ 1 + ηα

Γ 1 + αð Þ +
η2α

Γ 1 + 2αð Þ + η3α

Γ 1 + 3αð Þ+⋯
� �

:

ð29Þ

For α = 1, the above equations may reduce to the classi-
cal casting system

Ψ θ, ηð Þ = e2θ+η,

Φ θ, ηð Þ = eθ+η:
ð30Þ

Case II: let us consider again

θ1 = −1, θ2 = 1 a = 1
4 , b = 1,

ζ1 = 1, ζ2 = 2, Ψ0 θ, ηð Þ = 2 + e2θ, Φ0 θ, ηð Þ = eθ:

ð31Þ

Thus, system of Equation (9) becomes

∂αΨ
∂ηα

= 1
4
∂2Ψ
∂θ2

,

∂αΦ
∂ηα

= ∂2Φ
∂θ2

:

ð32Þ

According to YT-HPM, we get

〠
∞

i=0
piΨi θ, ηð Þ = e2θ +Y−1 wαY

1
4〠

∞

i=0
pi
∂2Ψi

∂θ2

 !" #
,

〠
∞

i=0
piΦi θ, ηð Þ = eθ +Y−1 wαY 〠

∞

i=0
pi
∂2Φi

∂θ2

 !" #
:

ð33Þ

𝛼 = 0.25
𝛼 = 0.50
𝛼 = 0.75

𝛼 = 1
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Figure 5: Plot of Φðθ, ηÞ for different values of α.

Table 1: Consider θ = 0:001 at α = 1 for casting system.

t Exact solution Approximate solution Absolute error

.25 1.2866 1.2866 0.000

.50 1.65202 1.65202 0.000

.75 2.12124 2.12124 0.000

.0 2.72372 2.7237 0.00002

.25 3.49716 3.49733 0.00017

.50 4.49066 4.4899 0.0007

.75 5.76612 5.76342 0.0027

.0 7.40385 7.39573 0.00812

Table 2: Consider θ = 0:005 at α = 1 for mould system.

t Exact solution Approximate solution Absolute error

.25 1.29046 1.29046 0.000

.50 1.65699 1.65699 0.000

.75 2.12761 2.12761 0.000

.0 2.73191 2.73188 0.0003

.25 3.50784 3.50767 0.00017

.50 4.50415 4.50339 0.00076

.75 5.78345 5.78074 0.00271

.0 7.42609 7.41795 0.00814
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Figure 6: The surfaces solution of Ψðθ, ηÞ for distinct values of α.
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Figure 7: Plot of Ψðθ, ηÞ for different values of α.
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Start with the initial condition to get the following itera-
tion in the form of series

Ψ0 θ, ηð Þ = 2 + e2θ,

Φ0 θ, ηð Þ = eθ,

Ψ1 θ, ηð Þ =Y−1 wαY
1
4
∂2Ψ0
∂θ2

 !" #
= e2θ

ηα

Γ 1 + αð Þ ,

Φ1 θ, ηð Þ =Y−1 wαY
∂2Φ0
∂θ2

 !" #
= eθ

ηα

Γ 1 + αð Þ ,

Ψ2 θ, ηð Þ =Y−1 wαY
1
4
∂2Ψ1
∂θ2

 !" #
= e2θ

η2α

Γ 1 + 2αð Þ ,

Φ2 θ, ηð Þ =Y−1 wαY
∂2Φ1
∂θ2

 !" #
= eθ

η2α

Γ 1 + 2αð Þ ,

Ψ3 θ, η ∗ð Þ =Y−1 wαY
1
4
∂2Ψ2
∂θ2

 !" #
= e2θ

η3α

Γ 1 + 3αð Þ ,

Φ3 θ, ηð Þ =Y−1 wαY
∂2Φ2
∂θ2

 !" #
= eθ

η3α

Γ 1 + 3αð Þ ,

⋮
ð34Þ

Consequently, the series may be demonstrated as:

Ψ θ, ηð Þ =Ψ0 +Ψ1 +Ψ2 +Ψ3+⋯,
Φ θ, ηð Þ =Φ0 +Φ1 +Φ2 +Φ3+⋯,

ð35Þ

which can be written as follows:

Ψ θ, ηð Þ = 2 + e2θ 1 + ηα

Γ 1 + αð Þ +
η2α

Γ 1 + 2αð Þ + η3α

Γ 1 + 3αð Þ+⋯
� �

,

Φ θ, ηð Þ = eθ 1 + ηα

Γ 1 + αð Þ +
η2α

Γ 1 + 2αð Þ + η3α

Γ 1 + 3αð Þ+⋯
� �

:

ð36Þ

For α = 1, the above equations may reduce to the classi-
cal casting system

Ψ θ, ηð Þ = 2 + e2θ+η,

Φ θ, ηð Þ = eθ+η:
ð37Þ

7. Results and Discussion

In case I, Figures 2(a)–2(d) indicate the surface solution of
casting system, whereas Figures 3(a)–3(d) indicates the sur-
face solution of mould system, respectively, with fractional
order α = 0:25, α = 0:50, α = 0:75, and α = 1 at θ = 5 and η
= 1. Figures 4 and 5 indicate the graphical results of Ψðθ, η
Þ and Φðθ, ηÞ, respectively, for different values of α at θ = 1
and η = 0:1. Table 1 represents the absolute error of the cast-
ing system, and Table 2 represents absolute error of the
mould system.

In case II, Figures 6(a)–6(d) indicate the surface solution
of casting system with fractional order α = 0:25, α = 0:50, α
= 0:75, and α = 1 at θ = 2 and η = 2. Figure 7 indicates the
graphical results of Ψðθ, ηÞ for different values of α at θ = 2
and η = 0:1. However, the graphical results for the mould
system remain same because only changing the initial condi-
tion in casting system is studied to show the performance of
this approach in this case. Table 3 represents the absolute
error of casting system.

These graphical results reveal that they are virtually sim-
ilar and validate towards the exact solutions, which encour-
ages us to interpret the physical behavior of the coupled
system. The solutions results are demonstrated in both 2D
and 3D to realize the physical description of the coupled
system.

8. Conclusion

In this survey, we successfully utilized YT-HPM to investi-
gate the approximate solution of the casting-mould hetero-
geneous system with the Gerasimov-Caputo derivative.
This approach does not involve any hypothesis and restric-
tion of variables to ruin the nature of the problems in the
recurrence relation. Two examples are tested to verify the
excellent performance of this hybrid scheme. It is seen that
YT-HPM has less computational effort which shows that
the solution of the system of PDEs has a fast rate of conver-
gence. We performed all the calculations with the help of
Wolfram Mathematica software 11.0.1. The graphical repre-
sentation of surface solution and plot distributing validate
that YT-HPM results are very precise and effective which
demonstrates that this approach is very simple and straight-
forward for other nonlinear evolution problems with fractal
derivatives in the future demands.

Data Availability

All the data are available within the article.

Table 3: Consider θ = 0:005 at α = 1 for casting system.

t Exact solution Approximate solution Absolute error

.25 3.29693 3.29693 0.000

.50 3.66529 3.66529 0.000

.75 4.13828 4.13827 0.00001

.0 4.7456 4.74557 0.00003

.25 5.52542 5.52525 0.00017

.50 6.52673 6.52596 0.00077

.75 7.81244 7.80972 0.00272

.0 9.46332 9.45513 0.00819
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