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Background. Prostate cancer (PCa) is one of the common malignant tumors of the urological system, and metastasis often occurs
in advanced stages. Chemotherapy is an effective treatment for advanced PCa but has limitations in terms of efficacy, side effects,
multidrug resistance, and high treatment costs. Therefore, new treatment modalities for PCa need to be explored and improved.
Methods. R language and GEO database were used to obtain differentially expressed genes for PCa single-cell sequencing. TCMSP,
STITCH, SwissTargetPrediction, and PubChem databases were used to obtain the active ingredients and targets of Pueraria lobata
(PL). Next, Cytoscape software was used to draw the interactive network diagram of “drug–active component–target pathway.”
Based on the STRING database, the protein–protein interaction network was constructed. Gene Ontology and the Kyoto
Encyclopedia of Genes and Genomes were applied for the genes. Molecular docking was used to visualize the drug–target
interaction via AutoDock Vina and PyMOL. Finally, prognosis-related genes were found by survival analysis, and Protein Atlas
was used for validation. Results. Four active components and 31 target genes were obtained through the regulatory network of
PL. Functional enrichment analysis showed that PL played a pharmacological role in the treatment of PCa by regulating the
metabolic processes of reactive oxygen species, response to steroid hormones, and oxidative stress as well as IL-17 signaling
pathway, PCa, and estrogen signaling pathway. Single-cell data showed that AR, MIF, HSP90B1, and MAOA genes were highly
expressed, and molecular docking analysis showed that representative components had a strong affinity with receptor proteins.
Survival analysis found that APOE, CA2, IGFBP3, MIF, F10, and NR3C1 could predict progression-free survival (PFS), and
some of them could be validated in PCa. Conclusion. In this paper, a drug–active ingredient–target pathway network of PL at
the single-cell level of PCa was constructed, and the findings revealed that it acted on genes such as AR, MIF, HSP90B1, and
MAOA to regulate several biological processes and related signaling pathways to interfere with the occurrence and
development of PCa. APOE, CA2, IGFBP3, MIF, F10, and NR3C1 were also important as target genes in predicting PFS.

1. Introduction

Prostate cancer (PCa) is one of the common malignant
tumors of the urinary system, and nearly 1.3 million new
cases of PCa and 359,000 related deaths were estimated
worldwide in 2018, ranking second and fifth in incidence
and mortality rates of cancer in males, respectively [1]. In
recent years, the incidence of PCa has been increasing in
some Asian countries, especially in Northeast Asia.
Although the diagnostic techniques for PCa are advancing,
effective treatments are still lacking [2]. The conventional
treatment for PCa mainly includes surgery, chemotherapy,

and radiotherapy, which has limitations in terms of efficacy,
side effects, multidrug resistance, and high treatment costs
[3]. Therefore, exploring and improving the treatment of
PCa is necessary.

Traditional Chinese Medicine (TCM) is a treasure house
of potential drugs. Studies have shown that TCM has its
unique advantages on the complex pathogenic mechanism
of cancer. Therefore, the study of the mechanism of TCM
may contribute to the development of a new combination
of Chinese and Western medicine therapy [4]. Network
pharmacology studies the interaction between biological sys-
tems, drugs, and diseases at the protein molecular and gene
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levels according to the target molecules, biological functions,
and bioactive compounds and generates a complex interac-
tion network, which conforms to the natural characteristics
of TCM and can systematically clarify the mechanism of
action of TCM at the molecular level [5]. Pueraria lobata
(PL) is one of the TCM. Liu et al. showed that extracts of
PL could induce apoptosis in PCa cells by upregulating the
expression of RASD1 and Bax [6]. In addition, PL extract
inhibits cell proliferation by inhibiting the PI3K/AKT path-
way and downregulating the expression of cyclin D1, AKT,
and CDK4 to induce cell cycle arrest in the G1 phase [7].
Studies have shown that a variety of active components of
PL can play an antitumor role in cancer cell proliferation,
cell cycle regulation, cell apoptosis, tumor angiogenesis,
and metastasis [8, 9]. However, clear studies on the molecu-
lar mechanism of PL in relation to PCa are lacking.

Single-cell sequencing technology, which sequences the
whole genome, transcriptome, and epigenome of individ-
ual cells, is significant in studying the differences and evo-
lutionary relationships of the cell, revealing the complex
heterogeneous mechanisms involved in disease onset and
progression, and improving disease diagnosis, prognosis
prediction, and monitoring of drug treatment effects [10,
11]. This paper is aimed at constructing a drug compo-
nent–target pathway network by using network pharma-
cology combined with single-cell sequencing to explore
the potential therapeutic effects of PL in PCa and its effect
on prognosis. We present the following case in accordance
with the CARE reporting checklist.

