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For the analysis of the recent deadly pandemic Sars-Cov-2, we constructed the mathematical model containing the whole
population, partitioned into five different compartments, represented by SEIQR model. This current model especially contains the
quarantined class and the factor of loss of immunity. Further, we discussed the stability of the SEIQR model (constructed on the
basis of system of coupled differential equations). The basic reproduction that indicates the behavior of the disease is also estimated
by the use of next-generation matrix method. Numerical simulation of this model is provided, the results are analyzed by
theoretically strong numerical methods, and computationally known tool MATLAB Simulink is also used for visualization of the
results. Validation of results by Simulink software and numerical methods shows that our model and adopted methodology are
appropriate and accurate and could be used for further predictions on COVID-19. Our results suggest that the isolation of the
active cases and strong immunization of patients or individuals play a major role to fight against the deadly Sars-Cov-2.

1. Introduction

At present, emergence of deadly respiratory virus COVID-19
throughout 209 countries of the world is a major global
concern. Primarily, this virus was known as Severe Acute
Respiratory Syndrome Coronavirus-2 (Sars-Cov-2), which
initially came out inWuhan city of China. COVID-19, which
originated at the end of December 19 in Wuhan, China, is
considered to be the third epidemic of CoV, and it is holding
almost the same symptoms like Sars-CoV. And this disease is
found to be more deadly than the coronavirus Sars.

Since its outbreak, this virus has caused enormous deaths
up to 4,182,831 and has infected 195,345,791 people world-
wide. The main cause of the outspread of this virus is the
contact of infected person with healthy individuals because
it was found in study that this infection is usually caused
by transmission of globules through coughing or sneezing.
These globules can stay in the air for a long time and can

cause infection to others. However, it is quite challenging
for the scientists to investigate the preventive measures
under which the spread of this virus can be controlled and
to produce a vaccination to fight against this virus. Until
now, almost 13 vaccinations against this disease exist and
scientists are still devoting their attentions to produce a
strong vaccination against this virus. A huge amount of
research has been carried out to look over the conditions
and circumstances by which this deadly virus can be con-
trolled. Scientists find out COVID-19 to be one of the crucial
outbreaks that attack the respiratory system [1]. One of the
main reasons behind the outspread of COVID-19 is due to
the transmission of germs through respiratory globules
among humans, and this virus is considered to be the vector
transmission. the WHO (World Health Organization)
warned that if control measures are not implemented in
time, then the outbreak of the coronavirus can spread more
rapidly [2].
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Qualitative analysis using the concept of basic reproduc-
tion ratio estimated by next-generation matrix and stability
theory of differential equations to examine the outburst of
COVID-19 was studied by Olumuyiwa et al. [3]; basically,
they estimated the epidemic behavior in Pakistan by using
some previous statistical data from Pakistan and they
applied numerical approaches Nsfd and Ode45 to figure
out the study.

Researchers are adopting different tactics to investigate
the growing behavior of the coronavirus and carrying out
their studies to find out the ways to bring COVID-19 to an
end. One of the methods of analyzing the behavior of
diseases is compartmental modelling that is applicable to
the mathematical models involving influential diseases. In
this approach, the population is allocated to various com-
partments with particular labels, for example, susceptible
(S) and infected (I). Mathematical models are quite helpful
in investigating the behavior of viruses, diseases, or infec-
tions and help out to conclude under what circumstances
the outbreaking virus can be eradicated or continued in
citizens and are often useful in estimating the duration of
an outbreak. These models are usually considered to take
form of differential equations.

