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The aim of this study was to explore the application effect of thoracic computerized tomography (CT) under single threshold
segmentation algorithm in the diagnosis of heart failure (HF) complicated with sleep apnea syndrome. 30 patients diagnosed
with HF complicated with sleep apnea syndrome were chosen for the research. Another 30 patients without sleep apnea
syndrome were selected as the control group, whose age, height, and weight were similar to those of the experimental group.
Then, a model for thoracic CT image segmentation was proposed under the single threshold segmentation algorithm, and the
faster region convolutional neural network (Faster RCNN) was applied to label the thoracic respiratory lesions. All the patients
underwent thoracic CT examination, and the obtained images were processed using the algorithm model above. After that, the
morphology of the patient’s respiratory tract after treatment was observed. The results suggested that the improved single
threshold segmentation algorithm was effective for the image segmentation of patient lesions, and the Faster RCNN could
effectively finish the labeling of the lesion area in the CT image. The classification accuracy of the Faster RCNN was about
0.966, and the loss value was about 0.092. With CT scanning under the algorithm, it was found that the airway collapse of the
posterior palatal area, retrolingual area, and laryngopharyngeal area of the sleep apnea syndrome patients was significantly
greater than that of the control group (P < 0:05). But there was no significant difference of the collapse of the nasopharyngeal
area between the two groups (P > 0:05). The single threshold segmentation algorithm had a better segmentation accuracy for
thoracic CT images in patients with HF and sleep apnea syndrome, so it had a highly promising application prospect in the
diagnosis of the disease.

1. Introduction

Obstructive sleep apnea (OSA) is a sleep-related breathing
disorder that has a big impact on cardiovascular function.
It is related to high blood pressure, coronary artery disease,
arrhythmia, sudden cardiac death, and heart failure (HF),
among which the HF affects about 23 million people in the
world and about 5.8 million people in the United States, with
a huge medical burden. In the United States, the incidence
and prevalence rate of HF are increasing [1–3]. Mainly
because of the aging of the population and the gradual
extension of the HF patients’ survival time through innova-

tive therapies, the number of patients with HF is rising grad-
ually. One of the factors for HF is just OSA. Compared with
the ordinary population, the HF patients with reduced ejec-
tion fraction (HFrEF) or preserved ejection fraction
(HFpEF) are more likely to have an onset of OSA. Therefore,
there is some relationship between OSA and HF, and such a
relationship has a great research significance pathophysiolo-
gically and clinically [4, 5]. Sleep apnea is characterized by
partial or complete cessation of breathing during night sleep,
leading to repeated awakening, oxygenated hemoglobin
desaturation, and daytime sleepiness [6–8]. Apnea is defined
as a complete stoppage of air flow for longer than 10 seconds
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or a hypopnea, which is the airflow partial cessation with
50% to 90% reduction in airflow for longer than 10 seconds,
accompanied by a decrease in oxygen saturation (SaO2) by
over 3% [9, 10]. According to the average prevalence rate,
it is estimated that one in five adults has mild OSA, and
one in fifteen adults has moderate OSA at least.

HF complicated with OSA is generally performed by
computerized tomography (CT) examination. In recent
years, artificial intelligence technology has been used in the
segmentation of medical CT images, which greatly improves
the segmentation effect of the lesion area [11]. The fully con-
nected layer in the traditional convolutional neural network
is optimized into a convolutional layer under the full convo-
lutional neural network (FCNN), by which the complexity of
the calculation is reduced and the segmentation efficiency is
improved. Compared with the FCNN model, the single
threshold segmentation algorithm can achieve a higher seg-
mentation accuracy and is not limited by the input sample
size [12, 13]. As the deep learning technology is applied for
medical image processing and detection of lesions in images,
the workload of manual processing can be reduced, and the
issues such as poor diagnosis of subjective differences can be
dealt with better.

Therefore, the model under deep learning was proposed
in this research for the CT image analysis of OSA, and then,
the diagnostic accuracy was compared with different diag-
nostic methods. Thus, a reference could be offered for
improving the clinical diagnosis and treatment effects of
patients with OSA.