2. Methods

2.1. Differentially Expressed Genes Related to PCa. Thirteen
cases of PCa single-cell RNA sequencing data in
GSE141445 were obtained from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/) for inclusion in this paper. R
language was used to define cell subsets according to marker
genes, and cancer cell subsets were defined by copy number
variation (CNV). Differentially expressed genes (DEGs)
were obtained by FindAllMarkers function. DEG screening
conditions were as follows: differential expression change
fold change (FC) of mRNA, ∣logFC ∣ >1, and adj. P < 0:05.

2.2. Screening of Active Components and Targets. The active
ingredients and corresponding targets of PL were obtained
using the TCMSP database (https://old.tcmsp-e.com/tcmsp
.php). The screening conditions of active ingredients were
as follows: oral bioavailability > 0:30 and drug‐likeness >
0:18. STITCH (http://stitch.embl.de/), SwissTargetPredic-
tion (http://www.swisstargetprediction.ch/), and PubChem
databases (https://pubchem.ncbi.nlm.nih.gov/) were used
for complete PL composition target. The UniProt database
(https://www.uniprot.org/) was used to transform IDs, and
the final drug target was obtained after merging and deleting
duplicates.

2.3. Construction of Drug Component–Target Gene Pathway
Network and Topology Analysis. The obtained DEGs were
intersected with the drug target to determine the target gene

corresponding to the active ingredient, and the correspond-
ing Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway was further obtained through the target gene. On
this basis, the drug component–target gene pathway net-
work was constructed and visualized through Cytoscape.
Topological parameters of the network are obtained through
“CytoNCA” plugin of the Cytoscape software.

2.4. Functional Enrichment Analysis and Construction of
Protein Interaction Networks. Gene Ontology (GO) and
KEGG analyses were performed using clusterProfile, enrich-
plot, and ggplot packages in R language with PvalueCutoff
= 0:05 and qvalueCutoff = 0:05 as the screening conditions.
The results were presented as bubble plots. Protein interac-
tions were analyzed by the STRING database (https://
string-db.org/) for target genes, medium confidence > 0:4,
and the results were visualized by Cytoscape.

2.5. Expression Levels of Target Genes in Single Cells and
Molecular Docking. The coordinate mapping diagrams of
target gene expression at the level of cell clusters were
obtained by the FeaturePlot function of R language. The
mol2 files of the active ingredients of PL were obtained using
the PubChem database (https://pubchem.ncbi.nlm.nih.gov/
). The PDB files of the molecular structures of the target pro-
teins were obtained using the RCSB PDB database (https://
www.rcsb.org/). PyMOL and AutoDock Tools software were
used to dehydrate, hydrogenate, and delete the original
ligand of the target protein, save it as a pdbqt file for the
receptor, and save the mol2 file of PL active ingredient as a
pdbqt file for the ligand. The center of the binding pocket
is centered on the ligand, which contains the smallest possi-
ble area for the ligand to bind, and was obtained by analysis
with AutoDock Tools software. Molecular docking was
achieved by the AutoDock Vina software, using the Vina
force field for optimisation and binding energy calculations.
Docking parameters are as follows: exhaustiveness is 8, and
num_modes is 9. Root mean squared deviation (RMSD)
analysis was performed on the docking results, and interac-
tion pattern analysis was performed using PyMOL.

2.6. Prognostic Analysis and Immunohistochemical Validation.
R language was used to obtain the data of 494 patients
with PCa with complete clinical and transcriptome data
from the cBioPortal database (https://www.cbioportal.org/).
Progression-free survival (PFS) was analyzed by the univari-
ate Cox proportional risk analysis and Kaplan–Meier analy-
sis. Gene expression was analyzed by Student’s t-test. From
the online database Protein Atlas (https://www.proteinatlas
.org/), the immunohistochemical microscopic images of
genes were obtained and exported for visualization using
image processing software Adobe Illustrator. The specific
flow is shown in Figure 1.

2.7. Statistical Analysis. All statistical analyses and graphical
representations were calculated using the R software version
4.0.4 and corresponding packages. Student’s t-test was used
to evaluate whether a significant difference existed between
the two groups. The correlation between gene expression
levels and PFS in patients with PCa was analyzed by the
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univariate Cox proportional risk analysis and Kaplan–Meier
curve analysis. P < 0:05was considered statistically significant.

3. Results

3.1. Single-Cell Data Integration and Differential Gene
Screening. After quality control, a single-cell matrix consist-
ing of 33,602 cells and 23,698 genes was obtained and
divided into 16 cell clusters (Figure.S1). DEGs were screened
by FindAllMarkers package in R language. A total of 1,675
genes were obtained at the single-cell level (Figure 2). Six-
teen cell clusters were defined according to marker genes
(Table S1 and Figures 3(a) and 3(b)), and tumor cells were
defined according to CNV results (Figures 3(c) and 3(d)).
Finally, B cells, cancer cells, endothelial cells, epithelial
cells, fibroblasts, mast cells, myeloid cells, smooth muscle
cells, and T cells totaling nine cell types were obtained
(Figure 3(e)).

