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This work is aimed at presenting a new numerical scheme for COVID-19 epidemic model based on Atangana-Baleanu fractional
order derivative in Caputo sense (ABC) to investigate the vaccine efficiency. Our construction of the model is based on the
classical SEIR, four compartmental models with an additional compartment V of vaccinated people extending it SEIRV model,
for the transmission as well as an effort to cure this infectious disease. The point of disease-free equilibrium is calculated, and
the stability analysis of the equilibrium point using the reproduction number is performed. The endemic equilibrium’s
existence and uniqueness are investigated. For the solution of the nonlinear system presented in the model at different
fractional orders, a new numerical scheme based on modified Simpson’s 1/3 method is developed. Convergence and stability of
the numerical scheme are thoroughly analyzed. We attempted to develop an epidemiological model presenting the COVID-19
dynamics in Italy. The proposed model’s dynamics are graphically interpreted to observe the effect of vaccination by altering
the vaccination rate.

1. Introduction

Emerging in December 2019, COVID-19 became the biggest
global threat. The whole world faced a critical situation, and
a panic was created throughout the globe. The World Health
Organization (WHO) declared it as an international health
emergency. Not much was known about this virus as it
was a new virus that has not been identified earlier in
humans. So, relying on the observations and symptoms
shown by the people who caught the virus, strategies of
isolation, lockdown, and social distancing were adopted to
prevent the disease from spreading. With the passage of
time, the virus becomes more threatening because of its
new variants. To investigate the dynamics and transmission
of the virus, researchers utilized the concept of mathematical
modeling [1–4]. These models actually do not provide the
cure for the infectious diseases but can contribute in
predicting the dynamics and behaviour of these infections
through simulations.

Researchers rely more on fractional models because of
their nonlocal behaviour, hereditary properties, and memory
effects rather than integer order models. Besides, a number
of experimental facts exhibit that the natural dynamics go
along with fractional calculus. Ahmad et al. [5] utilized the
modified Euler’s method to study the dynamics of the model
for COVID-19 based on fractional differential equations and
simulate the results by using the available data of initial days
of the spread in Wuhan City. Zakary et al. [6] investigated
the situation of the spread of the Corona Virus under the
effect of two classes, quarantined and other who did not
respect the quarantine strategy using the mathematical
model, and an optimal control strategy to reduce the
infections in Morocco. Ahmad et al. [7] presented a brief
analysis on the WHO reported data for Pakistan and inves-
tigated it using the SEIR fractional model. Askar et al. [8]
considered the SITR fractional model to forecast the trans-
mission of deadly virus along with imposed lockdown in
India. Bushnaq et al. [9] investigated the effect of physical
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distance to control the spread of the virus through fractional
order model. Abdulwasaa et al. [10] proposed a fractal frac-
tional model for forecasting deaths and new cases of
COVID-19 outbreak in India. Baba and Rihan [11] used
the Caputo-Fabrizio fractional order model to analyze the
dynamics of COVID-19 variants. A fractional order delay
differential model for COVID-19 infection was provided by
Rihan and Gandhi [12] to understand what triggers the
severity of symptoms and disease of polluted lung and respi-
ratory system. A stochastic SIAQR epidemic model was
proposed by Rihan and Alsakaji [13] to understand the
dynamics of COVID-19. Furati et al. [14] tested the data
taken from China, Saudi Arabia, Brazil, and Italy by
proposing a numerical scheme using fractional order model
performing the two-step generalized exponential time-
differencing method. Alqahtani [15] numerically analyzed
and investigated the stability of the SIR epidemic model con-
sidering the health system. Recently another fractional order
derivative with nonsingular kernel named as Generalized
Hattaf Fractional (GHF) derivative [16] is introduced. We
can see the use of this derivative for epidemiological models
in recent literature. By creating a new numerical method,
Hattaf [17] investigated the qualitative properties of solu-
tions to fractional differential equations with the new GHFs
derivative, including stability, asymptotic stability, and
Mittag-Leffler stability and later applied the obtained analyt-
ical and numerical results to a biological nonlinear system
derived from epidemiology. Cheneke et al. [18] developed
and examined a coinfection of HIV and cholera model using
GHF derivative and the solution’s behaviour is deciphered.
In present work we have used ABC derivative for our
proposed model. However, we can extend our work using
the GHF derivative for fractional order mathematical
models in future.

Despite all the measures taken to control the virus,
COVID-19 remained a threat because of its high propagation
rate leaving the majority of the population susceptible to the
disease and escalating the need to develop a suitable and
effective vaccine. The process to gain immunity against
COVID-19 is still under discussion. Most of the people
infected with COVID-19 developed the immunity against
the virus, but still it is unknown how long this immunity will
last as there are some reported cases of getting the infection
for a second time. In this situation, the only solution to gain
herd immunity is mass vaccination. Hence, to achieve this
milestone, vaccination is required for a huge portion of the
global population. In this regard, WHO helped governments
to launch and refine their vaccination programmes along
with UNICEF, Gavi, and partners. According to reference
[19], 43.5% of the world population has been given at least
one shot of COVID-19 vaccine till the 21st of September
2021. Modified mathematical models with an additional
compartment of the vaccinated class are discussed in recent
literature to foresee the efficacy, effect, and dynamics of the
vaccination. Meng et al. [20] established an SEIRV model
to differentiate between the effects of mandatory and volun-
tary vaccination methods on heterogeneous networks.
Ramos et al. [21] investigated the impact of variants and vac-
cines on the spread of COVID-19 applying the model to Italy

as a test case. Tetteh et al. [22] analyzed the mass and ring
vaccination strategies to control the transmission of SARS-
CoV-2 by varying vaccine efficacy rate. Harizi et al. [23] used
the SIRV model to check the future dynamics of the pan-
demic by varying vaccination rates in Canada. Karabay
et al. [24] presented an SEIR simulator to model effective
immunization and sterilizing outcomes in order to assess
the vaccination effect. Tuteja [25] numerically solved the
modified SEIR model including the vaccinated class to inves-
tigate the viral dynamics of the epidemic. Ghostine [26] pro-
posed an SEIR model with an extension of the vaccination
compartment to investigate the effect of vaccination in Saudi
Arabia. Wintachaia and Prathomb [27] presented a detailed
stability analysis of the COVID-19 epidemic model to inves-
tigate the vaccine efficiency. Alsakaji et al. [28] examined the
dynamics of COVID-19 in the UAE using an exptended
SEIR epidemic model with vaccination, temporal delays,
and random noise. For transmission of the infectious dis-
ease, Kou et al. [29] established a multiscale agent-based
model to investigate the impact of nonpharmaceutical inter-
ventions and vaccination. Acuña-Zegarra. [30] formulated a
COVID-19 optimal control problem to study the efficacy and
responses of the vaccine induced immunity. Albani et al.
[31] estimated the parameters of SEIR like epidemic model
using daily reports of COVID-19 of New York and Chicago
to analyze the impact caused by vaccination delay.

Motivated from the above studies, we have presented
in this work a modified SEIRV epidemic model with an
additional compartment of vaccinated individuals to exam-
ine the effectiveness and efficacy of the vaccine by varying
its rate considering the ABC derivative. We have used
ABC fractional order derivative because a number of
experimental facts exhibit that the natural dynamics go
along with fractional calculus as the fractional order deriv-
atives are nonlocal in behaviour and possess the hereditary
properties and memory effects. Also, we have constructed
a new, more efficient, and effective numerical scheme for
fractional differential equation with Atangana-Baleanu
derivative in Caputo sense using Simpson’s 1/3 method
for the approximation of the integral function involved
in the problem.

