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Single-nucleotide polymorphism (SNP) involves the replacement of a single nucleotide in a deoxyribonucleic acid (DNA)
sequence and is often linked to the development of specific diseases. Although current genotyping methods can tag SNP loci
within biological samples to provide accurate genetic information for a disease associated, they have limited prediction
accuracy. Furthermore, they are complex to perform and may result in the prediction of an excessive number of tag SNP loci,
which may not always be associated with the disease. Therefore in this manuscript, we aimed to evaluate the impact of a newly
optimized fuzzy clustering and binary particle swarm optimization algorithm (FCBPSO) on the accuracy and running time of
informative SNP selection. Fuzzy clustering and FCBPSO were first applied to identify the equivalence relation and the
candidate tag SNP set to reduce the redundancy between loci. The FCBPSO algorithm was then optimized and used to obtain
the final tag SNP set. The prediction performance and running time of the newly developed model were compared with other
traditional methods, including NMC, SPSO, and MCMR. The prediction accuracy of the FCBPSO algorithm was always higher
than that of the other algorithms especially as the number of tag SNPs increased. However, when the number of tag SNPs was
low, the prediction accuracy of FCBPSO was slightly lower than that of MCMR (add prediction accuracy values for each
algorithm). However, the running time of the FCBPSO algorithm was always lower than that of MCMR. FCBPSO not only
reduced the size and dimension of the optimization problem but also simplified the training of the prediction model. This
improved the prediction accuracy of the model and reduced the running time when compared with other traditional methods.

1. Introduction

SNPs describe the genetic diversity caused by the replace-
ment of a single nucleotide in a DNA sequence in 1% or
more of a population [1–3]. Although the genotype of all
SNP loci could be identified through whole-genome
sequencing (WGS), it is costly and sometimes time-
consuming to perform [4, 5]. Therefore, there is a need to
identify tag SNPs. A tag SNP is a representative SNP in a
highly correlated haplotype region. Computational methods
can then be used to study complex genetic diseases [6–13],
drug targets [14–16], and viral evolution [17–19]. Therefore,
the selection of the tag SNPs is becoming increasingly
important in current genomic research, and many methods
for tag SNP selection have been proposed. These can be

divided into three categories: (1) linkage disequilibrium-
(LD-) based methods, (2) haplotype block-based methods,
and (3) prediction accuracy-based methods.

Linkage disequilibrium describes the occurrence of
alleles belonging to two or more gene locations on a chro-
mosome simultaneously, which is higher than the random
occurring frequency. The LD-based tag SNP selection
method selects a set of tag SNP loci with a high LD among
the loci so that the remaining number of untagged SNP loci
is still relatively high. This kind of method is often used to
classify SNPs of a given region into multiple LD clusters so
that the SNPs within the LD cluster end up having a strong
correlation (r2) of 0.8 or higher and hence carrying similar
variant information. The algorithm then selects a few repre-
sentative SNPs among these clusters, which form a tag SNP

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 3837579, 11 pages
https://doi.org/10.1155/2022/3837579

https://orcid.org/0000-0002-7132-960X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3837579


set [20–23]. The LD-based algorithms are usually fast and
are not necessarily limited to haplotype blocks. However,
the resulting tag SNP set is not always optimal, and it cannot
distinguish all haplotypes within the LD region [24]. In addi-
tion, the LD-based method only considers the information
associated between the SNP pairs and ignores the association
among multiple SNPs and the information from a single
SNP locus.

In the haplotype block-based method, genomic sequenc-
ing data are divided into several discrete haplotype blocks
according to the theory that the number of human haplo-
types is far less than the theoretical number [25]. A mini-
mum number of SNP sets within each block need to be
identified to enable the SNPs to distinguish every single hap-
lotype in the corresponding block [26, 27]. The haplotype
block-based method can resolve some of the LD-based
method limitations. For example, the selected tag SNP set
can identify most haplotype patterns, with only a small
amount of variation information missing. In addition, it
reduces the computational complexity on a large scale, facil-
itating the prediction of large datasets. However, haplotype
blocks are challenging to identify as they cannot be defined
using a single criterion. The incorrect identification of the
haplotype block will result in the identification of false-
positive tag SNPs. In addition, haplotype block-based
methods for tag SNP selection usually only make use of
the relationship between SNP loci within a block while
ignoring the relationship between SNP loci outside the
block. When there are many independent SNPs in the data-
set, the prediction results obtained by this model are usually
of poor quality.

In order to overcome the low accuracy of the LD method
and the uncertainty of the haplotype block method, Hall-
dorsson et al. proposed an informative SNP locus selection
method based on prediction accuracy [28]. This method
uses a set of SNP loci known as informative SNPs to recon-
struct the remaining nontag SNP loci with high accuracy.
The ability of the tag SNPs to represent all other SNPs is
generally assessed via the prediction accuracy evaluation
index. A higher prediction accuracy indicates an improved
ability for the tag SNPs to restore the genotypes of other
unlabeled SNPs, eventually improving the efficiency of the
research process. Furthermore, to minimize the risk of over-
fitting the model, the leave-one-cross-validation (LOOCV)
method is often used. This method utilizes a k-fold cross-
validation method whereby k is assumed to be equal to the
number of samples (N). The algorithm then takes one sam-
ple as the test set and the other N‐1 samples as the training
sets. The procedure is repeated N times, and the average
accuracy (ACC) is used to estimate the population-wise
accuracy according to the following formula:

Acc = 1 −
∑N

i ∑
Oj j
j sj − sj′
��� ���

Oj j ×N
, ð1Þ

In this formula, O represents the set of nonlabel SNPs,
jOj represents the number of nonlabel SNPs, N represents
the sample size, si represents the observed SNP locus geno-

type in the sample, si′ represents the locus genotype output
by the prediction model, and the absolute value of the differ-
ence between the two represents the prediction error. Note
that this formula applies only to the genotype from a haploid
species (haplotype) since the nonlabeled SNP prediction
problem can only be expressed using a classification of 0
and 1. However, the genotype in other species is usually
encoded as 0, 1, and 2. This may result in an accuracy greater
than one making the result meaningless.