3.2. Construction of Drug Component–Target Gene–Pathway
Network Diagram. Four active components of PL were
obtained by TCMSP: 3′-methoxydaidzein, beta-sitosterol,
daidzein-4,7-diglucoside, and formononetin (Table 1 and
Figures 4(a)–4(d)). Then, the active components’ targets
were obtained by using TCMSP, STITCH, SwissTargetPre-
diction, and PubChem databases. After the duplication was
deleted, 207 PL targets were obtained. The intersection of
drug target and DEGs resulted in 31 target genes
(Figure 4(e)). According to the corresponding relationship
of target genes and pathway, the drug component–target
pathway network was constructed (Figure 4(f)). We ana-
lyzed the topological parameters of the network (Table S2).
Then, we constructed the core target network of the

network, in which 13 core target genes were obtained
(Figure S2).

3.3. Functional Enrichment Analysis and Protein Interaction
Analysis. The functional enrichment analysis of target genes
and 362 bioinformatic expressions was obtained by GO
enrichment analysis. The enriched expression of the top 15
comprehensive permutations was taken (Figure 5(a)),
including metabolic processes of reactive oxygen species,
response to steroid hormones’ endoplasmic reticulum
lumen, mitochondrial membrane, growth factor binding,
tau protein binding, and fibronectin. A total of 31 signaling
pathways were screened by KEGG enrichment analysis and
binding. Top 10 enrichment analysis of KEGGwas performed
(Figure 5(b)), including fluid shear stress and atherosclerosis,
IL-17 signaling pathway, PCa, chemoattractant-receptor
activation, and estrogen signaling pathway. The top 10 pro-
teins of the protein interaction network were TNF,
HSP90AA1, JUN, PTGS2, APOE, AR, NR3C1, SNCA,
HSP90B1, and HSP90AB1 (Figure 6). Most of them were
enriched in the above functions and pathways.

3.4. Single-Cell Data Target Gene Expression and Molecular
Docking. The single-cell data were integrated with the target
genes by the Seurat package in R language, and the expres-
sion levels of 31 target genes on nine cell populations were
obtained (Figure 7(a)). The overall expression levels of
DHCR24, MAOA, IGFBP2, HSP90AA1, HSP90AB1,
HSP90B1, JUN, AR, MCL1, and MIF genes were relatively
high, and the expression in each cell group was obtained
by coordinate mapping (Figures 7(b)–7(k)). The coordinate
maps of the remaining target genes were presented in Sup-
plementary Figures (Figure.S3). In cancer cells, AR, MIF,
HSP90B1, and MAOA were expressed in more than 50% of

Pueraria lobata
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Active components and targets

Single cell sequencing data

Differentially expressed genes
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Drug target
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Figure 1: Flowchart.
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cells at a high level relative to other genes. Therefore, these
four proteins were selected as the targets for molecular dock-
ing, and the results showed that the docking effect of the
active monomer and the spatial conformation of the target
protein was good (the top five docking scores/binding ener-
gies are shown in Figure 8, and the rest of the docking results
were shown in the supplementary Figure.S4). Docking score/
binding energy was good (Table 2). The main force is hydro-
gen bond; π-sigma and van der Waals forces are not found
in the current study (Figure 8 and Figure.S4).

3.5. Prognostic Analysis Results and Immunohistochemical
Validation. The univariate Cox proportional risk analysis
of 31 target genes identified 11 genes, ABCG2, APOE, CA2,
F10, IGFBP3, MAOB, MIF, NR3C1, PLA2G2A, PTGS2, and

SNCA, were associated with PFS (P < 0:05). The Kaplan–
Meier survival analysis obtained APOE, CA2, F10, IGFBP3,
MAOB, MIF, NR3C1, PLA2G2A, and SNCA differed in PFS
(P < 0:05), but ABCG2 and PTGS2 showed no statistically
significant difference in PFS (P > 0:05) (Figures 9(b)–9(l)).
The grouping expression results showed that APOE, CA2,
IGFBP3, MIF, F10, NR3C1, and PTGS2 were different
between the groups with and without disease progression
(P < 0:05) (Figure.S5). Together with the univariate Cox
proportional risk analysis, Kaplan–Meier survival analysis,
and subgroup expression, six genes, APOE, CA2, IGFBP3,
MIF, F10, and NR3C1, were obtained to predict PFS. APOE,
MIF, and NR3C1 were found differentially expressed in PCa
by Protein Atlas and with elevated expression compared
with normal tissues (Figures 10(a)–10(c)).
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Figure 2: Differential genes. (a) Differential gene volcano plot, where red indicates upregulation and green indicates downregulation; the
darker the color is, the greater the absolute value of log2FC. (b) Heat map of top five differential genes in 16 groups.
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4. Discussion