The paper comprises different sections. In section 2,
some basic definitions are recalled which have been used in
the work later. SEIRV epidemic model for COVID-19 is pre-
sented in section 3. The equilibrium points and the basic
reproduction number using next generation method are cal-
culated, and the stability of these points is also analyzed in
this section. For the solution of the proposed model modi-
fied Simpson’s 1/3 method alongside complete stability and
convergence analysis, it is presented in section 4. Conversion
of mathematical model to fractional order model is given in
section 5. Numerical simulations are also presented in the
same section.

2. Preliminaries

This part will review some of the fundamental definitions
of fractional calculus, which will be useful in the subse-
quent work.
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Definition 1. For x ∈ℍ1ð0, TÞ and 0 < ϑ < 1, the ϑth–order
ABC derivative and integral of xðtÞ are defined [32] as

ABCDϑx tð Þ≔ J ϑð Þ
1 − ϑ

ðt
0
Eϑ −

ϑ

1 − ϑ
t − ξð Þϑ

� �
_x ξð Þdξ, ð1Þ

ABCIϑx tð Þ≔ 1 − ϑ

J ϑð Þ x tð Þ + ϑ

J ϑð ÞΓ ϑð Þ
ðt
0
t − ξð Þϑ−1x ξð Þdξ,

ð2Þ

where JðϑÞ represents the normalization function given by

J ϑð Þ = 1 − ϑ + ϑ

Γ ϑð Þ , ð3Þ

with JðϑÞjϑ=0,1 = 1 and Eϑ is the Mittag-Leffler function
defined as EϑðzÞ =∑∞

n=0ðzn/Γðnϑ + 1ÞÞ.

The lemma below presents the Gronwall inequality [33],
which will be used for the proof of our main result.

Lemma 2.1. The Gronwall inequality for fractional order dif-
ferential equation states

Let C1 > 0 independent of δt, C2 ≥ 0 and {un} satisfy the
inequality

unj j ≤ δtð ÞϑC1 〠
n−1

l=0
n − lð Þϑ−1 uj

�� �� + C2, l = 0, 1,⋯, n − 1, nδt ≤ T ,

ð4Þ

with 0 < ϑ ≤ 1: Then

unj j ≤ C2Eϑ C1Γ ϑð ÞTϑ
� �

, nδt ≤ T , ð5Þ

where the parameter Eϑ is the Mittage-Leffler function. Par-
ticularly when ϑ = 1, inequality (5) becomes

unj j ≤ C2e
C1T , nδt ≤ T: ð6Þ

In this study, we used an SEIR model with vaccination
effectiveness to forecast the COVID-19 condition when a
vaccine is released.

3. Mathematical Model

Mathematical models are of great importance in predicting
the behaviour of the viral epidemic diseases. There are a
number of models which can be used to describe and inves-
tigate the spread of the disease. Recently COVID-19 emerged
as a viral epidemic, and we are not aware enough about the
behaviour and spread of this virus. To investigate the
COVID-19 situation under the effect of vaccination, we con-
sider the following SEIRV epidemic disease model:

_S =Λ − μS − δS − βS
I
N
,

_E = βS
I
N

− μ + εð ÞE + σβV
I
N
,

_I = εE − γ + μ + ρð ÞI,
_R = γI − μR,

_V = δS − μV − σβV
I
N
:

ð7Þ

To define the model equations, the total population, rep-
resented by N , is separated into susceptible, exposed,
infected, recovered, and vaccinated classes denoted by SðtÞ,
EðtÞ, IðtÞ, RðtÞ, and VðtÞ. The flow chart of the above system
is shown in Figure 1.

The above system of equation (7) is subject to the initial
conditions

S 0ð Þ = S0, E 0ð Þ = E0, I 0ð Þ = I0, R 0ð Þ = R0, V 0ð Þ =V0, ð8Þ

and the following are the parameters:
μ : per-capita natural death rate,
γ : the rate at which infectious people recover,
ρ : average fatality rate for virus-infected people,
β : disease transmission probability per contact times the

amount of contacts made per unit of time (dimensionless),
Λ : the birth rate per-capita,
ε : progression rate from E to I,
1/γ : contagious period,
1/ε : incubation period,
δ : vaccination rate,
σ : vaccine ineffectiveness, 0 ≤ σ ≤ 1,
1 − σ : vaccine effectiveness,
having T units per unit of time.

3.1. Stability Analysis of SEIRV COVID-19 Model. In this
section, stability analysis will be carried out to find the
disease-free equilibrium and endemic equilibrium points.
In order to get these points, each of the equations given in
system of equation (7) will be equated to zero.

3.2. Disease-Free Equilibrium and the Basic Reproduction
Number ðR0Þ. Because there is no disease propagation in
disease-free equilibrium, so I = 0, and hence we get

S0 = Λ

μ + δ
,

E0 = 0, R0 = 0,

V0 = δΛ

μ μ + δð Þ ,

ð9Þ

so the disease-free equilibrium point is E0ðS0, E0, I0, R0, V0Þ
= ðΛ/ðμ + δÞ, 0, 0, 0, δΛ/μðμ + δÞÞ.

The average number of secondary infections induced by
an infectious individual is given by the basic reproduction
number R0. It estimates the growth of the virus outbreak.
The basic reproduction number R0 is determined using the
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next generation method [34]. Using _E and _I from system of
equation (7), the Jacobian matrices of the disease-free equi-
librium are as follows:

F =
0 βS0 + σβV0

0 0

" #
,U =

μ + ε 0
−ε γ + μ + ρ

" #
,

U−1 = 1
μ + εð Þ γ + μ + ρð Þ

γ + μ + ρ 0
ε μ + ε

" #
,

FU−1 = 1
μ + εð Þ γ + μ + ρð Þ

0 βS0 + σβV0

0 0

" #
γ + μ + ρ 0

ε μ + ε

" #
,

FU−1 = 1
μ + εð Þ γ + μ + ρð Þ

βεS0 + σβεV0 βS0 + σβV0� �
μ + εð Þ

0 0

" #
:

ð10Þ

Here FU−1 is the next generation matrix and we can
obtain the basic reproduction number as R0 = ρðFU−1Þ, so

R0 =
βεS0 + βεσV0� �
μ + εð Þ γ + μ + ρð Þ : ð11Þ

Substituting the values of S0 and V0, the following value
of the reproduction number is obtained for the system of
equation (7):

R0 =
βεΛ μ + δσð Þ

μ μ + δð Þ μ + εð Þ γ + μ + ρð Þ : ð12Þ

Theorem 3.1. If R0 < 1 then the COVID-19 model of equa-
tion (7) disease-free equilibrium point is locally asymptoti-
cally stable.