2. Research Objects

Thirty patients who were diagnosed with sleep apnea syn-
drome in hospital were selected in the test group. They were
monitored by night polysomnography (NPSG) and then
were diagnosed. There were 24 males and 6 females in the
group. They were 25-62 years old, with an average age of
45:54 ± 10:15 years old. Another 30 patients without sleep
apnea syndrome were also selected as the control group, in
which the age, height, and weight were similar to those of
patients in the test group. All the patients have signed the
informed consents, and all the researches have been
approved by the ethics committee of the hospital.

Those who meet the diagnostic criteria for sleep apnea
syndrome were included in the study, without craniofacial
deformity, respiratory central diseases, and other malignant
tumors. They agreed and accepted to be the participants in
the study.

The exclusion criteria were described as follows. Those
with incomplete imaging data, and who were unable to
cooperate in the whole course of imaging examination, were
out of the study.

3. Methodology

3.1. CT Examination. The whole-body low-dose CT exami-
nation was used. The scanning range was set from the top
of the nasopharynx to below the glottis, the layer thickness
was fixed as 5mm, and the layer spacing was 2.5mm. Dur-

ing the CT examination, all patients underwent the continu-
ous upper airway scanning under four time phases, in the
calm breathing, deep end inspiration, deep end expiration,
and deep end inspiration with nose and mouth closed
(Muller action). The patients lay supine with the head and
neck stretched in the middle position. The raw image data
was input to the workstation for postprocessing and mea-
surement of various indexes. All the data were obtained by
blind measurement. The thoracic CT scanning was also car-
ried out. The image of upper airway was divided into 3 parts
by the horizontalis of hard palate and the upper edge of epi-
glottis, including that of the nasopharyngeal area, oropha-
ryngeal area, and laryngopharyngeal area. The
nasopharyngeal area was from the nasopharyngeal dome to
the horizontalis of hard palate, the oropharyngeal area was
from the hard palate horizontalis to the upper edge of epi-
glottis, and the laryngopharyngeal area was from the upper
edge of epiglottis to the upper edge of hyoid bone. Then,
the oropharyngeal area was further divided into the poste-
rior palatal area (the horizontalis of hard palate to the lower
end of soft palate) and the retrolingual area (the lower end of
soft palate to the upper edge of epiglottis). The images of
upper airway were reconstructed in transverse, sagittal, and
coronal planes, and the cross-sectional area of the nasophar-
ynx, oropharynx, and laryngopharyngeal, the length and
thickness of the soft palate were measured. From the above
measured data, the airway collapse degree was calculated.
In this study, the airway collapse degree = ðend‐expiratory
cross‐sectional area – end‐inspiratory cross‐sectional areaÞ/
end‐expiratory cross‐sectional area. At the same time, the
internal surface of the airway was observed through a virtual
endoscope.

3.2. CT Image Segmentation under Single Threshold
Segmentation Algorithm. The single threshold segmentation
algorithm was applied for the segmentation of the thoracic
CT images. The following two main steps were included in
this algorithm segmentation. Firstly, the threshold that
needed to be segmented was determined and compared with
the CT pixel value in the image; then, the pixels were
divided. The calculation and selection of the segmentation
threshold were the most important steps of the algorithm,
and the iterative threshold method was used for it. The cal-
culation steps of the iterative threshold were as follows.

Firstly, the maximum gray value and minimum gray
value (Fmax and Fmin) of the raw thoracic CT image were
worked out, and the average gray range k0 was calculated via

k0 =
Fmax + Fmin

2 : ð1Þ

Then, according to the average value k0, the gray average
DL and DR of the foreground and background of the raw CT
image were computed with

DL =
∑Ki

F=0HF · F
∑Ki

F=0HF

, ð2Þ
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DR =
∑L−1

F=Ki+1HF · F
∑L−1

F=Ki+1HF

: ð3Þ

In the equations, L represented there were a total of L
gray levels, HF represented the number of pixels with a gray
value of F, and Ki represented the threshold value in the i-th
iteration.