Currently, the treatment of PCa mainly consists of various
physical and chemical methods. Minimally invasive ablation,

radiotherapy, or radical PCa resection can be used to treat
PCa in the early, middle, or localized stages [12–14]. Che-
motherapy is always the final option as the disease pro-
gresses. However, resistance is the cause of chemotherapy
failure in 90% of patients with cancer [15]. Among the six
drugs approved by the FDA for the treatment of metastatic
drug-resistant PCa, the average improvement in overall sur-
vival is only 4.8 months, and drug resistance likely is the
main cause [16]. In addition, chemotherapy often induces
various serious side effects. Therefore, new treatments that
can improve efficacy and reduce side effects need to be
sought. PL is one of the TCMs, mainly composed of isofla-
vones, flavonoids, flavonols, fragrant plum alcohols, and
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Figure 3: Definition of cell groupings. (a) Clustering map of single cell at 0.3 resolution. (b) Bubble map of marker genes in different
clusters. (c) UMP map of CNV, where red dots indicate noninteger copies of cell genes. (d) CNV chromosome heat map. (e) UMP map
defining cell populations.

Table 1: Active components of PL.

MOL_ID Molecule_name ob dl

MOL003629 Daidzein-4,7-diglucoside 47.275 0.674

MOL000358 Beta-sitosterol 36.914 0.751

MOL002959 3′-Methoxydaidzein 48.569 0.242

MOL000392 Formononetin 69.674 0.212
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other compounds, among which the main biologically active
components are isoflavones, also known as phytoestrogens
[17, 18]. Previous studies demonstrated that isoflavones
have a significant role in the treatment of hormone-
dependent tumors [19–21]. PCa is one of hormone-
dependent tumors, and the therapeutic effect of PL in
PCa remains unclear. Therefore, this paper explored the
potential role of PL in PCa from the perspective of
single-cell network pharmacology.

In this paper, four active compounds of PL were
screened: 3′-methoxychasteel, β-sitosterol, chasteberry-4,7-
diglucoside, and formonetin. The beta-sitosterol inhibited
the growth of PC cell lines in several ways, including inhibi-
tion of proliferation, apoptosis, and suppression of NF-κB
activity. Beta-sitosterol also inhibited migration and invasion
and downregulated markers of the epithelial-mesenchymal
transition [22]. Formonetin inhibits cell proliferation, tube
formation, and cell migration and interferes with MYC and
STAT3 proteins via the RAS/ERK and JAK1/STAT3 path-
ways to suppress PD-L1 protein expression thereby promot-
ing tumor cell apoptosis [23]. Evidence suggests that the

active constituents of Pueraria lobata have multipathway,
multitargeted antitumor effects, which provides clues for us
to develop target exploration in prostate cancer. The results
showed that PL exerted potential interventions on PCa
through 31 target genes and 31 signaling pathways corre-
sponding to the above compounds. The results of functional
enrichment analysis showed that PL played a pharmacologi-
cal role in the treatment of PCa by regulating the metabolic
processes of reactive oxygen species, response to steroid hor-
mones, and oxidative stress as well as IL-17 signaling path-
way, PCa, and estrogen signaling pathway, which involved
biological processes such as sensitivity to steroid hormones,
cellular metabolism, cytokines, and gene transcription. The
results suggested that PL can intervene in PCa by participat-
ing in various biological processes and signaling pathways.
IL-17 can promote epithelial mesenchymal transition and
tumor cell invasion by inducing the expression of MMP7 in
PCa cells, disrupting the E-calmodulin/β-linked protein
complex, and releasing β-linked protein [24]. Estrogen can
activate the SRC and PI3K/AKT pathways through binding
receptors and promote the expression of nonphosphorylated

(a) (b) (c) (d)

DEGs

1644 31 176

Drug target

(e)

Pueraria
lobata

(f)

Figure 4: Drug–active monomer–target pathway network. (a–d) The four active components of PL were 3′-methoxydaidzein, beta-
sitosterol, daidzein-4,7-diglucoside, and formononetin. (e) Venn diagram of differential genes and drug targets. (f) Drug–active
monomer–target pathway network diagram. The yellow–brown prism is the PL, the rectangle represents the four active components, the
green ellipse is the intersection target gene, and the red triangle is the KEGG pathway.
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β-linked proteins, thereby enhancing PC-3 cell proliferation,
migration, invasion, and tumor formation [25]. The findings
suggested that PL may intervene in PCa by regulating signal-
ing pathways and biological processes such as interleukin-17
and estrogen.