Annas et al. constructed the mathematical model to
study the influential behavior of coronavirus [4, 5]; they also
discussed the stability of their proposed model. Suleman
et al., Ul Rahman et al., and Iqbal and Karaca numerically
investigated the fractional model of HIV [6, 7, 8]. The
National Health Organization instructed to keep away from
infectious person or animals either with fever or any respira-
tory problems and also directed to wear surgical masks and
directed continual use of hand sanitizers in public places
for self-safety from infection. Social distancing or less
crowded places can reduce the risk of spreading of coronavi-
rus because it is more likely to spread in compact places.
Batista constructed the SIR model to guess the finishing
measurements of coronavirus [9]. Moreover, the basic
reproductive number ðR0Þ is very effective in approximating
the transmission rate of an infection; i.e., it is also useful in
estimating the ratio of occupants required to be immunized
in order to wipe out the infection.

Basic reproductive number is estimated basically from
the mathematical model, and in most epidemic models, the
spreading rate of infection or disease-free equilibrium point
is said to be endemic or stable if R0 lies between 0 and 1,
otherwise it will be epidemic or unstable. Substantially, the
larger the values of R0, the harder it is to take control of
the outbreak of the disease. Zhao et al. proposed the test
approximation of the basic reproductive number ðR0Þ for
the breakout of COVID-19 during its early stages [10, 11].
However, it is not that easy to find out the explicit expres-
sion for the basic reproductive ratio so more advanced
approaches, e.g., next-generation matrix, are required to
estimate the reproductive number [12]. The study of basic
reproduction ratio ðR0Þ for dissemination of epidemical
infection was presented by Van den Driessche and
Watmough, and they also bring forward the stability and
unstability of infection free equilibrium based on reproduc-
tive ratio [13, 14].

The use of epidemic computational simulation models
play a key role in estimating the transferal parameters and
in guessing the influential behavior of the infection. These
models are proven to be useful in depicting the growth rate
or decay rate of viruses with the passage of time and are
quite helpful in providing the control measures that can be
adapted to reduce the spread of the disease. A lot of results
and applications carried out from the simulation models of
COVID-19 are being accepted and published. Abdulrahman
presented the computer software Simulink program to track
the contagious virus COVID-19. He used SEIRD and SIR epi-
demic models in the form of algebraic-differential equations
and simulated the results by using Simulink approach [15].

One way of examining the influential growth of this deadly
outbursts is to use the computer simulation block models. In
various publications, different numerical as well as analytical
approaches are taken into account to carry out the outputs
of SIR, SEIR, and SEIRD models. A SIR model involving the
immigration rate was proposed by Ud Din et al. They simu-
lated their outputs by applying the approach of Nsfd and
investigated the changing behavior of epidemic due to immi-
gration factor between different classes [16].

Numerical approaches are also useful in analyzing the
changing behavior of the outburst diseases and can provide
some better precautionary measures to prevent the diseases
transmission. In literature, average researchers have usedmesh-
less as well as numerical methods like FDM, FVM, FEM, Euler,
and Runge-Kutta. But the classical numerical methods like RK
and Euler are less computational, efficient, and easily applica-
ble, as meshless methods are useful in simulating physical
phenomena including biological as well as engineering-related
problems, as if analyzed the SEIR model of disease by applying
meshless methods like EFBMM and OSBMM [17].

Ahmed et al. adapted some numerical techniques,
including Rk2, Rk4, and Euler’s method as well as simula-
tion process to study some mathematical models developed
for COVID-19. Further, they estimated the epidemic size
for Iraq and Turkey with the help of a logistic model [18,
19]. Maier and Brockmann presented the growth rate of
COVID cases in contrast with the initial rate of suspected
cases [20, 21]. Baba et al. numerically investigated the effects
of the lockdown by constructing the model based on five
equations and also discussed the equilibria and its stability
[22, 23]. Zha et al. proposed the fuzzy-based approach in
order to lessen the outbreak of the novel Sars-Cov-2 [24].

Bassetti et al. studied the contaminating behavior of
COVID-19, and further, they investigated what obstacles we
can face due to this virus [25, 26]. Cao et al. presented the
study predicated on the Arimax and SEIRmodel; further, they
proposed some precautionary measures to suppress COVID-
19 [27, 28]. Chen et al. reported the Sars reappearance in
COVID-19, andDiao et al. reported on the deletional behavior
of T-cells because of Sars-Cov-2 [29, 30].