An alternative approach is to identify a set of informative
SNP loci that can accurately predict the residual noninfor-
mation SNP loci (nontag SNPs) and reconstruct the corre-
sponding haplotype sequence. Therefore, Halperin et al.
proposed the tag SNP method to maximize prediction accu-
racy (STAMTA) for genotyping samples from a group of
unrelated individuals [29]. Although the existing tag SNP
selection methods improve the prediction accuracy of SNP
sites under certain conditions, they are far from enough for
practical applications. These methods still have some limita-
tions, including long calculation time, high complexity, low
precision, and unclear biological significance. Due to the
existence of these problems, the information-rich SNP site
selection and its accuracy prediction are still challenging in
genome research. In order to overcome this problem, the
particle swarm optimization algorithm (PSO) can be used
to optimize the characterization of SNP data by improving
the prediction accuracy without increasing the calculation
time. Because PSO has better optimization performance for
complex optimization problems. This method involves using
the linkage disequilibrium between SNPs to cluster all SNPs
and construct sets of candidate tag SNPs. Then, a candidate
set of tag SNPs is optimized and selected based on an
improved particle swarm algorithm of the bionic algorithm,
thus selecting the informative SNPs. Finally, the support
vector machine (SVM) model is used to predict the nontag
SNPs and reconstruct the haplotype. Specialized software
and the radial basis function (RBF) kernel are then used to
identify the C-SVC model in SVM. The gamma and loss
parameters of the kernel function are obtained using a grid
search of 0.07 and a cross-validation accuracy of 7. This
method does not rely on the partitioning of haplotype blocks
and makes full use of the characteristics of the tag SNP selec-
tion to design an appropriate fitness function. The resulting
model is therefore a less complex and more accurate algo-
rithm with a shorter computation time.

In order to overcome the above-mentioned shortcom-
ings and deficiencies of the existing work, we aimed to eval-
uate the impact of using a newly developed optimized fuzzy
clustering binary particle swarm optimization algorithm
(FCBPSO) on the SNP selection accuracy and algorithm
running time in comparison with traditional SNP selection
algorithms.

2. Materials and Methods

2.1. Description of the Tag SNP Selection Problem. The tag
SNP selection problem was defined in a sample set of n chro-
mosomes, whereby each chromosome contains m SNP loci
expressed as
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H = h1, h2,⋯, hnf g,
hi = SNP1, SNP2,⋯, SNPmf g:

ð2Þ

For convenience, we only considered haploid organisms
so that each chromosome can be expressed as a binary string
of 0 and 1, and all DNA samples were expressed as a matrix
(M) of size n ×m. The SNP at the jth locus in chromosome i
is represented using the formula

M i, j½ � ∈ 0, 1,−½ �, ð3Þ

where 1 represents major alleles, 0 represents minor alleles,
and “−” represents the missing locus.

Our goal was to find a tag SNP locus set R from the given
sample set H so that the number of elements in R is as small
as possible and the prediction accuracy of the nontag SNPs
is as high as possible. Informative SNP selection has been
proven to be an NP-hard problem. Therefore to find an opti-
mal solution, our method mainly consisted of two parts. The
first part involved the use of fuzzy clustering (FC) to obtain
the candidate informative SNP set. In the second part, the
particle swarm optimization (PSO) algorithm was used to
identify the informative SNP set. These two methods are
described in detail below.

2.2. Application of the FC Algorithm to Identify the
Candidate Informative SNP Set. The FC theory was first pro-
posed in 1965 by Zadeh and is now widely used in various
fields [30, 31]. The 2 main advantages of FC are the flexible
use of distance and the ability to incorporate some known
membership values into the numerical optimization. This
method could be applied in our study to identify the candidate
tag SNP sets as the LD relation among SNPs satisfied the sym-
metry and reflexivity criteria. This clustering method is effi-
cient and convenient since there is no need to set the
clustering number in advance. The following formula was
therefore used to identify the LD relationship. Assuming that
A(a) and B(b) are the major (minor) alleles at two SNP loci,
then the LD between the two loci can be calculated as

D = f AB − f A × f B: ð4Þ

If D > 0,

LD = D
min f A · f b, f a · f Bð Þ : ð5Þ

If D < 0,

LD = D
min f A · f B, f a · f bð Þ , ð6Þ

where f X signifies the probability of X appearing in the group.
For convenience, we assumed that rij represents the LD

value between the ith SNP and the jth SNP. Therefore the
relationship matrix of the m tag SNPs could be defined as
R = ðrijÞm×m whereby the domain U represents the SNP
locus. R was converted into a fuzzy equivalence relation

matrix and clustered using FC since it satisfied the reflexivity
and symmetry criteria and had a fuzzy binary relationship
with the U domain. Therefore, contrary to the traditional
flat method, the Warshall algorithm was applied to find
the transitive closure of the fuzzy similarity matrix and
obtain the fuzzy equivalence relation matrix tðRÞ to reduce
the computational complexity and time [32]. After obtaining
tðRÞ, the Boolean matrix tðRÞλ of the fuzzy equivalence rela-
tion was obtained according to the preset λ parameters, by
which the equivalence class ½I�R was calculated. The calcula-
tion was performed according to Formula (7). Finally, the
candidate tag SNP SR set was obtained by calculating the
center of each equivalence relation class.

The process used to obtain the candidate tag SNP set was
calculated in five steps according to the equivalence relation
described below.

Algorithm 1.