Based on marker genes, nine cell populations were
obtained, including cancer cells, to explore the potential role
of PL in the treatment of PCa at the single-cell level. AR,
MIF, HSP90B1, and MAOA were expressed in more than
50% of cancer cells with high expression levels and may have
potential therapeutic targets. In almost all PCa patients, the
androgen receptor (AR) was the main driver of tumor cell
genesis and development. It was activated and translocated
to the nucleus to bind to androgen response elements in
DNA and recruit regulatory factors or transcription factors
that mediated target gene transcription to regulate biological

processes such as cell proliferation, apoptosis, migration,
invasion, and differentiation [26–28]. Our paper found that
3′-methoxydaidzein, beta-sitosterol, and formononetin in
PL could act as AR in PCa possibly with potential antitumor
effects. Previous studies found that MIF can promote PCa
growth and metastasis by upregulating MAPK and CXCR7
expressions, thus activating the PI3K-AKT signal trans-
duction pathway [29]. HSP90B1 downregulation mediated
the PI3K/AKT/mTOR pathway to inhibit tumor growth
in vitro and in vivo [30]. In addition, HSP90B1 overexpres-
sion promoted the proliferation, migration, and invasion of
bladder and breast cancer cells in vitro [31, 32]. MAOA
promoted PCa metastasis by regulating downstream ROS
and Twist1 pathways that mediated Shh/Gli signaling to
activate YAP1 transcription in concert with AR to induce
epithelial–mesenchymal transition and tumor–stromal cell
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interactions [33–35]. AR, MIF, HSP90B1, and MAOA, as the
targets of PL, exerted antitumor effects by regulating related
pathways, suggesting that PL can interfere with tumorigene-
sis and progression through multicomponent, multitarget,
and multipathway mechanisms. In addition, molecular
docking experiments showed that the active monomers
of PL had a spatial conformational docking effect with
the proteins of the four corresponding target genes with
good docking scores/binding energy, suggesting that PL
may affect the protein activity and the regulation of its
downstream pathways by directly binding to the active

centers of the proteins. APOE, CA2, IGFBP3, MIF, F10,
and NR3C1 were obtained for the prediction of PFS in
PCa by the univariate Cox proportional risk analysis and
Kaplan–Meier survival analysis of target genes. Protein
Atlas verified that APOE, MIF, and NR3C1 were expressed
in tumor tissues at different levels. The findings suggested
that PL may intervene in the clinical prognosis of PCa by
acting on the corresponding targets.

This study may provide clues to the search for potential
therapeutic targets and drugs for prostate cancer and refine
our understanding of the efficacy of Pueraria lobata and its

TNF

HSP90AA1

JUN

PTGS2

APOE

AR

NR3C1

SNCA
PTP4A3

HSP90AB1
HSP90B1

MCL1

MAOA

PTPN1
RORA

MIF

PLA2G2A

F10

MAOB

PLAT

AKR1B1

IGFBP5

BCL2

IGFBP4
IGFBP3

IGFBP6

Fe
at

ur
es

IGFBP2

CA4

CA2

DHCR24

ABCG2

Average Expression

Bcells Cancer cells Endo Epithelial Fibo
Identity

Mast Myeloid SMC Tcells

2

1

0

–1

Percent Expressed

0
25

50
75

(a)

10 4

3

2

1

0

5
0

–5
–10

–15 –10 –5 0 5 10
UMAP_1

DHCR24

U
M

A
P_

2

15

(b)

10 4

3

2

1

0

5
0

–5
–10

–15 –10 –5 0 5 10
UMAP_1

MAOA

U
M

A
P_

2

15

(c)

10 4

3

2

1

0

5
0

–5
–10

–15 –10 –5 0 5 10
UMAP_1

IGFBP2

U
M

A
P_

2

15

(d)

10 6

4

2

0

5
0

–5
–10

–15 –10 –5 0 5 10
UMAP_1

HSP90AA1

U
M

A
P_

2

15

(e)

10 5
4

2

0

5
0

–5
–10

–15 –10 –5 0 5 10
UMAP_1

HSP90AB1

U
M

A
P_

2

15

3

1

(f)

10 5
4

2

0

5
0

–5
–10

–15 –10 –5 0 5 10
UMAP_1

HSP90B1

U
M

A
P_

2

15

3

1

(g)

10 6

4

2

0

5
0

–5
–10

–15 –10 –5 0 5 10
UMAP_1

JUN

U
M

A
P_

2

15

(h)

10 4

3

2

0

5
0

–5
–10

–15 –10 –5 0 5 10
UMAP_1

AR

U
M

A
P_

2

15

1

(i)

4

3

2

0

1

10
5
0

–5
–10

–15 –10 –5 0 5 10
UMAP_1

MCL1

U
M

A
P_

2

15

(j)

10

5
0

–5
–10

–15 –10 –5 0 5 10
UMAP_1

MIF

U
M

A
P_

2

15

4

3

2

0

1

(k)

Figure 7: Expression of target genes in each cell population. (a) Bubble map of target gene expression. (b–k) Coordinate mapping of
DHCR24, MAOA, IGFBP2, HSP90AA1, HSP90AB1, HSP90B1, JUN, AR, MCL1, and MIF.
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Formononetin-AR

(a)

Daidzein-4,7-diglucoside-MAOA

(b)

Beta-sitosterol-AR

(c)

3'-Methoxydaidzein-MAOA

(d)

Formononetin-MAOA

Hydrogen bond

(e)

Figure 8: Molecular docking results.

Table 2: Molecular docking results.