Peto, Hussain et al., and Kucharski et al. found in their
study that people with less immunity are at risk of getting
infectious; moreover, they suggested that this risk can be
reduced if the population is tested weekly so that the infec-
tious individual could be quarantined at time and the disease
will be less likely to be spread and people can resume their
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normal life [31, 32, 33]. Tuli et al. suggested that machine
learning is quite useful in finding what possible trajectory
can a disease follow in the future. In order to trace the grow-
ing behavior of Sars-Cov-2, they proposed the model rest on
machine learning [34]. Khoshnaw et al. pointed towards the
significance of using computational simulation tools to fore-
cast the behavior of infections. They bring forward the idea
of sensitivity analysis to test the sensitivity of the models for-
mulated on the basis of differential equations [35, 36].

Ul Rahman et al. proposed the model for paint industry
effluent and simulated the results by using MATLAB Simu-
link tool [37].

The short-term analysis of Sars in three huge cities of
India was investigated by Mandal et al.; also, they advanced
the method to control out the basic reproduction ratio [38,
39]. Liu et al. studied the intercontinental tide of the respira-
tory Sars-Cov-2 [40, 41]. Neher et al. estimated how the
discrepancy of seasonal forces helps in the modification of
Sars-Cov-2 [42, 43]. Ozair et al. formulated the SIR model
to study the transmission behavior of COVID-19 in
Romania and Pakistan [44].

Egbetade et al. analyzed the SIR model of the infections
and also discussed the existence of equilibria and the reac-
tion of disease on the basis of R0 [45, 46]. Ul Rahman
et al. used the concept of numerical simulation to model
some industrial problems and analyzed the models by using
numerical techniques and Simulink [47, 48]. Abdulrahman,
Iqbal and Wu, and Rahim et al. used simulation programs
to analyze the mathematical models constructed to study
COVID-19 and biological models [49, 50, 51, 52].

From the above studies, it has been concluded that the
reason behind the global outspread of COVID-19 is dense
places and migration of infected people and loss of immu-
nity in people to fight against diseases. Therefore, to control
the outspread of CoV, it is necessary to quarantine the
infected person and moreover, strong immunization of
patients must be necessitated to get rid from this infection.

(i) In this study, we will estimate the control of some
parameters including immunity parameter and iso-
lation class that will be beneficial to provide some
controlling features for the above-mentioned dis-
ease. This research work is constructed by the SEIQR
model based on nonlinear differential equations, and
the model is analyzed by the simulation block
models and by using some numerical approaches.
Furthermore, the stability of the reproduction ratio
(R0) and the existence of disease-free equilibria are
also studied. The idea of next-generation matrix is
utilized to find out the reproduction ratio

(ii) The summary of our work is as follows: we applied
Euler’s method, Rk4, and Ode45 to obtain the
results for our differential-equation epidemic model

(iii) Another aim is to estimate the local stability of
reproductive number

For this purpose, we divided the paper in three sectors.
The first section is for the mathematical model; in the
second section, the stability analysis and the existence of

equilibrium point are discussed; and in the last section, the
numerical and graphical outcomes are represented.

The flow diagram of the SEIQR model is presented
below. In the flow diagram (Figure 1), the transmission of
population with different transition rates, among the five
compartments, is shown. In Figure 1, the parameter Z is
representing the rate of population joining the susceptible
class and further, the individuals from the susceptible
community are moving to the infected as well as exposed
community with β force of infection. The parameter πE
indicates the switching rate of individuals from the exposed
to the infected class. The isolated class contains the individ-
uals from the exposed and infected class, with γ and σ join-
ing rates, respectively. Further, recovered individuals with
lack of immunity leave the recovered class with α rate and
move to the susceptible class.

2. Formulation of Mathematical Model

The SIR model is the simplest fundamental model constitut-
ing three compartments of complete population. And it was
first used in 1916 and then in 1927 to estimate the behavior
of diseases and viruses. Other models like SEIRD, SIRD, and
SEIR are the extensions of this basic model.

The present model is the SEIQR model. As the reason
behind the upsurge COVID-19 is the lack of immunity
and the contact of infected patients with other healthy indi-
viduals, therefore, in the said work, the SEIQR stochastic
mathematical model is formulated involving the immunity
parameter and the quarantined community.

For this, the partition of whole population is placed in
five different compartments named as (i) susceptible (S),
(ii) exposed (E), (iii) infected (I), (iv) quarantined (Q), and
(v) recovered (R).

The susceptible class contains those individuals having
mild symptoms and who are at risk of getting infectious
Table 1. The individuals who are needed to be quarantined
are indulged in isolated class, and people who caught the dis-
ease are present in the infected class, whereas the recovered
compartment contains those individuals who are either dead
or have recovered from infection or the people who are still
at risk of getting infectious again due to less immunity.

2.1. SEIQR Mathematical Model. The SEIQR model is given
by the following nonlinear 1st-order differential equations,
and the description of each compartment is given Table 1.

dS tð Þ
dt

= Z − μS tð Þ − β Nð ÞS tð Þ E tð Þ + I tð Þð Þ + αR tð Þ,
dE tð Þ
dt

= β Nð ÞS tð Þ E tð Þ + I tð Þð Þ − πE tð Þ − μ + γð ÞE tð Þ,
dI tð Þ
dt

= πE tð Þ − μI tð Þ − σI tð Þ,
dQ tð Þ
dt

= γE tð Þ + σI tð Þ − θQ tð Þ − μQ tð Þ,
dR tð Þ
dt

= θQ tð Þ − μR tð Þ − αR tð Þ:

ð1Þ
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Each equation is describing the transmission behavior of
individuals in the respective compartments. By this trans-
mission, number of individuals can vary in each of the five
compartments. The description of the transition rates in
each cell is given in Table 2.

Let us define the initial conditions to be Sð0Þ = S0 ≥ 0, E
ð0Þ = E0 ≥ 0, Ið0Þ = I0 ≥ 0, Qð0Þ =Q0 ≥ 0, and Rð0Þ = R0 ≥ 0.

The precise definition of the compartments used in the
formulation of the model can be seen from Table 1 [3, 53, 54].

3. Positivity and Stability of Solution

3.1. For Positivity and Boundedness of Solution. For the pos-
itiveness of the solution and bounded solution of the above
system, it is necessary that the solution maintains nonnega-
tivity for all t ≥ 0.

And it was found that

dS tð Þ
dt

= μ ≥ 0 at S = 0,

dE tð Þ
dt

= βNSI ≥ 0 at E = 0,

dI tð Þ
dt

= πE tð Þ ≥ 0 at I = 0

dQ tð Þ
dt

= γE tð Þ + σI tð Þ ≥ 0 atQ = 0,

dR tð Þ
dt

= θQ tð Þ ≥ 0 atR = 0:

ð2Þ

The interpretation of the parameters used in the formu-
lation of the model can be seen from Table 2 given below.

Exposed
community

Infected
community

Susceptible
community

β

β

лEz Isolated
community

Recovered
community

σ

αR

γ

Figure 1: Flowchart of the proposed SEIQR model.

Table 1: Definition of the compartments.

Compartments Brief definition

S Susceptible community (susceptible to disease)

E Exposed community (those people who come in contact with the virus)

I Infected community (when someone is exposed to the disease and having 70% symptoms)

Q Quarantined community

R Recovered community

Table 2: Precise interpretation of the parameters.

Parameters Interpretation

Z Rate of individuals joining susceptible class

μ Defining death toll due to virus and by natural means

β Rate of susceptible individuals joining exposed and infected individual class

α Lack of immunity toll

π Exposed class joining infected individuals

γ Immigration rate of exposed individuals to quarantined class

σ Rate at which infected individuals are joining quarantined class

θ Recovery rate of quarantined population
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3.2. Stability of Solution and State of Existence of Positive
Equilibrium Point. The stability of our mathematical model
mainly relies on the basic reproduction ratio; moreover,
the existence of positive equilibria is also depending on R0.
To determine R0, we used the next-generation matrix
method and obtained

R0 = βN
μ + π + σ

σ + μð Þ π + γ + μð Þ , ð3Þ

since R0 is defined by the relation

R0 = ρ FV−1� �
: ð4Þ

R0 equals the eigenvalue of FV−1, where F includes the
terms with secondary infectious disease and V includes the
terms other than the secondary infectious disease.

And the stability of system can be decided from R0, i.e.,
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Figure 2: Dynamical behavior of population in the susceptible compartment with strong immunity.
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Figure 3: Dynamical behavior of population in the susceptible compartment with strong immunity.
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(i) the proposed system is stable with infection-free
equilibria for R0 < 1

(ii) the proposed system is unstable with infectious equi-
libria for R0 > 1

The stability discussed here is basically local stability.

3.3. Simulink Block Model. In order to speculate and trace the
eruption of Sars-Cov-2, we proffered the computer-based sim-
ulation scheme in this considered article. For this objective, the

respective differential equations are simulated with the help of
blocks available in the library browser of Simulink-MATLAB.
Simulink tool is easy to use for the purpose of predicting
behavior of any natural phenomenon or system. The above
considered mathematical model is rooted in Simulink with
the help of block diagram given in the appendix.

4. Numerical Simulation and Results

For the output of the present model, we implemented two
numerical methods Euler’s method and Rk4. Also, we
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Figure 4: Dynamical behavior of population in the susceptible compartment with less immunity.
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simulated our results with the help of simulation by using
Simulink blocks.

The dynamical behavior of population in all five classes
is shown graphically by taking different time periods. Fur-
ther, the comparison of three methods Ode45/Simulink,
Rk4, and Euler method is shown in graphs.

The changing behavior of population in various compart-
ments for the stable infection, i.e., for endemic case R0 < 1.

Dynamics of population over 365 days, in various compart-
ments for unstable infection, i.e., for pandemic case R0 < 1.

As no proper vaccination for the disease is discovered yet,
so the entire individuals are at risk of getting contaminate by
this infection. That is why the whole population is often put
into the susceptible class. From the susceptible class, the enti-
ties of that class can get infected by making contact with an
infectious person and then, they can join the infected class as
well as the exposed class. The differential behavior of the sus-
ceptible entities is shown in Figure 2(a) for the case of endemic
disease. In Figure 2(a), the behavior is depicted over the period
of 20 days as one can see that when we have an endemic case,
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so the susceptible class has a constant rate of variation as peo-
ple are at less risk of getting engaged to the disease and there
will be less movement of individuals from this class to other
compartments. Moreover, in Figure 2(b), the graph is depict-
ing the changing behavior of the population in the susceptible
class over the period of 40 days and in Figures 3(a) and 3(b),
the variation in susceptible individuals is shown over the
period of 60 and 80 days, respectively. Another aspect of the

constant variation of individuals in the susceptible class is that
when we have the population with strong immunity system,
i.e., less people will get infected to the disease. The above-
mentioned graphs are drawn for the strong immunity param-
eter. And all these results are carried out with the help of
Ode45, Rk4, and Euler’s method.

In Figures 4(a) and 4(b), the transition behavior of the
population having less immunity is discussed, since for less
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immunization factor, there is higher probability of getting
involved with the infection. As one can see from both
graphs, individuals from the susceptible cell are becoming
part of infected as well as exposed cells. The decreasing
behavior is depicting the tendency of people getting infec-
tious and exposed.

The variation of entities in the exposed cell considering
the case of endemic virus is depicted in Figures 5(a), 5(b),

6(a), and 6(b). One can see that the graph of this class is
illustrating the sharp reduction throughout different periods
of time. The reason behind this decrement is the immigra-
tion of individuals from the exposed class to the infected
class. As the exposed individuals have almost 60% signs of
the disease, so they are almost considered to be infected
and therefore, the graphs are showing the sharp rate of
variation from the exposed cell to the infected one.
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Figure 10: Dynamical behavior of population in the isolated compartment.
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Figure 11: Dynamical behavior of population in the recovered compartment.
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The evolution of individuals in the infected community
is portrayed in Figures 7 and 8. The transition behavior of
individuals in the infected class is depicted in Figure 7(a)
over the period of 20 days; the initial increment is due to
the joining of the infected cell of exposed people, and in
Figure 7(b), the graph is drawn for the time period of 40
days; the early increasing behavior is due to the increase of
population in the infected cell, and the decreasing behavior

later is due to the movement of patients from the infected
to the quarantined cell. In Figures 8(a) and 8(b), the dynam-
ical behavior of the population is illustrated over the period
of 60 and 80 days, respectively. The diminution after some
time is due to the immigration of patients to the isolated cell.

As we are considering the isolation of patients in order
to prevent the further spread of the disease, so the infected
patients are needed to be quarantined for the reduction of
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Figure 12: Dynamical behavior of population in the recovered compartment.
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Figure 13: Dynamical behavior of population in the susceptible compartment.

10 Computational and Mathematical Methods in Medicine



the spread. The dynamical behavior of the quarantined pop-
ulation is shown in Figures 9 and 10 for different time
periods. From these graphs, it can be seen that people are
getting involved in the recovered cell with sharp rate if they
are quarantined in time. The variation of recovered popula-
tion is drafted in Figures 11 and 12; it can be seen that the
graphs are depicting an increasing behavior; the reason
behind this sharp recovery is due to the isolation of infected
individuals and the strong immunization of the patients. The
initial decrement is due to the less immunity factors and the
deaths of patients either by disease or other reasons.

The dynamics of population in the susceptible class is
shown in Figures 13(a) and 13(b); in Figure 13(a); the behav-

ior is shown for the strong immunity parameter; on the
other hand, the graphical results are depicted by considering
weak immunity among individuals. In Figure 14(a), transi-
tion behavior in the exposed class is depicted over 365 days;
the decreasing effect is due to the transition rate of individ-
uals from the exposed class to the infected class, in which
in Figure 14(b), the dynamics of population in the isolated
class displays the initial increment and then decrement of
population; this fluctuation is due to the joining and motion
of individuals in this class from other classes. In
Figure 14(c), the dynamics of individuals shows the rise in
population of the isolated class and the later declining
behavior shows the flow population from the isolated class
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Figure 14: Dynamics of population in exposed, infected, and isolated compartments.

11Computational and Mathematical Methods in Medicine



to the recovered class. Further, in Figures 15(a) and 15(b),
the weak and strong immunity among individuals is consid-
ered, respectively; Figure 15(a) shows a slow rate of recovery
due to loss of immunity; and Figure 15(b) shows a sharp rate
of recovery due to strong immunity.

Now, the illustration for the transmission dynamics of
population in each compartment is considered for the case
of epidemic disease. In Figures 16(a) and 16(b), the rate of

change of population in the susceptible class is illustrated
for 20 and 40 days, respectively, by taking into account the
epidemic behavior of disease. We can see the suppressed
behavior of population in the S class that is due to the fact
that people from this class can catch the infection and can
move to other compartments. In the endemic case, we have
a higher rate of transition from one cell to another, as com-
pared to the epidemic case. The same reaction of population
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Figure 15: Dynamical behavior of population in the recovered compartment.
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Figure 16: Dynamical behavior of population in the susceptible compartment.
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is shown in Figures 17(a) and 17(b) considering 60 days and
80 days, respectively.

In Figures 18 and 19, transmission dynamics of popula-
tion in the exposed cell is given. The prime rise is by the
increase in population of this cell, as from the susceptible
class, more individuals are engaging in this class and the
later decrease is due to the fact of epidemic behavior, as dis-
ease is not in control so exposed individuals are getting
involved in infected cell. And the reason behind the inflation
of population in the infected class is the excessive amount of

indulgence of individuals between the exposed and infected
classes due to the epidemic behavior as one can see in
Figures 20 and 21.

Figures 22 and 23 show the dynamics of population in
the isolated compartment over 20, 40, 60, and 80 days,
respectively. The recovered rate of the population is pre-
sented in Figures 24 and 25; it can be seen from the graphs
that in the case of epidemic virus, we have slow-going recov-
ery of infected individuals as compared to those in the case
of endemic behavior. Similarly, the dynamical behavior of

Su
sc

ep
tib

le
 co

m
m

un
ity

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0

Time (days)

Dynamical behavior of susceptible individuals

0 40 60

0.1

30 502010

Ode45
Euler method
RK4

(a) Transition behavior of individuals over 60 days
Su

sc
ep

tib
le

 co
m

m
un

ity

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0

Time (days)

Dynamical behavior of susceptible individuals

0 40 80

0.1

30 702010 6050

Ode45
Euler method
RK4

(b) Transition behavior of individuals over 80 days

Figure 17: Dynamical behavior of population in the susceptible compartment.
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Figure 18: Dynamical behavior of population in the exposed compartment.
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the population over 365 days is given in Figures 26, 27, and
28 for each cell. It is readily apparent from the graphical
results that

(i) for

R0 = βN
μ + π + σ

σ + μð Þ π + γ + μð Þ < 1, ð5Þ

the virus is endemic and stable so less people will catch the
infection

(ii) for

R0 = βN
μ + π + σ

σ + μð Þ π + γ + μð Þ > 1, ð6Þ
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Figure 19: Dynamical behavior of population in the exposed compartment.

In
fe

ct
ed

 co
m

m
un

ity

4

3.5

2.5

3

2

1.5

1

0.5

0

Time (days)

Dynamical behavior of infected individuals

0 10 205 15

Ode45
Euler method
RK4

(a) Transition behavior of individuals over 20 days

In
fe

ct
ed

 co
m

m
un

ity

8

6

7

5

4

3

2

1

0

Time (days)

Dynamical behavior of infected individuals

0 25 4015 352010 305

Ode45
Euler method
RK4

(b) Transition behavior of individuals over 40 days

Figure 20: Dynamical behavior of population in the infected compartment.
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Figure 21: Dynamical behavior of population in the infected compartment.
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Figure 22: Dynamical behavior of population in the isolated compartment.

15Computational and Mathematical Methods in Medicine



Is
ol

at
ed

 co
m

m
un

ity
3.5

3

1

2

0.5

0

Time (days)

Dynamical behavior of isolated individuals

0 60

2.5

1.5

40 5020 3010

Ode45
Euler method
RK4

(a) Transition behavior of individuals over 60 days
Is

ol
at

ed
 co

m
m

un
ity

5

4.5

3

4

2

1

2.5

3.5

1.5

0.5

0

Time (days)

Dynamical behavior of isolated individuals

0 8040 7020 3010 50 60

Ode45
Euler method
RK4

(b) Transition behavior of individuals over 80 days

Figure 23: Dynamical behavior of population in the isolated compartment.
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Figure 24: Dynamical behavior of population in the recovered compartment.
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Figure 25: Dynamical behavior of population in the recovered compartment.
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Figure 26: Dynamics of population in susceptible and exposed compartments.
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Figure 27: Dynamical behavior of population in infected and quarantined compartments.

Re
co

ve
re

d 
co

m
m

un
ity

1

0.3

0.7

0.1

0

Time (days)

Dynamical behavior of recovered individuals

0 350

0.9

0.5

0.2

0.6

0.8

0.4

200 300100 15050 250

Ode45
Euler method
RK4

(a) Transition behavior of individuals over 365 days with weak immunity

Re
co

ve
re

d 
co

m
m

un
ity

1

0.3

0.7

0.1

0

Time (days)

Dynamical behavior of recovered individuals

0 350

0.9

0.5

0.2

0.6

0.8

0.4

200 300100 15050 250

Ode45
RK4
Euler method

(b) Transition behavior of individuals over 365 days with strong immunity

Figure 28: Dynamical behavior of population in recovered compartment.
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the virus is epidemic and unstable so, more people will catch
the infection

The changing behavior of population in various compart-
ments for unstable infection, i.e., for pandemic case R0 > 1.

Dynamics of population over 365 days, in various compart-
ments for unstable infection, i.e., for pandemic case R0 > 1.

5. Conclusion

In the said study, we concluded that isolation of the
infected person and strong-immunization of the individuals
can be taken as precautionary measures to control the virus.
By following the Sops implemented by the government, we
can prevent the further outbreak of this disease. For the
unstable case, it can be seen that there is sharp variation
of entities among all five classes. And for the lower immu-
nity factor, individuals are still at risk of getting infectious
and there are fewer chances of recovery. And for the stable
case, it is apparent from graphical results that less people
are exposed to infection. As in the susceptible class, we have
constant behavior of population with zero loss-immunity
parameter. But if we include the lack of immunity parame-
ter, we can see that more people are joining the exposed
and isolation classes but the situation is in control since
we have endemic behavior here. In Section 3, it is discussed
in detail. The comparison of the three methods can also be
seen from the graphs. It can be seen that Ode45 is more
accurate than Euler’s method (1st-order RK method) and
Rk4 as it is built in MATLAB and it implements Rk4 or
Rk5 to solve the equations.

Validation of results by Simulink software and numerical
methods shows that our model and adopted methodology
are appropriate and accurate and could be used for further
predictions on COVID-19.

Appendix

A. Simulink Block Diagram

Simulink software is helpful to analyze the performance of
any system or reaction of any natural phenomenon. Simu-
link tool is quite handy for the prediction and forecasting
of any disease or infection. This tool is based on block dia-
grams and is beneficial in modeling and investigating the
dynamical behavior of various phenomena. Engineers and
scientists use Simulink software to test their proposed
designs and models before finalizing their results. A mathe-
matical model (constructed with the help of block diagrams)
is required to start up the simulation program.

It is available in the main page of MATLAB. One can
click on the Simulink icon, and it opens up with the Simu-
link start page. There, it appears with Simulink library
browser constituting a huge library of blocks like math oper-
ations, sinks, sources, and commonly used blocks. The above
mathematical model presented in Figure 29 is simulated by
the formulation of block models based on integrators, gains,
add blocks, product, and scope.

The product, integrator, sum, gain, and scope are avail-
able in the commonly used block library but they have
different libraries too. The add and gain block is also avail-
able in the library of math operations; display and scope
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Figure 29: Simulink block model diagram of the considered SEIQR mathematical model.
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can be found in sinks. The add block is used to sum the
inputs, the product block is used the multiply the inputs,
and scope represents the results graphically. And integrator
is accessible from continuous block library. The integrator
block integrates the input signal with respect to time.

The outputs for the presented formulated model was
simulated with the help of computer simulation software
which solves the models with the help of block diagrams.
The Simulink model is given by the following figure.

Data Availability

The numerical data used to support the findings of this
study are included within the article.

Additional Points

Highlights. The SEIRQ model is modified to study the epi-
demic Sars-Cov-2. The problem is analyzed by MATLAB
Simulink software and numerical methods (Euler method)
and ðRk4Þ. Evaluation of basic reproductive number is done
by the next-generation matrix method. Local stability of
infection-free equilibria is discussed. Numerical simulation is
performed for each class considered in the modified SEIQR
model. Results obtained for each class considering epidemic
and endemic behavior of disease are represented graphically
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