Proof. The Jacobian of system of equation (7) is given as

J =

−μ − δ −
βI
N

0 −
βS
N

0 0

βI
N

− μ + εð Þ βS
N

+ σβV
N

0 σβI
N

0 ε − γ + μ + ρð Þ 0 0
0 0 γ −μ 0

δ 0 −
σβV
N

0 −μ

2
66666666666664

3
77777777777775
:

ð13Þ

Jacobian around disease-free equilibrium point E0ððΛ/
μ + δÞ, 0, 0, 0, ðδΛ/μðμ + δÞÞÞ is

J0 =

−μ − δ 0 −
βΛ

μ + δ
0 0

0 − μ + εð Þ βΛ

μ + δ
+ σβδΛ

μ μ + δð Þ 0 0

0 ε − γ + μ + ρð Þ 0 0
0 0 γ −μ 0

δ 0 −
σβδΛ

μ μ + δð Þ 0 −μ

2
666666666666664

3
777777777777775

:

ð14Þ

We can observe from the preceding matrix that three of
its eigenvalues λ1,2 = −μ, λ3 = −μ − δ are negative and we are
left with

J0 =
− μ + εð Þ βΛ

μ + δ
+ σβδΛ

μ μ + δð Þ
ε − γ + μ + ρð Þ

2
64

3
75: ð15Þ

Now from above matrix, the last two eigenvalues are

λ4 = −
1
2 ϖ1 + ϖ2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ1 − ϖ2ð Þ2 + 4ϖ1ϖ2R0

q
 �
,

λ5 = −
1
2 ϖ1 + ϖ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ1 − ϖ2ð Þ2 + 4ϖ1ϖ2R0

q
 �
,

ð16Þ

where ϖ1 = ðμ + εÞ and ϖ2 = ðγ + μ + ρÞ, and for R0 < 1, we
have λ4 < 0 and λ5 < 0.

Hence for R0 < 1 the disease-free equilibrium is locally
asymptotically stable.

3.3. Existence and Uniqueness of Endemic Equilibrium. In
order to investigate the existence and uniqueness of the
endemic equilibrium E∗ for R0 > 1, we will set all the deriv-
atives of model of equation (7) equals to zero. Let E∗ = ðS∗,
E∗, I∗, R∗, V∗Þ be the endemic equilibrium of model of
equation (7). Then by solving the following equations we
can obtain the endemic equilibrium.

Λ − μS∗ − δS∗ − βS∗
I∗

N
= 0,

βS∗
I∗

N
− μ + εð ÞE∗ + σβV∗ I

∗

N
= 0,

εE∗ − γ + μ + ρð ÞI∗ = 0,
γI∗ − μR∗ = 0,

δS∗ − μV∗ − σβV∗ I
∗

N
= 0:

ð17Þ

Now, solving first, third, and fourth equations of equa-
tion (17), we get
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S∗ = Λ

μ + δ + βI∗/Nð Þ

 �

, E∗ = γ + μ + ρ

ε

� �
I∗, R∗ = γ

μ


 �
I∗:

ð18Þ

Also equation (17) gives

V∗ = βS∗I∗

μN
−

μ + εð Þ
μ

E∗ + δ

μ
S∗: ð19Þ

The following quadratic equation for I∗ is obtained:

A I∗ð Þ2 + BI∗ + C = 0, ð20Þ

where

A = σβ2ρ μ + εð Þ γ + μ + ρð Þ,
B = μN μ + εð Þ γ + μ + ρð Þβ + σβ μ + εð Þ γ + μ + ρð ÞN −NσΛβ2ρε,
C = μN2 μ + δð Þ μ + εð Þ γ + μ + ρð Þ 1 − R0ð Þ:

ð21Þ

It is evident that A is always positive while C is negative
for R0 > 1. Hence, there exists a positive and unique value of
I∗, which results in a unique endemic equilibrium for R0 > 1.

4. Numerical Approximation

Consider the nonlinear fractional order differential equation

ABCDϑx τð Þ = f x τð Þ, τð Þ, 0 < τ < T<∞,
x = 0ð Þ = x0,

ð22Þ

where 0 < ϑ < 1: The vector function f in the differential
equation is real valued and continuous and satisfies the
Lipschitz condition.

f x1 τð Þð Þ − f x2 τð Þð Þk k ≤ L x1 τð Þ − x2 τð Þk k, L > 0: ð23Þ

To derive the numerical scheme for the above mentioned
nonlinear fractional order differential equation, the given
interval ½0, T� will be subdivided into equal intervals with
time step δτ = T/N , where δτn+1 − δτn = δτ for n = 0, 1, 2,
⋯,N − 1: For convenience, the approximate solution of
xðτnÞ will be denoted by xn with δτn = nδτ, n = 0, 1, 2,
⋯,N .

Applying the integral operator of equation (2) on
equation (22), we get

x τð Þ = x0 + Iϑ f x τð Þ, τð Þ, 0 < τ < T <∞, ð24Þ

where the integral Iϑ in the above equation is the ABC inte-

gral. Using equation (2) to discretize the integral Iϑ, we get

ABCIϑ f x τn+1ð Þ, τn+1ð Þ = 1 − ϑð Þ
J ϑð Þ f x τn+1ð Þ, τn+1ð Þ

+ ϑ

J ϑð ÞΓ ϑð Þ
ðτn+1
0

τn+1 − sð Þϑ−1 f x sð Þ, sð Þds, n

= 0, 1, 2,⋯,N − 1:
ð25Þ

f ðxðsÞÞ is approximated on each subinterval ½τi, τi+1�, by
the following piecewise quadratic interpolation polynomial.

f x sð Þ, sð Þjτi ,τi+1 ≈
τi+1 − sð Þ τi+1/2 − sð Þ
τi − τi+1ð Þ τi − τi+1/2ð Þ f x τið Þ, τið Þ

+ τi+1 − sð Þ τi − sð Þ
τi+1/2 − τi+1ð Þ τi+1/2 − τið Þ f x τi+1/2ð Þ, τi+1/2ð Þ

+ τi+1/2 − sð Þ τi − sð Þ
τi+1 − τið Þ τi+1 − τi+1/2ð Þ f x τi+1ð Þ, τi+1ð Þ,

ð26Þ

where τi+1/2 = ðτi + τi+1Þ/2 is mid point of the interval
½τi, τi+1�:

Also, the value of f ðxðτi+1/2Þ, τi+1/2Þ will be approxi-
mated using the interpolation

f x τi+1/2ð Þ, τi+1/2ð Þ = 1
2 f x τið Þ, τið Þ + 1

2 f x τi+1ð Þ, τi+1ð Þ: ð27Þ

Putting equation (27) in equation (26), we get

f x sð Þ, sð Þjτi ,τi+1 ≈
τi+1 − sð Þ τi+1/2 − sð Þ
τi − τi+1ð Þ τi − τi+1/2ð Þ f x τið Þ, τið Þ

+ τi+1 − sð Þ τi − sð Þ
τi+1/2 − τi+1ð Þ τi+1/2 − τið Þ

� 1
2 f x τið Þ, τið Þ + 1

2 f x τi+1ð Þ, τi+1ð Þ

 �

+ τi+1/2 − sð Þ τi − sð Þ
τi+1 − τið Þ τi+1 − τi+1/2ð Þ f x τi+1ð Þ, τi+1ð Þ

= 2
δτð Þ2 τi+1 − sð Þ τi+1/2 − sð Þðð

− τi+1 − sð Þ τi − sð ÞÞf x τið Þ, τið Þ
+ τi+1/2 − sð Þ τi − sð Þð
− τi+1 − sð Þ τi − sð ÞÞf x τi+1ð Þ, τi+1ð ÞÞ:

ð28Þ

Using above approximation, equation (25) takes
the form
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ABCIϑ f x τn+1ð Þ, τn+1ð Þ = 1 − ϑð Þ
J ϑð Þ f x τn+1ð Þ, τn+1ð Þ + ϑ

J ϑð Þ
2

δτð Þ2Γ ϑð Þ〠
n

i=0

�
ðτi+1
τi

τn+1 − sð Þϑ−1 τi+1 − sð Þ τi+1/2 − sð Þðð
 

− τi+1 − sð Þ τi − sð ÞÞf x τið Þ, τið Þ + τi+1/2 − sð Þ τi − sð Þð

− τi+1 − sð Þ τi − sð ÞÞf x τi+1ð Þ, τi+1ð ÞÞ
!