Active ingredients Target protein Docking score/binding energy RMSD

3′-Methoxydaidzein MAOA -8.3 0.888

3′-Methoxydaidzein MIF -6.3 0.432

3′-Methoxydaidzein AR -5.4 0.371

3′-Methoxydaidzein HSB90B1 -7.2 0.001

Formononetin MAOA -8.1 <0.001
Formononetin MIF -5.8 <0.001
Formononetin AR -10.8 <0.001
Daidzein-4,7-diglucoside MAOA -10.5 3.131

Daidzein-4,7-diglucoside MIF -5.8 1.273

Beta-sitosterol AR -9.2 0.222

Note: docking score/binding energy > −4 kcal/mol means weak binding capacity, −7 < docking score/binding energy < −4 means moderate binding capacity,
and docking score/binding energy < −7 means strong binding ability. A smaller value of RMSD indicates a higher spatial overlap between the active
monomer and the best bound conformation; that is, a smaller value means a higher chance of successful docking.
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ABCG2
AKR1B1
APOE
AR
BCL2
CA2
CA4
DHCR24
F10
HSP90AA1
HSP90AB1
HSP90B1
IGFBP2
IGFBP3
IGFBP4
IGFBP5
IGFBP6
JUN
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MAOB
MCL1
MIF
NR3C1
PLA2G2A
PLAT
PTGS2
PTP4A3
PTPN1
RORA
SNCA
TNF
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Figure 9: Continued.
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Figure 9: Survival analysis. (a) Forest map of the univariate Cox proportional risk analysis for 31 target genes. (b–l) Curves of 11 genes,
ABCG2, APOE, CA2, F10, IGFBP3, MAOB, MIF, NR3C1, PLA2G2A, PTGS2, and SNCA.
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Figure 10: Immunohistochemistry. (a) Immunohistochemical plots of APOE in PCa and normal tissues. (b) Immunohistochemical plots of
MIF in PCa and normal tissues. (c) Immunohistochemical plots of NR3C1 in PCa and normal tissues.
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active ingredients. The limitation of this study is that the
components of herbal medicine are complex and diverse in
their therapeutic effects, and it is uncertain which combina-
tions are at play, and more evidence is needed.

5. Conclusion

In this paper, the drug–active ingredient–target pathway
network of Chinese herbal medicine PL was constructed at
the single-cell level of PCa by network pharmacology com-
bined with single-cell sequencing technology. The findings
revealed that its action on AR, MIF, HSP90B1, and MAOA
genes regulated several biological processes and related sig-
naling pathways to interfere with the occurrence and devel-
opment of PCa while its action on APOE, CA2, IGFBP3,
MIF, F10, and NR3C1 genes was also important in interfer-
ing with clinical prognostic regression. The multiple drug–
active component–target pathway axis constructed in this
paper provided a new direction for exploring the therapeutic
and prognostic targets of PCa. The above results were ini-
tially validated in molecular docking experiments and Pro-
tein Atlas, and the specific related molecular mechanisms
need to be investigated further through experiments.

Data Availability

Data is openly available in a public repository.

Conflicts of Interest

All authors have completed the ICMJE uniform disclosure
form. The authors have no conflicts of interest to declare.

Authors’ Contributions

YY, YFM, and MYC designed the research. YFM and HYQ
performed the research. YFM and HYL analyzed the data.
YY, YFM, and MYC wrote the manuscript. All authors par-
ticipated in the preparation of the manuscript. All authors
read and approved the final manuscript. Yongfeng Mo and
Manying Chen contributed equally to this work.

Acknowledgments

We will continue to work hard to do our research well.

Supplementary Materials

Supplementary forms and pictures are in supplementary
files. (Supplementary Materials)

References

[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre,
and A. Jemal, “Global cancer statistics 2018: GLOBOCAN esti-
mates of incidence and mortality worldwide for 36 cancers in
185 countries,” CA: a cancer journal for clinicians, vol. 68,
no. 6, pp. 394–424, 2018.

[2] T. Kimura and S. Egawa, “Epidemiology of prostate cancer in
Asian countries,” International Journal of Urology, vol. 25,
no. 6, pp. 524–531, 2018.

[3] W. Lopez, N. Nguyen, J. Cao et al., “Ultrasound therapy, che-
motherapy and their combination for prostate cancer,” Tech-
nology in Cancer Research & Treatment, vol. 20, 2021.

[4] C. L. Yao, J. Q. Zhang, J. Y. Li, W. L. Wei, S. F. Wu, and D. A.
Guo, “Traditional Chinese medicine (TCM) as a source of new
anticancer drugs,” Natural Product Reports, vol. 38, no. 9,
pp. 1618–1633, 2021.

[5] T. T. Luo, Y. Lu, S. K. Yan, X. Xiao, X. L. Rong, and J. Guo,
“Network pharmacology in research of Chinese medicine for-
mula: methodology, application and prospective,” Chinese
Journal of Integrative Medicine, vol. 26, no. 1, pp. 72–80,
2020, Epub 2019/04/04.