Input: an n ∗m chromosome sample matrix M, param-
eters λ ∈ ½0, 1:�
Output: a candidate tag SNPs set SI

Step 1: the fuzzy similarity matrix of the matrix M was
calculated using Formulas (4)–(6)

Step 2: the transitive closure of the similarity matrix R
was calculated using the Warshall algorithm, and the
fuzzy similarity relation matrix was transformed into
the fuzzy equivalence relation matrix

Step 3: the fuzzy equivalence relation matrix tðRÞ was
transformed into a fuzzy equivalence Boolean matrix t
ðRÞλ according to the preset parameters λ, and then,
the equivalence relation class ½I�R was calculated. The
division method of the equivalence relation class is as
shown in Formula (7):

t Rð Þ = �rij
� �

m×m,

t Rð Þλ = �rij λð Þm×m
� �

=
0, rij < λ,
1, rij ≥ λ,

( ð7Þ

where ∀SNPi, SNPj ∈ S, if ðrijðλÞÞ = 1, SNPi, and SNPj

belong to the same equivalence relation class

Step 4: the center of each equivalence relation class was
calculated, and each class center was combined into the
candidate tag SNP set SI. The center of each class was
obtained by calculating the sum of the LD value of each
locus and other members in the class. The largest locus
was regarded as the class center.

2.3. Development of the PSO Algorithm

2.3.1. The Theoretical Principle behind the Improved PSO
Algorithm. PSO was derived from the predation behavior
of flocks and was first proposed by Dr. Eberhart and Dr.
Kennedy in 1995 [33]. The original PSO algorithm concept
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provided a simple solution to each optimization problem by
regarding it as a bird searching space, called “particle,”
whereby each particle flies at a certain speed. When each
particle moves in the search space, it needs to consider its
current optimal historical position ðpbestÞ and the current
searched optimal historic population position ðgbestÞ. The
optimal position of the particles is evaluated for fitness,
using the objective function. Optimality means the highest
fitness, and in the PSO algorithm, it means that the birds
in the flock find the most food at a particular location. After
an iterative cycle, the particles of the whole group move
towards the optimal solution, like birds foraging for food.
Due to the simplicity of the PSO algorithm and its good
optimization ability, it is improved and used for
optimization.

2.3.2. Application of the Improved PSO Algorithm. In this
study, we assumed that for a population size of m particles,
each particle has n dimension space target search. This was
defined with the equations Vi = ðvi1, vi2,⋯, vinÞ whereby ith

is the particle speed and Xi = ðxi1, xi2,⋯, xinÞ is the current
location of the ith particle. The location of the optimal solu-
tion currently found by particle i is Pi = pbesti = ðpi1, pi2,⋯
⋯⋯pinÞ, and therefore, in the ðt + 1Þth generation, the speed
update formula of the ith particle in the dð1 ≤ d ≤ nÞ dimen-
sion is as shown in Equation (8), and the displacement
update formula is as shown in Equation (9):

vid t + 1ð Þ =wvid tð Þ + c1 rand ðÞ pid tð Þ − xid tð Þ½ �
+ c2RandðÞ gid tð Þ − xid tð Þ½ �, ð8Þ

xid t + 1ð Þ = xid tð Þ + vid t + 1ð Þ: ð9Þ
In these equations, w is the inertia factor, representing

the inheritance of the velocity of the original particle and
reflecting the motion inertia of particles. c1 and c2 are the
two acceleration constant factors, representing the tendency
of particles moving towards their historical best position and
the optimal position of the group, which belongs to the cog-
nition of themselves and the society. rand ðÞ and RandðÞ are
two random functions between the values of ½0, 1�. To avoid
particles that are beyond the boundary of the search space,
vid was limited to a certain range, that is, vid ∈ ½−vid max,
vid max�.

The general steps followed in the development of the
PSO algorithm were as follows.

2.3.3. Development of the Binary Particle Swarm
Optimization (BPSO). The general PSO algorithm is often
applied to the postgroup domain optimization problem
due to its simplicity and fast convergence speed. However,
its further development is limited because it only applies to
the functional domain of continuous space. To solve this
problem, Kennedy and Eberhart improved it in 1997 and
proposed the binary particle swarm optimization (BPSO)
algorithm for discrete space [34]. Note that lots of improved
version of PSO have been proposed for various applications
[35–37].

In the new BPSO algorithm, the coding mode terms were
modified so that the velocity no longer represents the rate of
positional change but instead represents the quantity proba-
bility reference of the particle positional change, which
allows the position to be expressed as a discrete type. After
the velocity particle updates according to Formula (8), the
sigmoid function was used as shown in Formula (10) to
map its velocity value to the interval of [0,1]. The particle
position was then updated according to Formula (11) to dis-
cretize its position, thus applying the BPSO algorithm suc-
cessfully to the discrete space field.

Sig vidð Þ = 1
1 + exp −vidð Þ , ð10Þ

xid =
1, sig vidð Þ ≥ rand ðÞ,
0, else:

(
ð11Þ

Formula (11) was then used to transform the sigmoid
function to calculate the probability that the particle takes
the value of 1 at the position.

There are some issues in applying the traditional BPSO
algorithm directly to the selection of informative SNPs. For
example, if the new particle swarm produces more particles
than the initial number of tag SNPs given in advance, the
unqualified solution problem occurs. In addition, when the
BPSO algorithm searches for the optimal solution, the particle
should be closer to the current to find the optimal particle in
the later stage of its iteration. Therefore, the speed of the
forward-moving particles during this time is gradually slowed
to almost zero. In other words, the factors that affect the par-
ticle speed should be just “self-cognition” c1∙rand ðÞ∙ðpbestid
− xidÞ and “social cognition” c2∙rand ðÞ∙ðgbestid − xidÞ.

In order to overcome this problem, a revision strategy
was applied to the solution. When the number of tag SNPs

Step 1: initialization of the population, including the size of the particle population, the initial position, and the velocity of each
particle
Step 2: the fitness of each particle in the population was calculated
Step 3: the pbest and gbest of each particle were updated according to the particle fitness value
Step 4: the particle velocity and position according to Formulas (8) and (9) were updated
Step 5: if the termination conditions were met, the final results would be the output. Otherwise, the process was repeated from Step 2

Algorithm 1: PSO.

4 Computational and Mathematical Methods in Medicine



was larger than the number of given tag SNPs, the reduction
correction strategy was adopted. Conversely, when the num-
ber of tag SNPs was less than the preset number, the increase
correction strategy was adopted. For example, if the number
of SNPs of a given tag was six and a newly generated particle
had a code of “010100110010111,” the particle would there-
fore select the second, fourth, seventh, eighth, eleventh, thir-
teenth, fourteenth, and fifteenth SNP loci, and a total of eight
SNPs would be used as tag SNPs. Therefore, a reduction cor-
rection strategy was adopted for such cases. The applied cor-
rective measures were defined as follows.

If the number of pregiven tag SNPs is S, for the ith parti-
cle, jXij = ðxi1, xi2,⋯, xjSIjÞ. The optimization process is still
based on the SI candidate set of the tag SNPs so that the
dimension of the ith particle is equal to the number of candi-
date tag SNPs, assuming jXij represents the number of tag
SNPs selected across the ith label particle, of which the value
is equal to the number of codes whose value is 1. clukj indi-
cates the class k to which the first candidate SNP locus
belongs, jclukjj indicates the size of the kth cluster, and the

size of jclukjj reflects the ability of the jth candidate SNP to
represent other loci. The larger the jclukjj, the higher the
probability that the other loci information is contained in
the candidate tag SNPs, and therefore more likely, the candi-
date tag SNPs can represent other SNP loci.

If S < jXij, a corrective reduction strategy was adopted to
sort the SNP locus, whereby Xij = 1, according to the size of
jclukjj, keeping the first S tag SNP, and encoding the follow-
ing ðjXij − SÞ loci from 1 to 0.

If ðjXij − SÞ, a corrective reduction strategy was adopted
to sort the SNP locus, whereby Xij = 0, according to the size
of jclukjj and encoding the previous ðS − jXijÞ candidate tag
SNPs from 1 to 0.

For the second problem mentioned above, the updated
formula of the traditional BPSO algorithm was improved
as shown in

vid t + 1ð Þ = c1 rand ðÞ pid tð Þ − xid tð Þ½ �
+ c2RandðÞ gid tð Þ − xid tð Þ½ �: ð12Þ

The advantage of Formula (12), when compared with
Formula (8), is that it removes the inheritance of the previ-
ous particle-generated velocity by only updating the velocity
determined by “self-cognition” and “social cognition.” This
slows down the forward-moving velocity of the particle
and makes it easier for the particle to approach the current
optimal solution being searched, avoiding the phenomenon
of skipping over the optimal solution. Further analysis of
the situation is described below.

The values of ðpbestid − xidÞ and ðgbestid − xidÞ can only
be 1, 0, and -1.

If the value is 0, then it is likely to be pbestid = xid or
gbestid = xid .

If the value is 1, then it is likely to be pbestid = 1 or
gbestid = 1 and xid = 0.

If the value is -1, then it is likely to be pbestid = 0 or
gbestid = 0 and xid = 1.

Given the above, the velocity vid can be greater than, less
than, or equal to zero.

If the velocity vid = 0, that is, pbestid = xid or gbestid = xid ,
then the value of the particle at the d dimension is the same
as the optimal position of the current particle or the optimal
historical position of the particle, and the locus should not
change.

If the velocity vid < 0, that is, pbestid = 0 or gbestid = 0
and xid = 1, then the value of the particle at the d dimension
is unequal to the optimal position of the current particle or
the optimal historical position of the particle, and the locus
is more likely to change from 1 to 0.

If the velocity vid > 0, that is, pbestid = 1 or gbestid = 1
and xid = 0, then the value of the particle at the d dimension
is unequal to the optimal position of the current particle or
the optimal historical position of the particle, and the locus
is more likely to change from 0 to 1.

Based on the above analysis, the change of particle posi-
tion evaluation and the change of the velocity consistent, in
Formula (10), were further improved as shown in

Sig vidð Þ =
1 − 2

1 + exp −vidð Þ , if vid < 0,

2
1 + exp −vidð Þ − 1, if vid > 0:

8>>><
>>>:

ð13Þ

Formula (13) coincided with the above speed analysis
and position update changes. When speed vid = 0, the
improved probability mapping function takes a value of 0,
and when vid < 0, or vid > 0, its mapped value tends to be 1.

According to the analysis above, when the iteration
reaches a later stage, the displacement formula also changes,
and the particle position formula was therefore updated as
shown in

xid t + 1ð Þ =
0,
1,

Sig vid t + 1ð Þð Þ ≥ rand ðÞ,
else,

(
if vid t + 1ð Þ < 0,

ð14Þ

xid t + 1ð Þ =
1,
xid tð Þ,

Sig vid t + 1ð Þð Þ ≥ rand ðÞ,
else ,

(
if vid t + 1ð Þ > 0:

ð15Þ

Formula (14) shows that in the case of a velocity vidðt
+ 1Þ < 0, the smaller vidðt + 1Þ is larger, and the current
position of the particle is more likely to be converted to 0;
otherwise, it does not need to be changed. In the case that
vidðt + 1Þ > 0, the larger vidðt + 1Þ is larger than sigðvidðt + 1
ÞÞ, and the current particle position is more likely to be con-
verted to 1; otherwise, it means that the xidðt + 1Þ is equal to
0, and the locus at that position does not need to be updated.
Therefore, through these improvements, the particle can
more easily approach the optimal global particle. When the
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velocity is 0, the probability of the particle locus equaling 0
increases.

2.3.4. Optimization Based on the Improved BPSO. The BPSO
algorithm was optimized as follows.

(1) Population Initialization. Similar to other bionic optimi-
zation algorithms, the start of the BPSO optimization pro-
cess is initialization. The initialization of the BPSO always
requires the initialization and assignment of velocity values
to each particle except for the initial particle swarm genera-
tion. Suppose the candidate set generated by fuzzy clustering
is SI. In that case, the initialization requires a binary coding
of the SI set whereby 1 means a locus label, 0 means a nontag
locus, and the initial particle swarm is randomly generated.
The initial velocity of each particle is randomly initialized
according to Formula (16):

vid 0ð Þ = vmin + rand ðÞ vmax − vminð Þ, ð16Þ

where vmin and vmax represent the minimum and maximum
values of the particle speed, respectively. The algorithm is
then updated according to Formula (8) in the early stage of
the iteration based on the initial particle velocity. While in
the late iteration stage, the algorithm is updated according
to Formula (12) to let the particle get closer to the current
optimum.

(2) Designing the Fitness Function. The particle that has the
memory function was initialized by the pbest and gbest par-
ticles in the search process so that the particles can reach the
approximate optimal solution more quickly. pbest and gbest
were selected according to the particle fitness. Since the
number of tag SNPs contained within the particles was con-
sistent, the design of the fitness function does not need to
consider the number of tag SNPs, and therefore, it is possible
to calculate the fitness of particle X according to

f Xð Þ = 1
m
〠
Xj j

j=0
clukj
�� ��, j ∈ 1,m½ �: ð17Þ

From Formula (17), the fitness of a particle can be deter-
mined by the number of other loci represented by the
selected tag SNPs in its particles. The ability of each tag
SNP to contain information of other loci is determined by
the size of the class to which it belongs. The pbest particle
search provides the best solution among the solutions in
the current search, that is, the one with the highest fitness.
Conversely, the gbest search provides the optimal current
solution for all particles. This means that pbest and gbest
need to be updated in each iteration.

The FCBPSO method improves the BPSO tag SNP selec-
tion method based on FC. The FC algorithm utilizes the
equivalent relation clustering to identify and optimize the
set of candidate tag SNPs. Then, the BPSO algorithm is
applied to select the tag SNPs. Finally, the nontag SNPs are
estimated by using the tag SNPs with the SVM classification

algorithm. The method flow chart is shown in Figure 1, and
the basic process is shown below:

The flow chart of its algorithm steps is shown in
Figure 1.

2.4. Evaluation of the New FCBPSO. To validate the effec-
tiveness of our method, we compared FCBPSO for tag SNP
selection in the bionic algorithm [38], SPSO [39], and
MCMR methods [40]. Liao et al. proposed an NMC tag
SNP selection method based on the ant colony algorithms
in 2012. The method utilized a mean clustering algorithm
in the sample reconstruction stage, with the accuracy of
the sample reconstruction as the optimization target, and
then solved by the ant colony algorithm. In the SPSO selec-
tion method, all SNP loci are encoded by using the discrete
BPSO. The design of the fitness function mainly considers
the number of tag SNPs and their prediction accuracy

Start

Gets SNP collection
of candidate label

Initialization
particle swarm

Legal solution

Calculate the suitability
of each particle

Judge termination
conditions

Update pbest and
gbest

Iter < a.MaxIter

according to formula (3),
(5), (6) update Particle
velocity and position

Create a new swarm
of particles

According to formula (7), (8),
(9), (10) update Particle

velocity and position

End

Fixed strategy
No

No

No

Yes

Yes

Yes

Figure 1: FCBPSO algorithm flow chart.
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according to the k-nearest neighbor method. In the MCMR
method, the principle of maximum association and mini-
mum redundancy between SNPs is used to select tag SNPs.
The MCMR method can be applied to different platforms
and large datasets, but it is complex and time-consuming
to perform.

Experimental data were obtained from the actual datasets
ENm013, ENr112, and ENr113 published by HapMap. These
datasets were sampled from 30 CEPH families, which belong
to regions containing SNP loci on chromosome 7q21.13. The
basic information of each dataset is shown in Table 1.

The tag SNP set was selected in FCBPSO, and the SVM
model was used to predict the nontag SNPs. Two evaluation
indexes, prediction accuracy and computational time, were
used in the comparison experiment. The computational tests
were carried out on a personal computer with a Pentium IV
processor and 4GB RAM.

3. Results

3.1. Prediction Accuracy. The prediction accuracy of the
newly developed FBBPSO, NMC, SPSO, and MCMR is
shown in Figure 2.

As shown in Figure 2, in most cases, the prediction accu-
racy of the FCBPSO algorithm is higher than that of the
other algorithms. In Figures 2(a) and 2(b), when the number
of tag SNPs was low, the prediction accuracy of FCBPSO was
slightly lower than that of MCMR. However, as the number
of tag SNPs increased, FCBPSO had the highest prediction
accuracy, followed by MCMR. When the number of tag
SNPs reached 10, the prediction accuracy of FCBPSO
exceeded 98%, while SPSO had a lower prediction accuracy.
For the ENr113 dataset, FCBPSO also showed similar supe-
rior performance. It is interesting to note that the NMC
algorithm could not directly operate on the ENr113 dataset
due to the long running time and therefore could not pro-
vide any result. As can be seen in Figure 2, the selected tag
SNP set by FCBPSO was more informative than those
selected by the other three methods and could represent all
SNP loci to a greater extent, hence improving the efficiency

of subsequent association analyses. In addition, as the num-
ber of loci in the sample data increased, the prediction accu-
racy of the four methods was generally reduced. For
example, when 10 SNP tags were selected, the prediction
accuracy of FCBPSO for the ENm013 dataset reached
98.7%, but for the ENr113 dataset, the prediction accuracy
was only 95.2%. As expected, as the number of the sampled
loci increased, a larger number of nontag SNPs with the
same number of tag SNPs need to be predicted, and there-
fore, the prediction error rate will also increase.

3.2. Running Time. To further prove the superiority of
FCBPSO, we also evaluated the algorithm running time.
The prediction accuracy of MCMR was similar to that of
FCBPSO and superior to that of other methods. Prediction
accuracy is the most important factor when evaluating algo-
rithm performance, as an erroneous judgment of an SNP
locus genotype may lead to errors in disease correlation
and drug analyses. Therefore, only FCBPSO and MCMR
were compared in the run time comparison test. The results
are shown in Table 1, and the time unit is second.

As illustrated in Table 2, the running time of FCBPSO is
much less than that of MCMR. MCMR uses the postdeletion
algorithm to remove redundant SNPs during the construc-
tion of the tag SNP subset. In the deletion process based
on the candidate tag SNPs, an exhaustive method was used
to enumerate each possible informative SNP. Only one
redundant SNP site was deleted at a time, and during each
iteration, the SVM prediction algorithm was used for both
training and testing, which is time-consuming. The FCBPSO

Table 1: The size of experimental datasets.

Name Number of SNPs Number of samples

ENm013 360 120

ENr112 411 120

ENr113 514 120

Input: all SNP loci sample sets S, fuzzy clustering parameters λ, w, particle swarm size P, maximum number of iterations MaxIter,
ratio parameters, particle minimum limiting velocity, and maximum limiting velocity
Output: tag SNP set SR
Step 1: the fuzzy clustering algorithm based on the equivalence relation to cluster S was used to obtain the candidate tag SNP set SI
Step 2: binary coding was applied on SI to randomly generate P group particle size and assign values to the initial velocity of each
particle according to Formulas (9) and (10)
Step 3: the legitimacy of the particle was judged, and if it was legal, the algorithm proceeded to the next step, and if it was illegal, a
revision strategy was adopted
Step 4: the fitness of the initial particle swarm was checked using Formula (17)
Step 5: pbest of each particle and gbest of the population were updated according to the particles fitness value
Step 6: for i = 1: MaxIter
If the velocity and position of the particle were updated according to Formulas (8), (10), and (11), or the particle velocity and position
were updated according to Formulas (12)–(15), perform Steps 3 to 5.
End
Step 7: the global optimal output particle was decoded, and the output tag SNP was set SR

Algorithm 2: FCBPSO.
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Figure 2: Continued.
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method increases the construction velocity of the label SNP
subset and updates the position of the formula so that the par-
ticle swarm can converge to the optimal solution at a faster
rate. Furthermore, the gbest particle used in the prediction
model only conducts training and prediction for the optimal
global individuals, eventually reducing the running time.

4. Conclusion

In this study, we proposed an informative SNP selection
method to improve the prediction accuracy of SNP detection
and reduce the running time. An FC algorithm based on the

equivalence relation was first used to identify a set of candi-
date tag SNPs. Subsequently, an improved BPSO algorithm
was used to optimize the selection of the candidate set of
tag SNPs. Different speeds and positions during the pre-
and postiteration stages were used to update the formulas,
improve the algorithm’s convergence speed, and reduce the
running time. In the selection process, we adopted a series
of measures to improve the performance of the algorithm.
The Warshall’s method was initially adopted to calculate
the transitive closure to obtain the equivalent relation
matrix, which has a higher performance when compared
with traditional flat methods. Then, the candidate SNP set
for the particle swarm initialization process was identified
to reduce the size and dimension of the optimization prob-
lem. Our final prediction model only needed to provide
training to the optimal global individuals in the particle
swarm and not repeatedly as in other traditional selection
methods based on prediction accuracy. This reduced the
running time and improved the efficiency of the model when
compared with other traditional methods. In the future, we
will integrate other feature selection methods like L0 [41],
ridge regression [42], and elastic-net [14, 43] and other com-
putational models like random forest[44, 45] and deep
learning [46] to further improve the performance of our pre-
diction model. In addition, this article is limited at
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Figure 2: Comparison of prediction accuracy. (a) The precision accuracy results of the NMC, SPSO, MCMR, and FBPSCO algorithms for
the ENm013 dataset. (b) The precision accuracy results of the NMC, SPSO, MCMR, and FBPSCO algorithms for the ENm112 dataset. (c)
The precision accuracy results of the SPSO, MCMR, and FBPSCO algorithms for the ENm113 dataset.

Table 2: Running time comparison of the MCMR and FCBPSO
algorithms for the ENm013, Enr112, and ENr113 datasets.

No.
ENm013 ENr112 ENr113

MCMR FCBPSO MCMR FCBPSO MCMR FCBPSO

2 11100 22.61 3100 20.81 19500 39.59

4 11000 17.51 3000 30.46 18000 53.34

6 10300 16.69 2700 30.75 17000 59.06

7 9600 18.64 1500 34.33 14800 57.22

10 8600 17.56 800 35.97 12000 58.16
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discussing a single objective. In fact, there are multiobjec-
tives that need to be considered at the same time, so we will
further discuss the situation of multioptimization objectives
in the future.

Data Availability

The data are available from the authors on reasonable
request.

Conflicts of Interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships leading
to a potential conflict of interest.

Authors’ Contributions

HT conceived, designed, and managed the study. ZL, LA,
and WS performed the experiments and drafted the manu-
script. MC and NX provided computational support and
technical assistance. All authors approved the final
manuscript.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Nos. 62172158 and 11701379), the
Project of Hunan Institute of Technology (No. HQ20004),
and the Hunan Natural Science Foundation (No. 2021JJ40120).

References

[1] GTEx Consortium, “Human genomics. The genotype-tissue
expression (GTEx) pilot analysis: multitissue gene regulation
in humans,” Science, vol. 348, no. 6235, pp. 648–660, 2015.

[2] B. He, C. Dai, J. Lang et al., “Amachine learning framework to
trace tumor tissue-of-origin of 13 types of cancer based on
DNA somatic mutation,” Biochimica et Biophysica Acta -
Molecular Basis of Disease, vol. 1866, no. 11, article 165916,
2020.

[3] C. Qi, C. Wang, L. Zhao et al., “SCovid: single-cell atlases for
exposing molecular characteristics of COVID-19 across 10
human tissues,” Nucleic Acids Research, vol. 50, no. D1,
pp. D867–D874, 2022.

[4] B. He, R. Zhu, H. Yang et al., “Assessing the impact of data pre-
processing on analyzing next generation sequencing data,”
Frontiers in Bioengineering and Biotechnology, vol. 8, p. 817,
2020.

[5] L. Cheng, H. Zhuang, H. Ju et al., “Exposing the causal effect of
body mass index on the risk of type 2 diabetes mellitus: a Men-
delian randomization study,” Frontiers in Genetics, vol. 10,
p. 94, 2019.

[6] J. Yang, T. Huang, F. Petralia et al., “Synchronized age-related
gene expression changes across multiple tissues in human and
the link to complex diseases,” Scientific Reports, vol. 5, no. 1,
p. 15145, 2015.

[7] X. Fu, W. Zhu, B. Liao, L. Cai, L. Peng, and J. Yang, “Improved
DNA-binding protein identification by incorporating evolu-
tionary information into the Chou's PseAAC,” IEEE Access,
vol. 6, pp. 66545–66556, 2018.

[8] B. He, J. Lang, B. Wang et al., “TOOme: a novel computational
framework to infer cancer tissue-of-origin by integrating both
gene mutation and expression,” Frontiers in Bioengineering
and Biotechnology, vol. 8, p. 394, 2020.

[9] X. Li, “A fast and exhaustive method for heterogeneity and epis-
tasis analysis based on multi-objective optimization,” Bioinfor-
matics (Oxford, England), vol. 33, no. 18, pp. 2829–2836, 2017.

[10] X. Xu, Y. Zhou, X. Feng et al., “Germline genomic patterns are
associated with cancer risk, oncogenic pathways, and clinical
outcomes,” Science advances, vol. 6, no. 48, p. eaba4905, 2020.

[11] L. Cheng, Y. Hu, J. Sun, M. Zhou, and Q. Jiang, “DincRNA: a
comprehensive web-based bioinformatics toolkit for exploring
disease associations and ncRNA function,” Bioinformatics,
vol. 34, no. 11, pp. 1953–1956, 2018.

[12] B. Du, L. Tang, L. Liu, and W. Zhou, “Predicting LncRNA-
disease association based on generative adversarial network,”
Current Gene Therapy, vol. 22, no. 2, pp. 144–151, 2022.

[13] J. Hong, X. Lin, X. Hu, X. Wu, and W. Fang, “A five-gene sig-
nature for predicting the prognosis of colorectal cancer,” Cur-
rent Gene Therapy, vol. 21, no. 4, pp. 280–289, 2021.

[14] C. Liu, D. Wei, J. Xiang et al., “An improved anticancer drug-
response prediction based on an ensemble method integrating
matrix completion and ridge regression,” Mol Ther Nucleic
Acids, vol. 21, pp. 676–686, 2020.

[15] X. Liu, J. Yang, Y. Zhang et al., “A systematic study on drug-
response associated genes using baseline gene expressions of
the cancer cell line encyclopedia,” Scientific Reports, vol. 6,
no. 1, p. 22811, 2016.

[16] L. Cai, C. Lu, J. Xu et al., “Drug repositioning based on the het-
erogeneous information fusion graph convolutional network,”
Briefings in Bioinformatics, vol. 22, no. 6, 2021.

[17] T. Li, T. Huang, C. Guo et al., “Genomic variation, origin trac-
ing, and vaccine development of SARS-CoV-2: a systematic
review,” Innovation (N Y), vol. 2, article 100116, 2021.

[18] H. Sun, J. Yang, T. Zhang et al., “Using sequence data to infer
the antigenicity of influenza virus,” MBio, vol. 4, no. 4, 2013.

[19] P. Wang, W. Zhu, B. Liao, L. Cai, L. Peng, and J. Yang, “Pre-
dicting influenza antigenicity by matrix completion with anti-
gen and antiserum similarity,” Frontiers in Microbiology,
vol. 9, 2018.

[20] C. S. Carlson, M. A. Eberle, M. J. Rieder, Q. Yi, L. Kruglyak,
and D. A. Nickerson, “Selecting a maximally informative set
of single-nucleotide polymorphisms for association analyses
using linkage disequilibrium,” The American Journal of
Human Genetics, vol. 74, no. 1, pp. 106–120, 2004.

[21] S. I. Ao, K. Yip, M. Ng et al., “CLUSTAG: hierarchical cluster-
ing and graph methods for selecting tag SNPs,” Bioinformatics
(Oxford, England), vol. 21, no. 8, pp. 1735-1736, 2005.

[22] L. Cheng, H. Zhuang, S. Yang, H. Jiang, S. Wang, and J. Zhang,
“Exposing the causal effect of C-reactive protein on the risk of
type 2 diabetes mellitus: a Mendelian randomization study,”
Frontiers in Genetics, vol. 9, p. 657, 2018.

[23] G. M. Ashraf andM. S. Uddin, “Gene therapy for neuroprotec-
tion and neurorestoration-part III,” Current Gene Therapy,
vol. 21, no. 1, pp. 2–2, 2021.

[24] V. Bafna, B. V. Halldorsson, R. Schwartz, A. G. Clark, and
S. Istrail, “Haplotypes and informative SNP selection algo-
rithms: don't block out information,” in Proceedings of the sev-
enth annual international conference on Research in
computational molecular biology, pp. 19–27, Berlin, Germany,
2003.

10 Computational and Mathematical Methods in Medicine



[25] M. J. Daly, J. D. Rioux, S. F. Schaffner, T. J. Hudson, and E. S.
Lander, “High-resolution haplotype structure in the human
genome,” Nature Genetics, vol. 29, no. 2, pp. 229–232, 2001.

[26] S. B. Gabriel, S. F. Schaffner, H. Nguyen et al., “The structure of
haplotype blocks in the human genome,” Science, vol. 296,
no. 5576, pp. 2225–2229, 2002.

[27] K. Zhang, Z. S. Qin, J. S. Liu, T. Chen, M. S. Waterman, and
F. Sun, “Haplotype block partitioning and tag SNP selection
using genotype data and their applications to association stud-
ies,” Genome Research, vol. 14, no. 5, pp. 908–916, 2004.

[28] B. V. Halldorsson, V. Bafna, R. Lippert et al., “Optimal haplo-
type block-free selection of tagging SNPs for genome-wide
association studies,” Genome Research, vol. 14, no. 8,
pp. 1633–1640, 2004.

[29] E. Halperin, G. Kimmel, and R. Shamir, “Tag SNP selection in
genotype data for maximizing SNP prediction accuracy,” Bio-
informatics (Oxford, England), vol. 21, Suppl 1, pp. i195–i203,
2005.

[30] L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,”
Fuzzy Sets and Systems, vol. 1, no. 1, pp. 3–28, 1978.

[31] L. A. Zadeh, “Toward a generalized theory of uncertainty
(GTU)––an outline,” Information Sciences, vol. 172, no. 1-2,
pp. 1–40, 2005.

[32] S. Warshall, “A theorem on boolean matrices,” Journal of the
ACM, vol. 9, no. 1, pp. 11-12, 1962.

[33] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of IEEE International Conference on Neural Net-
works IV, pp. 1942–1948, Perth, WA, Australia, 1995.

[34] J. Kennedy and R. C. Eberhart, “A discrete binary version of
the particle swarm algorithm,” in 1997 IEEE international con-
ference on systems, man, and cybernetics. Computational cyber-
netics and simulation, pp. 4104–4108, Orlando, FL, USA, 1997.

[35] X. Xia, L. Gui, G. He et al., “An expanded particle swarm opti-
mization based on multi-exemplar and forgetting ability,”
Information Sciences, vol. 508, no. 6184, pp. 105–120, 2019.

[36] X. Xia, L. Gui, F. Yu et al., “Triple archives particle swarm opti-
mization,” IEEE Transactions on Cybernetics, vol. 50,
pp. 4862–4875, 2020.

[37] X. Xia, L. Gui, Y. Zhang et al., “A fitness-based adaptive differ-
ential evolution algorithm,” Information Sciences, vol. 549,
no. 9, pp. 116–141, 2021.

[38] B. Liao, X. Li, W. Zhu, and Z. Cao, “A novel method to select
informative SNPs and their application in genetic association
studies,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 9, no. 5, pp. 1529–1534, 2012.

[39] L.-Y. Chuang, W.-L. Huang, and C.-H. Yang, “An improved
particle swarm optimization for tag single nucleotide polymor-
phism selection,” in Proceedings of the International Multi
Conference of Engineers & Computer Scientists (IMECS 2012),
p. 33, Hongkong, 2012.

[40] X. Li, B. Liao, L. Cai, Z. Cao, and W. Zhu, “Informative SNPs
selection based on two-locus and multilocus linkage disequi-
librium: criteria of max-correlation and min-redundancy,”
IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, vol. 10, no. 3, pp. 688–695, 2013.

[41] X. Li, Y. Lin, X. Meng, Y. Qiu, and B. Hu, “An L0 regulariza-
tion method for imaging genetics and whole genome associa-
tion analysis on Alzheimer’s disease,” IEEE Journal of
Biomedical and Health Informatics, vol. 25, no. 9, pp. 3677–
3684, 2021.

[42] F. Wang, J. Yang, H. Lin et al., “Improved human age predic-
tion by using gene expression profiles from multiple tissues,”
Frontiers in Genetics, vol. 11, p. 1025, 2020.

[43] L. Huang, X. Li, P. Guo et al., “Matrix completion with side
information and its applications in predicting the antigenicity
of influenza viruses,” Bioinformatics (Oxford, England),
vol. 33, no. 20, pp. 3195–3201, 2017.

[44] L. Cheng, C. Qi, H. Zhuang, T. Fu, and X. Zhang, “gutMDisor-
der: a comprehensive database for dysbiosis of the gut micro-
biota in disorders and interventions,” Nucleic Acids Research,
vol. 48, no. D1, pp. D554–D560, 2020.

[45] H. Liu, C. Qiu, B. Wang et al., “Evaluating DNA methylation,
gene expression, somatic mutation, and their combinations in
inferring tumor tissue-of-origin,” Frontiers in Cell and Devel-
opment Biology, vol. 9, article 619330, 2021.

[46] Y. Liang, H. Wang, J. Yang et al., “A deep learning framework
to predict tumor tissue-of-origin based on copy number alter-
ation,” Frontiers in Bioengineering and Biotechnology, vol. 8,
p. 701, 2020.

11Computational and Mathematical Methods in Medicine


	Informative SNP Selection Based on a Fuzzy Clustering and Improved Binary Particle Swarm Optimization Algorithm
	1. Introduction
	2. Materials and Methods
	2.1. Description of the Tag SNP Selection Problem
	2.2. Application of the FC Algorithm to Identify the Candidate Informative SNP Set
	2.3. Development of the PSO Algorithm
	2.3.1. The Theoretical Principle behind the Improved PSO Algorithm
	2.3.2. Application of the Improved PSO Algorithm
	2.3.3. Development of the Binary Particle Swarm Optimization (BPSO)
	2.3.4. Optimization Based on the Improved BPSO

	2.4. Evaluation of the New FCBPSO

	3. Results
	3.1. Prediction Accuracy
	3.2. Running Time

	4. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