ð29Þ

= 1 − ϑð Þ
J ϑð Þ f x τn+1ð Þ, τn+1ð Þ + ϑ

J ϑð Þ
2

δτð Þ2Γ ϑð Þ

�
ðτ1
τ0

τn+1 − sð Þϑ−1 τ1 − sð Þ τ1/2 − sð Þ − τ1 − sð Þ τ0 − sð Þð Þf x τ0ð Þ, τ0ð Þds
"

+
ðτ1
τ0

τn+1 − sð Þϑ−1 τ0 − sð Þ τ1/2 − sð Þ − τ1 − sð Þ τ0 − sð Þð Þf x τ1ð Þ, τ1ð Þds

+ 〠
n−1

k=1

ðτi+1
τi

τn+1 − sð Þϑ−1 τi+1 − sð Þ τi+1/2 − sð Þðð

− τi+1 − sð Þ τi − sð ÞÞf x τið Þ, τið Þ+ τi − sð Þ τi+1/2 − sð Þð
− τi+1 − sð Þ τi − sð ÞÞf x τi+1ð Þ, τi+1ð ÞÞds
+
ðτn+1
tn

τn+1 − sð Þϑ−1 τn+1 − sð Þ τn+1/2 − sð Þð

− τn+1 − sð Þ tn − sð ÞÞf x τnð Þ, τnð Þds
+
ðτn+1
tn

τn+1 − sð Þϑ−1 τn − sð Þ τn+1/2 − sð Þð

− τn+1 − sð Þ τn − sð ÞÞf x τn+1ð Þ, τn+1ð Þds
#
:

ð30Þ

Evaluating all the integrals given in equation (30),
we obtain

ABCIϑ f x τn+1ð Þ, τn+1ð Þ = 1 − ϑð Þ
J ϑð Þ f x τn+1ð Þ, τn+1ð Þ

+ ϑ δτð Þϑ
J ϑð Þ 〠

n+1

i=0
bn+1,i f x τið Þ, τið Þ, n

= 0, 1, 2,⋯,N − 1,

ð31Þ

where

bn+1,i =
1

Γ ϑ + 3ð Þ

ϑ + 1ð Þ ϑ + 2ð Þ n + 1ð Þϑ + ϑ + 2ð Þ nð Þϑ+1 − ϑ + 2ð Þ n + 1ð Þϑ+1 i = 0,

−2 ϑ + 2ð Þ n + 1 − ið Þϑ+1 + ϑ + 2ð Þ n + 2 − ið Þϑ+1 + ϑ + 2ð Þ n − ið Þϑ+1 1 ≤ i ≤ n,
2 + ϑ i = n + 1:

8>><
>>:

ð32Þ

Thus we can obtain the following modified fractional
Simpson’s 1/3 scheme for equation (22) in ABC sense:

xn+1 = x0 +
1 − ϑð Þ
J ϑð Þ f x τn+1ð Þ, τn+1ð Þ

+ ϑ δτð Þϑ
J ϑð Þ 〠

n+1

i=0
bn+1,i f x τið Þ, τið Þ, n = 0, 1, 2,⋯,N − 1:

ð33Þ

4.1. Convergence and Stability Analysis. The following lemmas
are very important to examine the proposed scheme’s conver-
gence and stability.

Lemma 4.1. Assume that gðtÞ ∈ C3ð½0, T�Þ, then there exist a
constant C such that

1
Γ ϑð Þ

ðτn+1
τo

τn+1 − sð Þϑ−1g sð Þds − δτð Þϑ 〠
n+1

i=0
big τið Þ

 !�����
����� ≤ TϑC δτð Þ2

2!Γ ϑ + 1ð Þ :

ð34Þ

Proof. Using the Lagrange interpolation error formula, we
have

1
Γ ϑð Þ

ðτn+1
τo

τn+1 − sð Þϑ−1g sð Þds − δτð Þϑ 〠
n+1

i=0
big τið Þ

 !�����
�����

≤
1

2!Γ ϑð Þ〠
n

i=0

ðτi+1
τi

τn+1 − sð Þϑ−1 g′′ ξið Þ s − τið Þ s − τi+1ð Þ�� ��ds
≤
C δτð Þ2
2!Γ ϑð Þ

ðτn+1
τ0

τn+1 − sð Þϑ−1ds

≤
TϑC δτð Þ2
2!Γ ϑ + 1ð Þ :

ð35Þ

From above lemma it is clear that the truncation error of
the scheme of equation (33) is OððδτÞ2Þ.

Lemma 4.2. For 0 < ϑ < 1, the weights bi, i = 0, 1, 2,⋯, n − 2
given in equation (33) have the following order of magnitude:

bi =O n − ið Þϑ−1
� �

: ð36Þ

Proof. According to the definition of biði = 1, 2,⋯, n − 2Þ, it
deduces that

bi =
n − ið Þϑ−1
Γ ϑ + 3ð Þ −2 ϑ + 2ð Þ n − ið Þ2 1 + 1

n − i


 �ϑ+1
"

+ ϑ + 2ð Þ n − ið Þ2 1 + 2
n − i


 �ϑ+1
+ ϑ + 2ð Þ n − ið Þ2

#
,
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bi =
ϑ + 2ð Þ n − ið Þϑ−1

Γ ϑ + 3ð Þ −2 n − ið Þ2 + ϑ + 1ð Þ n − ið Þ

�

+ ϑ + 1ð Þϑ
2! + ϑ + 1ð Þϑ ϑ − 1ð Þ

3!
1

n − i


 �

+ ϑ + 1ð Þϑ ϑ − 1ð Þ ϑ − 2ð Þ
4!

1
n − i


 �2
+⋯
!
+ n − ið Þ2

+ 2 ϑ + 1ð Þ n − ið Þ2 + ϑ ϑ + 1ð Þ + ϑ + 1ð Þϑ ϑ − 1ð Þ
3!

2
n − i


 �

+ ϑ + 1ð Þϑ ϑ − 1ð Þ ϑ − 2ð Þ
4!

2
n − i


 �2
+⋯+ n − ið Þ2

#
,

ð37Þ

implies

bi =
ϑ + 2ð Þ n − ið Þϑ−1

Γ ϑ + 3ð Þ
2 ϑ + 1ð Þϑ ϑ − 1ð Þ ϑ − 2ð Þ

4!
1

n − i


 �2
"

+ 6 ϑ + 1ð Þϑ ϑ − 1ð Þ ϑ − 2ð Þ ϑ − 3ð Þ
5!

1
n − i


 �3

+ 14 ϑ + 1ð Þϑ ϑ − 1ð Þ ϑ − 2ð Þ ϑ − 3ð Þ ϑ − 4ð Þ
6!

1
n − i


 �4
+⋯
#
:

ð38Þ

Note that 0 < ϑ < 1, so the coefficients of power of
1/ðn − iÞ are less than 1. Thus, the series given above
is convergent, and hence the proof is completed for
biði = 1, 2,⋯, n − 2Þ. Similar strategy can be adopted for bn,
so we neglect the proof.