[6] X. J. Liu, Y. Q. Li, Q. Y. Chen, S. J. Xiao, and S. E. Zeng, “Up-
regulating of RASD1 and apoptosis of DU-145 human pros-
tate cancer cells induced by formononetin in vitro,” Asian
Pacific journal of cancer prevention : APJCP., vol. 15, no. 6,
pp. 2835–2839, 2014, Epub 2014/04/26.

[7] T. Li, X. Zhao, Z. Mo et al., “Formononetin promotes cell cycle
arrest via downregulation of Akt/cyclin D1/CDK4 in human
prostate cancer cells,” Cellular physiology and biochemistry :
international journal of experimental cellular physiology, bio-
chemistry, and pharmacology., vol. 34, no. 4, pp. 1351–1358,
2014, Epub 2014/10/11.

[8] K. C. Tay, L. T. Tan, C. K. Chan et al., “Formononetin: a review
of its anticancer potentials and mechanisms,” Frontiers in
pharmacology, vol. 10, p. 820, 2019.

[9] A. Alvarez-Sala, A. Attanzio, L. Tesoriere, G. Garcia-Llatas,
R. Barberá, and A. Cilla, “Apoptotic effect of a phytosterol-
ingredient and its main phytosterol (β-sitosterol) in human
cancer cell lines,” International Journal of Food Sciences
and Nutrition, vol. 70, no. 3, pp. 323–334, 2019, Epub
2018/09/08.

[10] A. Yasen, A. Aini, H.Wang et al., “Progress and applications of
single-cell sequencing techniques,” Infection, Genetics and
Evolution, vol. 80, p. 104198, 2020, Epub 2020/01/21.

[11] X. Tang, Y. Huang, J. Lei, H. Luo, and X. Zhu, “The single-cell
sequencing: new developments and medical applications,” Cell
& bioscience, vol. 9, p. 53, 2019.

[12] S. R. Denmeade and J. T. Isaacs, “A history of prostate cancer
treatment,” Nature Reviews Cancer, vol. 2, no. 5, pp. 389–396,
2002.

[13] J. L. Mohler, E. S. Antonarakis, A. J. Armstrong et al., “Prostate
cancer, version 2.2019, NCCN Clinical Practice Guidelines in
Oncology,” Journal of the National Comprehensive Cancer
Network, vol. 17, no. 5, pp. 479–505, 2019.

[14] A. J. Evans, “Treatment effects in prostate cancer,” Modern
Pathology, vol. 31, no. S1, pp. 110–121, 2018.

[15] L. N. Abdullah and E. K. Chow, “Mechanisms of chemoresis-
tance in cancer stem cells,” Clinical and Translational Medi-
cine, vol. 2, no. 1, p. 3, 2013.

[16] G. von Amsberg and A. S. Merseburger, “Therapie des metas-
tasierten kastrationsresistenten prostatakarzinoms,” Der Uro-
loge, vol. 59, no. 6, pp. 673–679, 2020.

[17] S. Wang, S. Zhang, S. Wang, P. Gao, and L. Dai, “A compre-
hensive review on _Pueraria_ : insights on its chemistry and
medicinal value,” Biomedicine & Pharmacotherapy, vol. 131,
p. 110734, 2020, Epub 2020/09/18.

[18] X. Shang, D. Huang, Y. Wang et al., “Identification of nutri-
tional ingredients and medicinal components of Pueraria
lobata and its varieties using UPLC-MS/MS-based metabolo-
mics,” Molecules, vol. 26, no. 21, 2021.

13Computational and Mathematical Methods in Medicine

https://downloads.hindawi.com/journals/cmmm/2022/3758219.f1.zip


[19] X. Zhang, K. L. Cook, A. Warri et al., “Lifetime genistein intake
increases the response of mammary tumors to tamoxifen in
rats,” Clinical Cancer Research, vol. 23, no. 3, pp. 814–824, 2017.

[20] Y. Li, S. M. Meeran, S. N. Patel, H. Chen, T. M. Hardy, and
T. O. Tollefsbol, “Epigenetic reactivation of estrogen recep-
tor-α (ERα) by genistein enhances hormonal therapy sensitiv-
ity in ERα-negative breast cancer,” Molecular Cancer, vol. 12,
p. 9, 2013.

[21] S. Jin, Q. Y. Zhang, X. M. Kang, J. X. Wang, and W. H. Zhao,
“Daidzein induces MCF-7 breast cancer cell apoptosis via the
mitochondrial pathway,” Annals of Oncology, vol. 21, no. 2,
pp. 263–268, 2010, Epub 2009/11/06.

[22] Z. Q. Cao, X. X. Wang, L. Lu et al., “β-Sitosterol and gemcita-
bine exhibit synergistic anti-pancreatic cancer activity bymod-
ulating apoptosis and inhibiting epithelial-mesenchymal
transition by deactivating Akt/GSK-3β signaling,” Frontiers
in pharmacology, vol. 9, p. 1525, 2018.