When Ki+1 = Ki, at this time the iteration had a conver-
gence to the stable threshold ki. At the moment, the iteration
was ended, and the final threshold value ki was taken as the
segmentation threshold. Equation (4) was obtained at the
same time.

ki =
DL +DR

2 : ð4Þ

However, it was found that, in the use the threshold seg-
mentation algorithm, the raw CT image would be interfered
by the peripheral background during segmentation, which
resulted in a poor segmentation effect. Therefore, the erosion
was utilized to erode the boundary area of the foreground
pixels so that a more complete segmentation was achieved.
The erosion is shown in Figure 1 in detail.

3.3. Thoracic CT Examination under Faster Region
Convolutional Neural Network. For the intelligent detection
of thoracic CT respiratory morphology with algorithms, fas-
ter region convolutional neural network (Faster RCNN) was
introduced to detect the lesion area. The Faster RCNN
mainly consisted of two parts, the region proposal network
(RPN) and the region convolutional neural network
(RCNN) [14]. The network classification model was used
to extract the feature map, and then, the area of interest
was generated and the pooling operation was carried out
through the RPN. Each area of feature map of a specific size
was extracted, and finally, the feature map was classified and
given the probability value corresponding to the target cate-
gory in the RCNN.

Then, the basic model of Visual Geometry Group (VGG)
was applied for the extraction of the feature map. The con-
volution kernel sizes of some convolutional layers in the
VGG model were 1 × 1 and 3 × 3, respectively. The activa-
tion function was a softmax function, and the reshape oper-
ation was carried out before and after the functional
operation, so as to improve the classification effect.

The samples were input into the value model for train-
ing. The loss function of the model consisted of the RPN
and the detector, but loss function was composed of a classi-
fication loss and a regression loss function. The mathemati-
cal expression was as

L bif g, dif gð Þ = 1
Nc

〠Lc bi, b∗ið Þ + α
1
Nr

〠b∗i Lr di, d∗ið Þ: ð5Þ

In Equation (5), bi was the probability of the target
region in the prediction box, while b∗i was the multiclass
label in softmax regression.

The mathematical expressions of classification loss Lc
and regression loss Lr were expressed as

Lc bi, b∗ið Þ = − log b∗i bi + 1 − b∗ið Þ 1 − bið Þð Þ, ð6Þ

Lr di, d∗ið Þ = R di − d∗ið Þ: ð7Þ

In the above two equations, R represented the smooth L1
function, and di was the offset of the prediction box during
RPN training; di

∗ and di had the same dimension.
With the iteration of the loss function, the parameters of

the softmax classifier were further optimized and clarified,
which made it gain a discriminative function for different
training samples.

3.4. Statistical Processing. SPSS 19.0 was used for the statisti-
cal analysis. Measurement data conforming to normal distri-
bution were expressed as the average ± standard deviation,
and comparisons between groups were analyzed by indepen-
dent sample t-test. Measurement data that did not conform
to normal distribution were expressed by the median value
and four-point position representation, and nonparametric
rank sum test was used to analyze the differences between
groups. Enumeration data was measured by nð%Þ, and the
comparison of differences between groups was analyzed by
chi-square test. P < 0:05 showed the difference was statisti-
cally significant.

4. Results

4.1. Segmentation Performance Analysis of Single Threshold
Segmentation Algorithm. With the single threshold segmen-
tation algorithm of artificial intelligence, the selected tho-
racic CT undersampled images were segmented and
optimized, and then, the preprocessed thoracic CT images
were obtained. The comparison result is shown in Figure 2,
as the area inside the box was the range of feature extraction,
and the dotted line indicated the feature contour extracted
by this algorithm. It could be observed from Figure 2 that,
in the unprocessed original thoracic CT images, the interfer-
ence of irrelevant regions was more obvious, and some
structures were blurred. After being processed by a single
threshold segmentation algorithm, the CT images with
clearer structure were output. In this way, the quality of
image segmentation was improved, the amount of subse-
quent calculations was reduced, and the foundation was
formed for the subsequent further segmentation of specific
tissues.

4.2. Verification of the Faster RCNN Model. As the Faster
RCNN model was trained, it was shown that when the num-
ber of training iterations reached 10, the classification accu-
racy and loss value of the model had been gradually
stabilized. The classification accuracy of the Faster RCNN
model was about 0.966, and the loss value was about 0.092.

As shown in Figure 3, the trained Faster RCNN was
effective to detect the respiratory tract morphology in tho-
racic CT images. The marked area in Figure 3 was just the
lesion location was labeled under the Faster RCNN.
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4.3. General Data of the Patients. The baseline information
of the patients in the test group and the control group is
shown in Table 1. It can be known that the differences
between that of patients in two groups were not statistically

significant (P > 0:05), in the age, weight, gender, and height.
Therefore, the results are comparable.

4.4. Comparison of Cardiopulmonary Function Indexes
between Two Groups. The cardiopulmonary function of the
patients in the test group and the control group was mea-
sured; the indexes measured were compared then. As shown
in Figures 4 and 5, the left ventricular end-systolic dimen-
sion (LVESD) and left ventricular end-diastolic dimension
(LVEDD) of the control group were significantly lower than
those of the test group (P < 0:05).

4.5. Comparison of Imaging Results between the Two Groups.
The patients in the two groups underwent the CT scanning

(a)

AθB

(b)

Figure 1: Diagram of corrosion operation. A represented any point in the shaded part, while B stood for the structural element.

Figure 2: Comparison of the segmentation effect of single threshold segmentation algorithm on thoracic CT images. The area inside the red
box was the feature extraction range; the dotted line was the feature contour extracted by the algorithm.

Figure 3: Label of respiratory tract morphological lesions under
the Faster RCNN.
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of their upper airway. It is shown in Figure 6 that the airway
collapse of the posterior palatal area, retrolingual area, and
laryngopharyngeal area of the sleep apnea syndrome
patients was significantly greater than that in the control
group (P < 0:01). However, there was no significant differ-
ence in the collapse of the nasopharynx between the two
groups (P > 0:05).

5. Discussion

OSA is characterized by repeated pharynx collapse during
sleep. Patients usually have a narrow, highly compliant phar-
ynx. It easily collapses during sleep when the pharyngeal
dilator muscles contract normally, which results in airway
narrowing (hypopnea) or obstruction (apnea). Many

Table 1: Comparison of patients’ baseline information between the two groups.

Items Test group (n = 30) Control group (n = 30) Statistic value P

Age (years old) 45:54 ± 10:15 47:69 ± 11:12 t = 0:771 0.441

Height (m) 1:66 ± 0:08 1:65 ± 0:10 t = 0:453 0.652

Weight (kg) 67:52 ± 10:51 66:85 ± 11:86 t = 0:317 0.752

Gender (n/%) Males 24 22
χ2 = 0:839 0.334

Females 6 8
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Figure 4: Comparison of the cardiac function indexes between two groups. ∗ indicated that the difference between groups was statistically
significant, P < 0:05.
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Figure 5: Comparison of the pulmonary function indexes between two groups. FEV1: forced expiratory volume in one second; FVC: forced
vital capacity. ∗ indicated the statistically significant difference between groups, P < 0:05.
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patients are obese, and fat deposits around the pharynx may
be a part of the causes of the narrowing of the pharynx [15].
Relevant evidence shows that the lateral displacement of
fluid that accumulates in the legs during the day can lead
to edema of the peripharyngeal structure during sleep, which
makes the patient very susceptible to OSA.

The mechanical, chemical, neurohumoral, and inflam-
matory mechanisms caused by OSA are usually harmful to
the cardiovascular system. During the onset of mechanical
airflow obstruction, attempting to inhale would directly
cause excessive drop, hypoxia, and arousal of intrathoracic
pressure. A drop of intrathoracic pressure will increase the
transmural pressure of the left ventricle, thereby the load is
increased. Such a pressure drop will also lead to increased
venous return, the right ventricle dilatation as the ventricu-
lar septum shift to the left, and a decreased left ventricular
filling. The decreased left ventricular filling and increased
afterload will cause a decrease of stroke volume at last. Hyp-
oxia, sleep arousal, and significantly repeated increases in
systemic blood pressure due to sympathetic nervous activity
(SNA) are also brought by OSA [16, 17]. SNA would get a
further development by reducing the stroke volume, inhibit-
ing the sympathetic inhibitory effect of lung extension recep-
tors through apnea, or both. When the SNA is strengthened,
the increased left ventricular afterload together with
increased heart rate will lead to a mismatch between myo-
cardial oxygen supply and demand, which makes patients
acutely susceptible to myocardial ischemia and arrhythmia
and chronically susceptible to left ventricular hypertrophy,
left ventricular enlargement, and HF [18, 19].

For the diagnosis of HF complicated with sleep apnea
syndrome, the common clinical method is CT, which has
the characteristics like it can be operated simply, economi-
cal, and practical. It has a good presentation effect on tho-
racic diseased tissues and can meet the needs of clinical
diagnosis of HF combined with sleep apnea syndrome in
general. However, if to improve the efficiency and accuracy
of clinical diagnosis further, the resolution of CT images is
still a little low, which may cause some details of diseases
be ignored. Therefore, it is necessary to improve the quality

of CT images. In recent years, the use of artificial intelligence
algorithms for processing medical images is a major trend in
medical imaging [20]. Threshold segmentation on the basis
of intelligent algorithms is the most common method for
image segmentation. In a grayscale image under the algo-
rithm in this work, the pixel value in the target area was sim-
ilar to the adjacent pixel value in the background, and the
pixel values of different target areas are different. The region
segmentation was then processed according to the peak
value of the target region displayed on the histogram [21,
22]. For traditional segmentation algorithms are affected by
image noise and other factors, the poor segmentation is pro-
duced. The single threshold segmentation model has had an
excellent achievement in the segmentation of medical
images [23, 24].

In this research, the single threshold segmentation
algorithm-based CT technology was applied for diagnosing
HF complicated with sleep apnea syndrome. The results sug-
gested that the image quality processed by the single thresh-
old segmentation algorithm was better notably, and the
distinctions between lesions and tissues were also highly
improved. The single threshold algorithm showed a better
segmentation performance compared with the traditional
algorithm. In the diagnosis with CT technology under single
threshold segmentation algorithm, remarkable differences
were shown between the patients and the normal people of
the control group. This illustrated that the single threshold
segmentation algorithm-based CT technology had a grander
application prospect and value in the diagnosis of HF com-
plicated with sleep apnea syndrome.

6. Conclusion

With deep learning technology, the thoracic CT image seg-
mentation and classification were done for the improvement
of clinical diagnosis of patients with HF complicated with
sleep apnea syndrome. CT technology under the singular
threshold segmentation algorithm could segment the lesions
well and accurately of HF complicated with sleep apnea syn-
drome patients. Under the diagnosis with this technology,
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Figure 6: Comparison of imaging results between the two groups. ∗ indicated that the differences between groups were of statistical
significance, P < 0:05.
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the imaging characteristics were presented with obvious dif-
ferences between the patients and normal control popula-
tion. It was proved that single threshold segmentation
algorithm-based CT technology possessed a greater applica-
tion value as well as prospect in the diagnosis of HF compli-
cated with sleep apnea syndrome.

However, there were still some limitations in this study.
Deep learning was applied and studied only for the segmen-
tation and classification of the lesion areas in the patients’
CT image; its application for the evaluation of the patients’
CT image after treatment was not included. Meanwhile, only
one imaging diagnosis method was analyzed, and more
imaging diagnosis methods and in-depth evaluation of the
impact of different indexes on the prognosis of patients
needed further researches. In conclusion, the results of this
study can offer an effective improvement to the diagnosis
of patients with HF and sleep apnea syndrome, guidance
for subsequent clinical treatment, and theoretical basis for
follow-up researches of imaging examination methods.
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