Theorem 4.1. The numerical scheme (33) is conditionally
convergent. That is, for 0 < ϑ ≤ 1 and a sufficiently small δτ,
there exist a constant C1 such that

x τn+1ð Þ − xn+1k k ≤ C1δτ
2: ð39Þ

Proof. To prove the theorem, considering the difference
between actual solution and approximate solution, we get

x τn+1ð Þ − xn+1 =
1 − ϑð Þ
J ϑð Þ f x τn+1ð Þ, τn+1ð Þ − f xn+1, τn+1ð Þ½ �

+ ϑ

J ϑð ÞΓ ϑð Þ
ðτn+1
0

τn+1 − sð Þϑ−1 f x sð Þ, sð Þds

−
ϑ δτð Þϑ
J ϑð Þ 〠

n+1

i=0
bn+1,i f xi, τið Þ

= 1 − ϑð Þ
J ϑð Þ f x τn+1ð Þ, τn+1ð Þ − f xn+1, τn+1ð Þ½ �

+ ϑ δτð Þϑ
J ϑð Þ 〠

n+1

i=0
bn+1,i f x τið Þ, τið Þ − f xi, τið Þð Þ

+ ϑ

J ϑð Þ
1

Γ ϑð Þ
ðτn+1
0

τn+1 − sð Þϑ−1 f x sð Þ, sð Þds
�

− δτð Þϑ 〠
n+1

i=0
bn+1,i f x τið Þ, τið Þ

#
,

x τn+1ð Þ − xn+1k k = 1 − ϑð Þ
J ϑð Þ f x τn+1ð Þ, τn+1ð Þ − f xn+1, τn+1ð Þ½ �

����
+ ϑ δτð Þϑ

J ϑð Þ 〠
n+1

i=0
f x τið Þ, τið Þ − f xi, τið Þð Þ

�����
+ ϑ

J ϑð Þ
1

Γ ϑð Þ
ðτn+1
0

τn+1 − sð Þϑ−1 f x sð Þ, sð Þds
�

− δτð Þϑ 〠
n+1

i=0
bn+1,i f x τið Þ, τið Þ

#
:

ð40Þ

Using Lipschitz condition of equation (23) after applying
triangle inequality and using Lemma 4.1, we get

x τn+1ð Þ − xn+1k k ≤ 1 − ϑð Þ
J ϑð Þ f x τn+1ð Þ, τn+1ð Þ − f xn+1, τn+1ð Þk k

+ ϑ δτð Þϑ
J ϑð Þ 〠

n+1

i=0
bn+1,i f x τið Þ, τið Þ − f xi, τið Þk k

+ ϑ

J ϑð Þ
1

Γ ϑð Þ
ðτn+1
0

τn+1 − sð Þϑ−1 f x sð Þ, sð Þds
����

− δτð Þϑ 〠
n+1

i=0
bn+1,i f x τið Þ, τið Þ

�����
≤

1 − ϑð ÞL
J ϑð Þ x τn+1ð Þ − xn+1k k + ϑTϑ

J ϑð Þ
C δτð Þ2
2Γ ϑ + 1ð Þ

+ ϑ δτð ÞϑL
J ϑð Þ 〠

n+1

i=0
bn+1,i x τið Þ − xik k

≤
L

J ϑð Þ 1 − ϑ + ϑ δτð Þϑ
Γ ϑ + 3ð Þ

 !
x τn+1ð Þ − xn+1k k

+ ϑTϑ

J ϑð Þ
C δτð Þ2
2Γ ϑ + 1ð Þ

+ ϑ δτð ÞϑL
J ϑð Þ 〠

n

i=0
bn+1,i x τið Þ − xik k:

ð41Þ

Now using Lemma 4.2 under the condition ðL/JðϑÞÞ
ð1 − ϑ + ðϑδτϑ/Γðϑ + 3ÞÞÞ < 1, we get

x τn+1ð Þ − xn+1k k ≤ g δτ, ϑð Þ ϑT
ϑ

J ϑð Þ
C δτð Þ2
2Γ ϑ + 1ð Þ

+ g δτ, ϑð Þ ϑ δτð ÞϑL
J ϑð Þ 〠

n

i=0
n − ið Þϑ−1 x τið Þ − xik k,

ð42Þ

where gðδτ, ϑÞ = ðJðϑÞΓðϑ + 3ÞÞ/ðJðϑÞΓðϑ + 3Þ − LððΓðϑ + 3Þ
ð1 − ϑÞ + ϑδτϑÞÞ For any 0 < ϑ < 1 and a sufficiently small δτ,
there exist a constant Cg such that

1 < g δτ, ϑð Þ < Cg: ð43Þ

Hence by applying Gronwall inequality given in Lemma
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2.1 and using the property (43), we conclude

x τn+1ð Þ − xn+1k k ≤ C1δτ
2: ð44Þ

Theorem 4.2. For 0 < ϑ ≤ 1 and a sufficiently small δτ, there
exist a constant C1 such that the numerical scheme (33)
is stable.

Proof. To prove the theorem, let the perturbation of xn and
x0 be denoted by ~xn and ~x0, respectively, for n = 0, 1,⋯,
N − 1. Adding this perturbation to the numerical scheme
(33) we get

xn+1 + ~xn+1 = x0 + ~x0 +
1 − ϑð Þ
J ϑð Þ f xn+1 + ~xn+1ð Þ

+ ϑ δτð Þϑ
J ϑð Þ 〠

n+1

i=0
bn+1,i f xi + ~xið Þ:

ð45Þ

Subtracting equation (33) from equation (45), we get

~xn+1 = ~x0 +
1 − ϑð Þ
J ϑð Þ f xn+1 + ~xn+1ð Þ − f xn+1ð Þ½ �

+ ϑ δτð Þϑ
J ϑð Þ 〠

n+1

i=0
bn+1,i f xi + ~xið Þ − f xið Þð Þ:

ð46Þ

Using the Lipschitz condition followed by triangle
inequality, we get

~xn+1k k = ~x0 +
1 − ϑð Þ
J ϑð Þ f xn+1 + ~xn+1ð Þ − f xn+1ð Þ½ �

����
+ ϑ δτð Þϑ

J ϑð Þ 〠
n+1

i=0
bn+1,i f xi + ~xið Þ − f xið Þð Þ

�����,
≤ ~x0k k + 1 − ϑð Þ

J ϑð Þ f xn+1 + ~xn+1ð Þ − f xn+1ð Þk k

+ ϑ δτð Þϑ
J ϑð Þ 〠

n+1

i=0
bn+1,i f xi + ~xið Þ − f xið Þk k,

≤ ~x0k k + 1 − ϑð ÞL
J ϑð Þ ~xn+1k k + ϑ δτð ÞϑL

J ϑð Þ 〠
n+1

i=0
bn+1,i ~xik k,

≤ ~x0k k + L
J ϑð Þ 1 − ϑ + ϑ δτð Þϑ

Γ ϑ + 3ð Þ

 !
~xn+1k k

+ ϑ δτð ÞϑL
J ϑð Þ 〠

n

i=0
bn+1,i ~xik k:

ð47Þ

Now if ðL/JðϑÞÞð1 − ϑ + ðϑδτϑ/Γðϑ + 3ÞÞÞ < 1, then using
Lemma 4.2 we get

~xn+1k k ≤ g δτ, ϑð Þ ~x0k k + g δτ, ϑð Þ ϑδτ
ϑL

J ϑð Þ 〠
n

i=0
n − ið Þϑ−1 ~xik k,

ð48Þ

where gðδτ, ϑÞ = JðϑÞΓðϑ + 3Þ/ðJðϑÞΓðϑ + 3Þ − LðΓðϑ + 3Þ
ð1 − ϑÞ + ϑδτϑÞ:

Using property (43), we have

~xn+1k k ≤ Cg ~x0k k + Cg
ϑ δτð ÞϑL
J ϑð Þ 〠

n

i=0
n − ið Þϑ−1 ~xik k: ð49Þ

Hence by applying the Gronwall inequality given in
Lemma 2.1, we conclude

~xn+1k k ≤ C1 ~x0k k: ð50Þ

5. Fractional Model

Employing Atangana-Baleanu fractional order derivative in
Caputo sense of order ϑ on system of equation (7), we have
the following fractional model,

ABCD
ϑ
τS τð Þ =Λ − μS − δS − βS

I
N
,

ABCDϑ
τE τð Þ = βS

I
N

− μ + εð ÞE + σβV
I
N
,

ABCDϑ
τI τð Þ = εE − γ + μ + ϑð ÞI,

ABCDϑ
τR τð Þ = γI − μR,

ABCDϑ
τV τð Þ = δS − μV − σβV

I
N
,

ð51Þ

along with initial conditions

S 0ð Þ = S0, E 0ð Þ = E0, I 0ð Þ = I0, R 0ð Þ = R0, V 0ð Þ =V0: ð52Þ

Adopting the previously defined procedure, model of
equation (51) takes the form

ABCD
ϑ
τS τð Þ = X1 t, S, E, I, R, Vð Þ,

ABCDϑ
τE τð Þ = X2 t, S, E, I, R, Vð Þ,

ABCD
ϑ
τI τð Þ = X3 t, S, E, I, R, Vð Þ,

ABCD
ϑ
τR τð Þ = X4 t, S, E, I, R, Vð Þ,

ABCD
ϑ
τV τð Þ = X5 t, S, E, I, R, Vð Þ:

ð53Þ
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Furthermore applying the numerical scheme(33), system
(53) becomes

S τn+1ð Þ = S0 +
1 − ϑð Þ
J ϑð Þ X1 τ, S, E, I, R, Vð Þ + ϑ δτð Þϑ

J ϑð Þ 〠
n+1

i=0
bn+1,iX1 τ, S, E, I, R,Vð Þ,

E τn+1ð Þ = E0 +
1 − ϑð Þ
J ϑð Þ X2 τ, S, E, I, R,Vð Þ + ϑ δτð Þϑ

J ϑð Þ 〠
n+1

i=0
bn+1,iX2 τ, S, E, I, R, Vð Þ,

I τn+1ð Þ = I0 +
1 − ϑð Þ
J ϑð Þ X3 τ, S, E, I, R, Vð Þ + ϑ δτð Þϑ

J ϑð Þ 〠
n+1

i=0
bn+1,iX3 τ, S, E, I, R, Vð Þ,

R τn+1ð Þ = R0 +
1 − ϑð Þ
J ϑð Þ X4 τ, S, E, I, R, Vð Þ + ϑ δτð Þϑ

J ϑð Þ 〠
n+1

i=0
bn+1,iX4 τ, S, E, I, R, Vð Þ,

V0 +
1 − ϑð Þ
J ϑð Þ X5 τ, S, E, I, R, Vð Þ + ϑ δτð Þϑ

J ϑð Þ 〠
n+1

i=0
bn+1,iX5 τ, S, E, I, R,Vð Þ,

ð54Þ

where an+1,k are already defined.

5.1. The Positivity and Boundness of the Solution. In this sub-
section we will discuss the positive nature of the epidemio-
logical model of equation (51). We will recall the following
lemma for the proof of the main theorem on the positivity
of the solution of the fractional model (51).

Lemma 5.1. Generalized Mean Value Theorem: let ϕðτÞ
∈ C½a, b� and Atangana-Baleanu fractional order
derivative, ABCDϑ

τϕðτÞ ∈ Cða, b� for 0 < ϑ ≤ 1, then

ϕ τð Þ = ϕ sð Þ + 1 − ϑ

J ϑð Þ
ABC

Dϑϕ τð Þ + 1
J ϑð ÞΓ ϑð Þ

ABC

Dϑϕ uð Þ τ − sð Þϑ

ð55Þ

with 0 ≤ u ≤ τ, ∀τ ∈ ða, b�:

Remark 1. Let ϕðτÞ ∈ C½0, b� and Atangana-Baleanu frac-
tional order derivative, ABCDϑ

τ ∈ ð0, bÞ for 0 < ϑ ≤ 1. Lemma
5.1 shows that if ABCDϑ

τϕðτÞ > 0∀τ ∈ ð0, b�, then the function
ϕðτÞ is nondecreasing and if ABCDϑ

τϕðτÞ ≤ 0∀τ ∈ ð0, b� then
ϕðτÞ is nonincreasing for all τ ∈ ½0, b�:

Theorem 5.1. The solution to the nonnegative initial condi-
tions of equation (52) of the proposed model of equation
(51) is unique and limited in R5

+.

Proof. The existence and uniqueness of the model solution of
equations (51) and (52) can be achieved in the time interval
ð0,∞Þ by [35]. The nonnegative region R5

+ would seem to be
a positive invariant region that must be represented. We
observe from the model of equation (51)

ABCDϑ
τS τð Þ S=0j =Λ,

ABCDϑ
τE τð Þ E=0j = βS

I
N

+ σβV
I
N
,

ABCDϑ
τI τð Þ I=0j = ∈E,

ABCDϑ
τR τð Þ R=0j = γI,

ABCDϑ
τV τð Þ V=0j = δS:

ð56Þ

From Remark 1 and system of equation (56), the solu-
tion ðSð0Þ, Eð0Þ, Ið0Þ, Rð0Þ, Vð0ÞÞ ∈ R5

+. Also, in each line
bounded the nonnegative octant, the vector field points will
remain in R5

+. Therefore, the fractional model of equation
(51) of a solution (ðSðτÞ, EðτÞ, IðτÞ, RðτÞ, VðτÞÞ is nonnega-
tive if the initial condition is set positively to invariant.

6. Numerical Results and Discussion

Considering the case of Italy, we applied the proposed model
to analyse the impact of vaccination. The vaccination cam-
paign for COVID-19 started on 27th December 2020 in Italy
managed by the Ministry of Health. In the early months of
the vaccination campaign, the Italian government targeted
health doctors and administrative staff as well as guests
and nursing home personnel followed the vaccination of
elderly people and public service personnel in second phase
of the campaign. Italian government bought four out of
seven, WHO approved vaccines to facilitate its people
against the virus. So far, 73.3% of the total population has
received at least one dose and 65.5% of the total population
is fully vaccinated. As of 17th September 2021, top ten

S E I R

V

𝛽I
N

𝜎𝛽I

N

𝜖 𝛾

𝛿

𝜇 𝜇

𝜇

𝜇 𝜇

Λ

𝛿

Figure 1: SEIRV Model.
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Figure 3: Number of Vaccinated People.

Table 1: Parameter and initial values for the numerical simulations.

Parameter Value Parameter Value Initial time model variables Value

N 60000000 ε 1/4.02 S 0ð Þ 59988539

μ 0.0000373 Λ μ ×N E 0ð Þ 11460

γ 1/5.25 ϑ 0.00144 I 0ð Þ 1

β 0.75 σ 0.25 R 0ð Þ 0

0 5 10 15

COVID-19 vaccine doses administered in Italy 

Lombardy

Lazio

Campania

Veneto

Emilia-Romagna

Sicily

Piedmont

Apulia

Tuscany

Calabria

×106

Figure 2: Number of COVID-19 vaccine doses administered in Italy (top ten regions).
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regions of Italy for the total number of administered
COVID-19 vaccine doses can be seen in Figure 2. Moreover
the number of people who received at least one dose and
fully vaccinated according to the data [19] are presented in
Figure 3.

Further, graphical presentation of the numerical simula-
tion for the fractional model (51) are given in this section.
Table 1 shows the estimated model parameters and initial
values used to evaluate the impact of vaccination on the
COVID-19 epidemic.

Figure 4 shows the impact by varying the vaccination rates
on different classes of the proposedmodel with δ = 0 represent-
ing themodel output without vaccination. Although there is no
remarkable change in the graph of susceptible class, we can
observe a significant decrease in infected and exposed classes

by increasing the vaccination rate. We can see the peak of the
infected as well as that of exposed individuals gradually
decreases with the increase in effective rate of vaccination.
From Figure 4, we can observe that for exposed class there is
a difference of almost 7 × 106 individuals in peak values for
no vaccination to a vaccination rate δ = 0:012. Similarly, the
peak values for no vaccination compared to a vaccination rate
of δ = 0:012 for the infected class differ by almost 7 × 106 indi-
viduals. So, interpreting graphically the dynamics of the pro-
posed model to observe the effect of vaccination by altering
the vaccination rate suggest that, mass vaccination along with
the implementation of the control measures until the achieve-
ment of complete herd immunity is needed to control the
spread of the disease. Hence, majority of susceptible population
should be vaccinated to prevent the new waves of COVID-19.
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Figure 4: Impact of vaccination rate on all the four susceptible, exposed, infected, and recovered classes.
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The vaccination of the susceptible class will control the spread
of the disease resulting in reduction of the mortality rate, which
can clearly be seen by recovered class presented in Figure 4.
Simulation results show that immunization is an essential strat-
egy for lowering the incidence and severity of COVID-19 infec-
tions in the workplace, in communities, and across the globe.
Therefore, it is advocated for policymakers to increase public

trust and confidence in the efficiency and security of
vaccinations as well as the expertise and dependability of the
institutions that provide them. Figures 5 and 6 show a compar-
ison of integer order model, fractional model for fractional
order ϑ = 0:975,0:95,0:925; ;0:9, and real data of total number
of deaths D = ϑI owing to the COVID-19 outbreak in Italy.
Figure 5 presents the comparison for first 80 days starting from
23rd February 2020 to 13th May 2020 of the pandemic before
vaccination. We can see that after 40 days, real data is better
explained by fractional order model in comparison to integer
order. Figure 6 is assigned to display the comparison from 1st
July 2021 to 19th September 2021 along with administered vac-
cination effect considering the initial values of the compart-
ments as of 1st July 2021 . The relevant COVID-19 data can
be found at https://github.com/pcmdpc/COVID-19. Also we
can see from our proposed model, fractional order models
are better at fitting the real data than classical models because
fractional order derivative and integral operators, due to their
nonlocal nature, depend not only on their current state but also
on all of their previous states, making themmore effective than
other classical deterministic operators in predicting the biolog-
ical model’s future state.

7. Concluding Remarks

Within the Atangana-Baleanu Caputo fractional operator,
we studied alternative conditions for qualitative characteri-
zation and dynamics of the suggested model. Calculating
disease-free and endemic equilibrium points, as well as the
reproduction number, are used to examine the prerequisites
for local stability. A newly developed numerical scheme is
used to obtain the solution of the concerned fractional order
model. The proposed scheme’s stability and convergence are
briefly examined. To depict the behaviour of the COVID-19
virus, a graphical description of the dynamics of the relevant
system is developed within different fractional orders under
the effect of vaccination suggesting the need of mass vacci-
nation to gain the herd immunity in order to prevent the
further spread of the disease. Due to the limited access of
the available vaccine, other preventive measures should also
be continued.

Data Availability

The data used to support the findings of this study can be
found at https://ourworldindata.org/covid-vaccinations.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] Z. Zhang, “A novel covid-19 mathematical model with frac-
tional derivatives: singular and nonsingular kernels,” Chaos,
Solitons and Fractals, vol. 139, article 110060, 2020.

[2] S. Rezapour, H. Mohammadi, and M. E. Samei, “SEIR epi-
demic model for COVID-19 transmission by Caputo deriva-
tive of fractional order,” Advances in Difference Equations,
vol. 2020, no. 1, 2020.

Time (days)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
D

ea
d 

in
di

vi
du

al
s

×104

𝜗 = 0.9
𝜗 = 0.925

𝜗 = 0.95

𝜗 = 0.975
Integer order = 1

Real data

0 10 20 30 40 50 60 70 80

Figure 5: Comparison of the number of people who died for
various fractional orders vs. real data (before vaccination).

𝜗 = 0.9
𝜗 = 0.925

𝜗 = 0.95

𝜗 = 0.975
Integer order = 1

Real data

0 10 20 30 40 50 60 70 80
Time (days)

1.275

1.28

1.285

1.29

1.295

1.3

1.305

D
ea

d 
in

di
vi

du
al

s

×105

Figure 6: Comparison of the number of people who died for
various fractional orders vs. real data (after vaccination).

12 Computational and Mathematical Methods in Medicine

https://github.com/pcmdpc/COVID-19
https://ourworldindata.org/covid-vaccinations


[3] A. Atangana and A. S. İğret, “Mathematical model of
COVID-19 spread in Turkey and South Africa: theory,
methods, and applications,” Advances in Difference Equa-
tions, vol. 2020, no. 1, 89 pages, 2020.

[4] Z. Zhang, A. Zeb, O. F. Egbelowo, and V. S. Erturk, “Dynamics
of a fractional order mathematical model for COVID-19
epidemic,” Adv. Difference Equ., vol. 2020, no. 1, p. 420, 2020.

[5] S. Ahmad, Q. M. Aman Ullah, H. Al-Mdallal, K. Khan, and
A. K. Shah, “Fractional order mathematical modeling of
COVID-19 transmission,” Chaos, Solitons and Fractals,
vol. 139, article 110256, 2020.

[6] O. Zakary, S. Bidah, M. Rachik, and H. Ferjouchia, “Mathe-
matical model to estimate and predict the covid-19 infections
in morocco: optimal control strategy,” Journal of Applied
mathematics, vol. 2020, Article ID 9813926, 13 pages, 2020.

[7] Z. Ahmad, M. Arif, F. Ali, I. Khan, and K. S. Nisar, “A report
on COVIDâ€‘19 epidemic in pakistan using SEIR fractional
model,” Scientific Reports, vol. 10, no. 1, 2020.

[8] S. S. Askar, D. Ghosh, P. K. Santra, A. Abdelalim, and G. S. M.
Elsadany, “A fractional order SITR mathematical model for
forecasting of transmission of COVID-19 of India with lock-
down effect,” Results in Physics, vol. 24, article 104067, 2021.

[9] S. Bushnaq, T. Saeed, D. F. M. Torres, and A. Zeb, “Control of
COVID-19 dynamics through a fractional-order model,” Alex-
andria Engineering Journal, vol. 60, no. 4, pp. 3587–3592,
2021.

[10] M. A. Abdulwasaa, M. S. Abdo, K. Shah et al., “Fractal-frac-
tional mathematical modeling and forecasting of new cases
and deaths of COVID-19 epidemic outbreaks in India,” Results
in Physics, vol. 20, article 103702, 2021.

[11] I. A. Baba and A. Rihan, “A fractional-order model with differ-
ent strains of COVID-19,” Physica A, vol. 603, article 127813,
2022.

[12] F. A. Rihan and V. Gandhi, “Dynamics and sensitivity of
fractional-oder delay differential model for coronavirus
(COVID-19) infection,” Progress in Fractional Differentiation
and Applications, vol. 7, no. 1, pp. 43–61, 2021.

[13] F. A. Rihan and H. J. Alsakaji, “Dynamics of a stochastic delay
differential model for COVID-19 infection with asymptomatic
infected and interacting people: case study in the UAE,”
Results in Physics, vol. 28, article 104658, 2021.

[14] K. M. Furati, I. O. Sarumi, and A. Q. M. Khaliq, “Fractional
model for the spread of COVID-19 subject to government
intervention and public perception,” Applied Mathematical
Modelling, vol. 95, pp. 89–105, 2021.

[15] R. T. Alqahtani, “Mathematical model of SIR epidemic system
(COVID-19) with fractional derivative: stability and numerical
analysis,” Advances in Difference Equations, vol. 2021, no. 1,
2021.

[16] K. Hattaf, “A new generalized definition of fractional deriva-
tive with non-singular kernel,” Computation, vol. 8, no. 2,
p. 49, 2020.

[17] K. Hattaf, “On the stability and numerical scheme of fractional
differential equations with application to biology,” Computa-
tion, vol. 10, no. 6, p. 97, 2022.

[18] K. Regassa Cheneke, K. Purnachandra Rao, and E. G. Kenassa,
“A new generalized fractional-order derivative and bifurcation
analysis of cholera and human immunodeficiency co-infection
dynamic transmission,” International Journal of Mathematics
and Mathematical Sciences, vol. 2022, Article ID 7965145, 15
pages, 2022.

[19] https://ourworldindata.org/covid-vaccinations.

[20] X. Meng, Z. Cai, S. Si, and D. Duan, “Analysis of epidemic vac-
cination strategies on heterogeneous networks: based on
SEIRV model and evolutionary game,” Applied Mathematics
and Computation, vol. 403, article 126172, 2021.

[21] A. M. Ramos, M. Vela-Pérez, M. R. Ferrández, A. B. Kubik,
and B. Ivorra, “Modeling the impact of SARS-CoV-2 variants
and vaccines on the spread of COVID-19,” Communications
in Nonlinear Science and Numerical Simulation, vol. 102, arti-
cle 105937, 2021.

[22] J. N. A. Tetteh, V. K. Nguyen, and E. A. Hernandez-Vargas,
“COVID-19 network model to evaluate vaccine strategies
towards herd immunity,” 2020, https://www.medrxiv.org/
content/10.1101/2020.12.22.20248693v1.

[23] I. Harizi, S. Berkan, and A. Tayebi, “Modeling the effect of
population-wide vaccination on the evolution of COVID-19
epidemic in Canada,” 2020, https://www.medrxiv.org/
content/10.1101/2021.02.05.21250572v2.

[24] A. Karabay, A. Kuzdeuov, M. Lewis, and H. A. Varo, “A vacci-
nation simulator for COVID-19: effective and sterilizing
immunization cases,” 2021, https://www.medrxiv.org/
content/10.1101/2021.03.28.21254468v2.

[25] G. S. Tuteja, “Stability and numerical investigation of modified
SEIR model with vaccination and life-long immunity,” Euro-
pean Journal of Molecular and Clinical Medicine., vol. 7,
pp. 3034–3044, 2020.

[26] R. Ghostine, M. Gharamti, S. Hassrouny, and I. Hoteit,
“An extended SEIR model with vaccination for forecasting
the COVID-19 pandemic in Saudi Arabia using an
ensemble Kalman filter,” Mathematics, vol. 9, no. 6,
p. 636, 2021.

[27] P. Wintachaia and K. Prathomb, “Stability analysis of SEIR
model related to efficiency of vaccines for COVID-19 situa-
tion,” Heliyon, vol. 7, no. 4, article e06812, 2021.

[28] H. J. Alsakaji, F. A. Rihan, and A. Hashish, “Dynamics of a
stochastic epidemic model with vaccination and multiple
time- delays for COVID-19 in the UAE,” Complexity,
vol. 2022, Article ID 4247800, 15 pages, 2022.

[29] L. Kou, X. Wang, Y. Li, X. Guo, and H. Zhang, “A
multi-scale agent-based model of infectious disease trans-
mission to assess the impact of vaccination and non-
pharmaceutical interventions: the COVID-19 case,” Journal
of Safety Science and Resilience, vol. 2, no. 4, pp. 199–207,
2021.

[30] M. A. Acuña-Zegarra, S. Díaz-Infante, D. Baca-Carrasco, and
D. Olmos-Liceaga, “COVID-19 optimal vaccination policies:
a modeling study on efficacy, natural and vaccine-induced
immunity responses,”Mathematical Biosciences, vol. 337, arti-
cle 108614, 2021.

[31] V. V. Albani, J. Loria, E. Massad, and J. P. Zubelli, “The impact
of COVID-19 vaccination delay: a data-driven modeling anal-
ysis for Chicago and New York City,” Vaccine, vol. 39, no. 41,
pp. 6088–6094, 2021.

[32] A. Atangana and D. Baleanu, “New fractional derivatives with
nonlocal and non-singular kernel: theory and application to
heat transfer model,” Thermal Science, vol. 20, no. 2,
pp. 763–769, 2016.

[33] J. Huang and D. Yang, “A unified difference-spectral method
for time-space fractional diffusion equations,” International
Journal of Computer Mathematics, vol. 94, no. 6, pp. 1172–
1184, 2017.

13Computational and Mathematical Methods in Medicine

https://ourworldindata.org/covid-vaccinations
https://www.medrxiv.org/content/10.1101/2020.12.22.20248693v1
https://www.medrxiv.org/content/10.1101/2020.12.22.20248693v1
https://www.medrxiv.org/content/10.1101/2021.02.05.21250572v2
https://www.medrxiv.org/content/10.1101/2021.02.05.21250572v2
https://www.medrxiv.org/content/10.1101/2021.03.28.21254468v2
https://www.medrxiv.org/content/10.1101/2021.03.28.21254468v2


[34] P. Van den Driessche and J. Watmough, “Reproduction num-
bers and sub-threshold endemic equilibria for compartmental
models of disease transmission,” Mathematical Biosciences,
vol. 180, no. 1-2, pp. 29–48, 2002.

[35] W. Lin, “Global existence theory and chaos control of
fractional differential equations,” Journal of Mathematical
Analysis and Applications, vol. 332, no. 1, pp. 709–726, 2007.

14 Computational and Mathematical Methods in Medicine


	Stability Analysis of an Extended SEIR COVID-19 Fractional Model with Vaccination Efficiency
	1. Introduction
	2. Preliminaries
	3. Mathematical Model
	3.1. Stability Analysis of SEIRV COVID-19 Model
	3.2. Disease-Free Equilibrium and the Basic Reproduction Number R0
	3.3. Existence and Uniqueness of Endemic Equilibrium

	4. Numerical Approximation
	4.1. Convergence and Stability Analysis

	5. Fractional Model
	5.1. The Positivity and Boundness of the Solution

	6. Numerical Results and Discussion
	7. Concluding Remarks
	Data Availability
	Conflicts of Interest