[23] J. Y. Wang, M. W. Jiang, M. Y. Li et al., “Formononetin
represses cervical tumorigenesis by interfering with the activa-
tion of PD-L1 through MYC and STAT3 downregulation,”
The Journal of nutritional biochemistry., vol. 100, p. 108899,
2022, Epub 2021/11/09.

[24] Q. Zhang, S. Liu, K. R. Parajuli et al., “Interleukin-17 promotes
prostate cancer via MMP7-induced epithelial-to-mesenchymal
transition,” Oncogene, vol. 36, no. 5, pp. 687–699, 2017.

[25] A. P. G. Lombardi, R. P. Cavalheiro, C. S. Porto, and C. M.
Vicente, “Estrogen receptor signaling pathways involved in
invasion and colony formation of androgen-independent
prostate cancer cells PC-3,” International Journal of Molecular
Sciences, vol. 22, no. 3, p. 1153, 2021.

[26] K. R. Lamont and D. J. Tindall, “Androgen regulation of gene
expression,” Advances in Cancer Research, vol. 107, pp. 137–
162, 2010.

[27] M. H. Tan, J. Li, H. E. Xu, K. Melcher, and E. L. Yong, “Andro-
gen receptor: structure, role in prostate cancer and drug dis-
covery,” Acta Pharmacologica Sinica, vol. 36, no. 1, pp. 3–23,
2015.

[28] Z. Culig and F. R. Santer, “Androgen receptor signaling in
prostate cancer,” Cancer Metastasis Reviews, vol. 33, no. 2-3,
pp. 413–427, 2014.

[29] S. Rafiei, B. Gui, J. Wu, X. S. Liu, A. S. Kibel, and L. Jia, “Tar-
geting the MIF/CXCR7/AKT signaling pathway in
castration-resistant prostate cancer,” Molecular Cancer
Research, vol. 17, no. 1, pp. 263–276, 2019.

[30] G. Li, M. Cai, D. Fu et al., “Heat shock protein 90B1 plays an
oncogenic role and is a target of microRNA-223 in human
osteosarcoma,” Cellular Physiology and Biochemistry, vol. 30,
no. 6, pp. 1481–1490, 2012, Epub 2012/12/05.

[31] C. Fang, L. Xu, W. He, J. Dai, and F. Sun, “Long noncoding
RNA DLX6-AS1 promotes cell growth and invasiveness in
bladder cancer via modulating the miR-223-HSP90B1 axis,”
Cell Cycle, vol. 18, no. 23, pp. 3288–3299, 2019.

[32] D. N. Meenakshi Sundaram, R. B. Kc, and H. Uludağ, “Lino-
leic-acid-substituted polyethylenimine to silence heat shock
protein 90B1 (HSP90B1) to inhibit migration of breast cancer
cells,” The Journal of Gene Medicine, vol. 24, no. 6, p. e3419,
2022.

[33] J. Wei, L. Yin, J. Li et al., “Bidirectional cross-talk between
MAOA and AR promotes hormone-dependent and
castration-resistant prostate cancer,” Cancer Research,
vol. 81, no. 16, pp. 4275–4289, 2021.

[34] J. B. Wu, C. Shao, X. Li et al., “Monoamine oxidase A mediates
prostate tumorigenesis and cancer metastasis,” Journal of Clin-
ical Investigation, vol. 124, no. 7, pp. 2891–2908, 2014.

[35] J. B. Wu, L. Yin, C. Shi et al., “MAOA-dependent activation of
Shh-IL6-RANKL signaling network promotes prostate cancer
metastasis by engaging tumor-stromal cell interactions,” Can-
cer Cell, vol. 31, no. 3, pp. 368–382, 2017.

14 Computational and Mathematical Methods in Medicine


	Pueraria lobata Potentially Treating Prostate Cancer on Single-Cell Level by Network Pharmacology and AutoDock: Clinical Findings and Drug Targets
	1. Introduction
	2. Methods
	2.1. Differentially Expressed Genes Related to PCa
	2.2. Screening of Active Components and Targets
	2.3. Construction of Drug Component–Target Gene Pathway Network and Topology Analysis
	2.4. Functional Enrichment Analysis and Construction of Protein Interaction Networks
	2.5. Expression Levels of Target Genes in Single Cells and Molecular Docking
	2.6. Prognostic Analysis and Immunohistochemical Validation
	2.7. Statistical Analysis

	3. Results
	3.1. Single-Cell Data Integration and Differential Gene Screening
	3.2. Construction of Drug Component–Target Gene–Pathway Network Diagram
	3.3. Functional Enrichment Analysis and Protein Interaction Analysis
	3.4. Single-Cell Data Target Gene Expression and Molecular Docking
	3.5. Prognostic Analysis Results and Immunohistochemical Validation

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials



